

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 333 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

October 15, 2007

Mr. Tom Gainer, P.E. Oregon Department of Environmental Quality 2020 SW 4th Avenue, Suite 400 Portland, Oregon 97201-4987

Re: Third Quarter 2007 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the third quarter 2007, and work planned for the fourth quarter 2007 for the McCall Oil and Chemical site in Portland, Oregon.

WORK COMPLETED THIRD QUARTER 2007

- data management and reporting
- received DEQ comments on Second Quarter 2007 Status Report in an August 21, 2007 email
- responded to DEQ comments in an August 21, 2007 email
- project management and meetings

PLANNED FOURTH QUARTER 2007 RI TASKS

- data management and reporting
- collect stormwater and catch basin sediment samples if a qualifying event occurs
- project management and meetings

RESULTS

No stormwater or groundwater samples were collected during third quarter 2007.

PROBLEMS ENCOUNTERED

No problems were encountered during third quarter 2007.

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G.

Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

July 20, 2007 030162-01 8650 SW Redwood Lane, #110 Portland, OR 97224 Phone 503.670.1108 Fex 503.670.1128 www.anchorenv.com

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Second Quarter 2007 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the second quarter 2007, and work planned for the third quarter 2007 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED SECOND QUARTER 2007

- data management and reporting
- April 2, 2007 met with DEQ to discuss project status and DEQ's March 5, 2007 comments on Stormwater and Catch Basin Sediment Sampling Plan
- April 9, 2007 prepared written response to DEQ's March 5, 2007 comments on Stormwater and Catch Basin Sediment Sampling Plan
- received and reviewed DEQ's April 16, 2007 Stormwater Plan approval letter
- received and reviewed DEQ's May 1, 2007 comments on the July 2004 Remedial Investigation Report
- collected stormwater and catch basin sediment samples on May 2, 2007
- project management and meetings

PLANNED THIRD QUARTER 2007 RI TASKS

data management and reporting.

 review and evaluate DEQ's May 1, 2007 comments on the July 2004 Remedial Investigation Report

collect stormwater and catch basin sediment samples if a qualifying event occurs

project management and meetings

RESULTS

On May 2, 2007, Anchor collected stormwater samples from locations S-2, S-3, and S-4. Location S-1 had insufficient discharge to collect a sample. Sampling results for stormwater sampling are in Tables 1 through 3. Sampling locations are shown in Figure 2.

stormwater filter. Insufficient volumes of sediment were present at locations S-1, S-2, and S-4 to

A catch basin sediment sample was collected from stormwater sampling location S-3 above the

allow for sample collection.

PROBLEMS ENCOUNTERED

No problems were encountered during first quarter 2007.

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G.

Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

Table 1 **Total Petroleum Hydrocarbons Stormwater** McCall Oil and Chemical

Į.	Date						
Location	Sampled	Gasoline		Diesel		Heavy Fuel Oil	
Catch Basins - Storm Water µg/	L (ppb)						
S-1W	12/20/00	1,100	Z	100	Ū	250	U
S-1W	03/06/02	110	U	110	U	270	U
S-1W	04/07/05	100	U	340	H	880	0
S-2W	12/20/00	100	U	100	U	250	U
S-2W	03/06/02	130	Z	110	υ	260	บ
S-2W	04/07/05	100	U	310	Y	430	0
S-2W	05/02/07	250	U	250	U	500	U
S-3W	02/15/01	1,300	Z	510	Z	250	U
S-3W	03/06/02	110	U	110	\mathbf{Z}^{\cdot}	260	บ
s-3W .	04/07/05	120	Z	550	Y	1,000	0
S-3W	05/02/07	250	U	290	Z	500	U
Oil/Water Separator - Storm W	ater						
S-4W	02/15/01	270	Z	280	Z	250	บ
S-4W Duplicate	02/15/01	260	Z	300	Z	250	U
S-4W	04/09/02	220	H	1,300	F	550	0
S-4W	04/07/05	. 100	U	440	Y	340	L
S-4W	05/02/07	250	U	1,000	Z	940	Z

Notes: U = Not detected at method reporting limit. F = The fingerprint of the sample matches the elution pattern of calibration standard

L = The fingerprint resembles a petroleum product, but the elution pattern indicates the presence of lighter weight constituents.

H = The fingerprint resembles a petroleum product, but the elution pattern indicates the presence of heavier weight constituents.

O = The fingerprint resembles oil, but does not match the calibration standard.

Y = The fingerprint resembles a petroleum product in the correct carbon range, but the elution pattern does not match the calibration standard.

Z = The fingerprint does not resemble a petroleum product.

DET= Detected above method reporting limit (method reporting limit shown)
D = The reported result is from a dilution.

TABLE 2
PAHs, SVOCs, and PCBs (μg/L)
Stormwater
McCall Oil and Chemical

							Stor	m Water					· · · · · · · · · · · · · · · · · · ·					
Sample Designation Matrix Date Sampled	S-1 Water 12/20/00	S-1 Water 03/06/02	S-1 Water 04/07/05	S-2 Water 12/20/00	S-2 Water 03/06/02	S-2 Water 04/07/05	S-2 Water 05/02/07	S-3 Water 12/20/00	(S-3 Water 03/06/02		S-3 Water 04/07/05	S-3 Water 05/02/07	S-4 Water 12/20/00	S-4 Duplicate Water 12/20/00	S-4 Water 04/09/02	Water 04/07/05	S-4 Water 05/02/07
							L	PAHs										
Naphthalene	0.03 J	0.03 J	0.031 J	0.07 J	0.025 J	0.012 U	0.015	0.07	J	0.025	J	0.012 U	0.0087	0.04	J 0.04 J	0.012 U	0.012 U	0.017
Acenaphthylene	0.01 J	0.01 U	0.037 J	0.02 J	0.011 U	0.026 J	0.019 D	0.10	U	0.011	U	0.011 U	0.0082 Ui	0.10	U 0.10 U	0.011 U	0.011 U	0.0077
Acenaphthene	0.02	0.01 U	0.009 U	0.02 J	0.009 U	0.009 U	0.016 U	0.10	U	0.009	U	0.009 U	0.0077 U	0.14	0.12	0.085 J	0.009 U	0.0077
Fluorene	0.02	0.01 U	0.026 Ј	0.04 J	0.013 U	0.012 U	0.016 U	0.02	J	0.013	U	0.012 U	0.0084	0.36	. 0.34	0.170 J	0.012 U	0.0077
Phenanthrene	0.07 J	0.03 J	0.190 J	0.25	0.043 J	0.045 J	0.027	0.20		0.054	J	0.057 J	0.024	0.46	0.35	0.073 J	0.032 J	0.033 1
Anthracene	0.01 U		0.039 J	0.02 J	0.016 U	0.015 U	0.0077 U	0.10	U	0.015	U	0.015 U	0.0077 U	0.02	J 0.01 J	0.015 U	0.015 U	0.0077
2-Methylnaphthalene	0.03 J		0.012 U	0.05 J	0.014 J	0.012 U	0.0077 U	0.10		0.012		0.012 U		0.09		0.012 U		
Total LPAH	0.05	0.078	0.323	0.470	0.082	0.071	0.061	0.386		0.079	O	0.012	0.041	1.110	0.960	0.328	0.032	0.014
																	HPAHs	
Fluoranthene	0.02 J	0.013 U	0.230	0.099	0.022 J	0.059 J	0.018	0.06	J	0.023	J	0.040 J	0.016	0.06	J 0.05 J	0.01 U	0.01 U	0.053
Pyrene	0.02 J		0.280	0.12	0.025 J	0.059 J	0.019	0.03		0.022	J	0.037 J	0.017	0.19	0.16	0.10 J	0.10 J	0.078
Benz(a)anthracene	0.005 U		0.081 J	0.03 J	0.013 U	0.012 U	0.0077 U		J	0.012		0.012 U		0.03	J 0.02 J	0.012 U		
Chrysene	0.008 J		0.140 J	0.06 J	0.015 U	0.012 U	0.0077 U	0.03	•	0.012		0.012 U		0.12	0.09 J	0.014 U		
Benzo(b)fluoranthene	0.006 J		0.150 J	0.04 J	0.021 U	0.021 J	0.0077 U	0.03		0.013		0.014 U		0.12		0.020 U		
Benzo(k)fluoranthene	0.004 J		0.049 J	0.03 J	0.021 U	0.020 U	0.0077 U		J	0.020		0.020 U		0.02		0.020 U		
Benzo(a)pyrene	0.004 J		0.100 J	0.03 J	0.017 U	0.020 U	0.0077 U	0.095	-	0.017		0.016 U		0.03		0.016 U		0.017
· · · · · ·	0.006 J		0.100 J	0.04 J	0.017 U	0.020 U	0.0077 U		J	0.025		0.010 U		0.03		0.010 U		
Indeno(1,2,3-cd)pyrene	ļ.								-									
Dibenz(a,h)anthracene	0.004 U		0.031 U	0.009 J	0.032 U	0.020 U	0.0077 U	0.19	U	0.031		0.031 U		0.009		0.031 U		
Benzo(g,h,i)perylene	0.007 J 0.071	0.017 U	0.140 J 1.26	0.06 J 0.52	0.018 U 0.047	0.020 U 0.139	0.0085 0.046	0.01 0.17	J	0.017 0.045	U	0.017 U 0.077	0.0077 U 0.042	0.04 0.55	J 0.03 J 0.44	0.017 U 0.10	0.017 U 0.10	0.027 0.27
Total HPAHs	0.071		1.20	0.32	0.047	0.139	0.040	0.17		.0.043		0.077	0.042	0.55	<u> </u>	0.10	SVOCs	
3- and 4-Methylphenol												<u>`</u> .				-	3.005	· · · · · · · · · · · · · · · · · · ·
Coelution	0.3	0.23 J	0.051 U	0.49	0.089 J	0.051 U	0.48 U	0.48	U	0.220	J	0.120 J	0.48 U	0.2	J 0.2 J	0.051 U	0.051 U	0.48
Dibenzofuran	0.01 J	0.014 U	0.014 U	0.02 J	0.014 U	0.014 U	0.016 U	0.01	U	0.019	J	0.014 U	0.011	0.13	0.11	0.11 J	0.01 U	0.013 1
Dimethyl Phthalate					•		0.22						0.32					0.29
Diethyl Phthalate							0.47						0.20 U					0.20
Di-n-butyl Phthalate							0.21				_		0.20 U					0.20
Butyl Benzyl Phthalate	0.1 J	0.19 J	0.20	0.1 Ј	0.05 J	0.076 J	0.20 U	0.08	J	0.092	J	0.089 J	0.20 U	0.05	J 0.04 J	0.14 J	0.10 J	0.20
Bis(2-ethylhexyl) Phthalate							1.4						0.96 U					0.96
, , , , , , , , , , , , , , , , , , , ,	0.002 1		0.022.17	0.002 11	0.020 11	0.11 Y		0.05		0.022		0.022 11		. 0.05		0.022 11	0.022 11	
Di-n-octyl Phthalate	0.003 U	0.032 U	0.032 U	0.003 U	0.032 U	0.11 J	0.20 U	0.95	<u>U</u>	0.033	U	0.032 U	0.20 U	0.95	U 0.96 U	0.032 U	0.032 U	0.20
Arochor 1016	T						0.20 U	<u> </u>					0.20 U					0.20 1
Arochor 1221							0.39 U						0.39 U					0.39 1
Arochor 1232							0.20 U						0.20 U		-			0.20 1
Arochor 1242							0.20 U						0.20 U				*	0.20
Arochor 1248							0.20 U						0.20 U					0.20 1
Arochor 1254							0.20 U						0.20 U					0.20 1
Arochor 1260	<u> </u>						0.20 U						0.20 U					0.20 T

Table 3
Metals
Stormwater
McCall Oil and Chemical

									1				
			Date									l	
Location	•	Matrix	Sampled	Arsenic	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Nickel	Silver	Zinc
Catch Basins - Storm	Water µg/L (p	pb)											
S-1W	Total	Water	12/20/00	0.5 U	0.05 U	0.4	3.8	0.43					200
S-1W	Total	Water	03/06/02	0.5 U	0.20 U	0.4	3.7	0.31					195
S-1W	Total	Water	04/07/05	0.5 U	0.16	7	13.5	27.1					86.9
S-1W	Dissolved	Water	04/07/05	0.5 U	0.07	1.3	7.9	0.61					47.8
S-2W	Total	Water	12/20/00	ıυ	0.22	2.0	9.9	5.93	1			1	113
S-2W	Total	Water	03/06/02	0.5 ป	0.20 U	0.6	10.3	1.13	İ				73.3
S-2W	Total	Water	04/07/05	0.5 U	0.07	1.1	9.4	2.33]		i	ļ	51.1
S-2W	Dissolved	Water	04/07/05	0.5 U	0.05	0.7	6.0	0.7					42.9
S-2W	Total	Water	05/02/07	0.5 U	0.12	1.1	11.3	3.20	8.36	0.2 U	1.2	0.02	149
S-2W	Dissolved	Water	05/02/07	0.5 U	0.05	0.7	8.8	0.86	3.25	0.2 U	1.2	0.02 U	101
S-3W	Dissolved	Water	12/15/00	1 U	0.63	2.9	29.6	1.62					596
S-3W	Total	Water	03/06/02	0.5 U	0.2 U	1.2	13.1	2.30	1	-			84.2
S-3W	Total	Water	04/07/05	0.5 U	1.05	1.9	8.6	4.14	1			1 1	189
S-3W	Dissolved	Water	04/07/05	0.5 U	0.96	1.3	7.1	1.06				 	·182
S-3W	Total	Water	05/02/07	0.5 U	0.17	2.3	19.1	4.85	23.5	0.2 U	2.7	0.07	375
S-3W	Dissolved	Water	05/02/07	0.5 U	0.15	0.9	12.8	0.75	14.3	0.2 U	1.9	0.03	301
Oil/Water Separator	- Storm Water	μg/L (ppb)											
S-4W	Dissolved	Water	12/15/00	0.5 U	0.22	0.8	4.9	0.05					47.1
S-4W Duplicate	Dissolved	Water	12/15/00	0.5 U	0.21	0.6	4.7	0.04					45.0
S-4W	Total	Water	04/09/02	0.6	0.2	0.9	9	3.29					86.6
S-4W	Total	Water	04/07/05	0.5	0.19	1.1	8.3	6.15	1]	89.8
S-4W	Dissolved	Water	04/07/05	0.5 U	0.09	0.2	4.4	0.09					46.8
S-4W	Total	Water	05/02/07	1.5	0.51	5.2	27.7	36.0	169	0.2 ป	6.9	0.12	252
S-4W	Dissolved	Water	05/02/07	0.5 U	0.16	0.5	14.2	0.54	46.3	0.2 U	2.8	0.02 ป	201
Note: U = not detected at me	thod reporting limi	t. μg/L = microgra	ms per liter. ppb	= parts per billi	on.								

Table 4 Total Petroleum Hydrocarbons Catch Basin Sediment McCall/GWCC Portland, Oregon

					TPH - FIQ	1		
Location	Matrix	Date Sampled	Gasoline		Diesel		Heavy Fuel Oil	
Catch Basins	- Sediment mg/kg (ppn	n)						
S-1	Soil	12/15/00	26	Y	400	Н	1900	0
S-2	Soil	12/15/00	21	Y	300	н	2200	DO
S-3	Soil	12/15/00	580	Y	2400	н	7600	DO
S-3	Soil	11/04/04	210	ט	1600	лн	8500	JO
S-3	Soil	05/02/07	14	U	1400	DH	9300	DO
S3-01C	Soil	12/15/00	10	U	10	U	30	Y

Notes: U = Not detected at method reporting limit. F = Fingerprit of the sample matches the elution pattern of calibration standard

- L = The fingerprint resembles a petroleum product, but the elution pattern indicates the presence of lighter weight constituents.
- H = The fingerprint resembles a petroleum product, but the elution pattern indicates the presence of heavier weight constituents.
- O = The fingerprint resembles oil, but does not match the calibration standard.
- Y = The fingerprint resembles a petroleum product in the correct carbon range, but the elution pattern does not match the calibration standard.
- Z = The fingerprint does not resemble a petroleum product.
- D = The reported result is from a dilution.

TABLE 5 PAHs, SVOCs, and PCBs (μg/kg) Catch Basin Sediment McCall/GWCC

Sample Designation	S-1	S-2	S-3	S-3	· S-3	S3-01C
Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Date Sampled	12/15/00	12/15/00	12/15/00	11/04/04	05/02/07	12/15/00
Date Sampled	12/13/00	12/13/00	LP/		03/02/01	12/15/00
Naphthalene	200 JD	50 JD	400 JD	64 JD	130	12 U
Acenaphthylene	40 JD	20 JD	60 JD	37 JU	31	12 U
Acenaphthene	200 JD	30 JD	720 U	26 JU	24	12 U
Fluorene	100 JD	20 JD	3600 D	72 JD	47	12 U
Phenanthrene	1500 D	320 D	3600 D	660 JD	670	12 U
Anthracene	400 JD	50 JD	2600 D	140 JD	58	12 U
1	100 02	55.55	2000 2	2.002	75	
2-Methylnaphthalene	100 JD	50 JD	400 JD	31 Л	80	0.6 J
Total LPAH	2540	540	10660	936	1040	0.6
			HPA	\Hs		
Fluoranthene	2600 D	690 D	5800 D	1400 JD	780	3 J
Pyrene	2600 D	770 D	5500 D	1200 JD	1000	3 J
Benz(a)anthracene	1300 D	440 D	2500 D	400 JD	230	2 J
Chrysene	2000 D	740 D	5300 D	1100 JD	390	3.7
· .				* *	1	
Benzo(b)fluoranthene	2000 D	780 D	4100 D	1100 JD	570	3 J
,	,					
Benzo(k)fluoranthene	1500 D	540 D	3400 D	270 JD	180	2 J
Benzo(a)pyrene	1900 D	670 D	3700 D	490 JD	320	2 J
Indeno(1,2,3-cd)pyrene	1500 D	490 D	3200 D	530 JD	500	2 J
Dibenz(a,h)anthracene	300 ЛD	100 JD	800 JD	150 JD	100	24 U
Benzo(g,h,i)perylene	1600 D	500 D	3600 D	790 JD	1100	3 J
Total HPAHs	17300	5720	37900	7430	5170	23
			SVC)Cs		
3- and 4-Methylphenol						
Coelution	13000 ປ	1900 U	4000 JD	3000 JD	680 U	240 U
Dibenzofuran	100 JD	20 JD	200 JD	69 JD	67	12 U
Dimethyl Phthalate					680 U	Ĭ
Diethyl Phthalate					680 U	
Di-n-butyl Phthalate					840 D	
Butyl Benzyl Phthalate	1500 D	2500 D	5000 D	930 JD	680 U	1 J
Bis(2-ethylhexyl)						i
Phthalate					12000 D	
Di-n-octyl Phthalate	13000 U	1900 U	14000 U	11000 JD	680 U	2 J
			PC	Bs		
Arochor 1016					11 77	:
i i	. •				11 U	ļ
Arochor 1221					22 U	
Arochor 1232 Arochor 1242					11 U	
					11 U	
Arochor 1248					11 U	
Arochor 1254			•		69 75	I
Arochor 1260					75	
	NOTE: µg/kg = microgra			ected at or above the indic	ated method reporting li	mit. J = estimated
L	concentration. D = reporte	a result is from a dilution	<u> </u>	<u></u>		

Table 6 Metals Catch Basin Sediment McCall/GWCC Portland, Oregon

Location Catch Basins - Se	diment µg/kg	Matrix (ppb)	Date Sampled	Arsenic	Cadmium	Chromium	Copper	Lead	Manganese		Nickel	Silver	Zinc
S-1	Total	Sediment	12/15/00	5200	2000	48900	13.7000	145000					638000
S-2	Total	Sediment	12/15/00	7500	1420	63700	316000	211000					584000
S-3	Total	Sediment	12/15/00	37900	2860	144000	1050000	454000					985000
S-3	Total	Sediment	11/04/04	25600	1900	189000	1360000	600000	1			ļ	752000
S-3	Total	Sediment	05/02/07	10000	1600	79100	321000	206000	462000	240	44400	920	938000
\$3-01C	Total	Sediment	12/15/00	4400	120	11900	27400	8580					82700
Note: U = not detected	Note: U = not detected at method reporting limit. µg/kg = micrograms per kilogram. ppb = parts per billion.												

Attachment A Laboratory Report

June 6, 2007

Analytical Report for Service Request No: K0703836

John Renda Anchor Environmental 6650 SW Redwood Lane Suite 110 Portland, OR 97224

RE: McCall-Portland

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on May 04, 2007. For your reference, these analyses have been assigned our service request number K0703836.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3358. You may also contact me via Email at LHuckestein@kelso.caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda Huckestein

Client Services Manager

LH/lb

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	• .
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Case Narrative

Client:

Anchor Environmental

Project:

Sample Matrix:

McCall-Portland

Water, Sediment

Service Request No.: Date Received:

K0703836

5/4/07

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Four water and one sediment sample were received for analysis at Columbia Analytical Services on 5/4/07. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Total and Dissolved Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Zinc for sample S-2-050207 is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

The control criteria for matrix spike recoveries of Copper, Manganese, and Zinc for sample SS-3-050207 are not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Diesel Range Organics

No anomalies associated with the analysis of these samples were observed.

Gasoline Range Organics

No anomalies associated with the analysis of these samples were observed.

PCB Aroclors by EPA Method 8082

No anomalies associated with the analysis of these samples were observed.

Approved by	LAN	Date_	6/4	lon_
			-7-6	

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL6239: Hexachlorocyclopentadiene, Diethyl Phthalate, Benzidine. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 4.9%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL6280: Benzoic Acid, 2,4-Dinitrophenol, Benzidine. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 5.1%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

Surrogate and Matrix Spike Exceptions:

The control criteria for the surrogates in samples SS-3-050207 and Batch QC are not applicable. The analysis of the sample required dilutions, which resulted in a surrogate concentration below the Method Reporting Limit (MRL). No further corrective action was appropriate.

The control criteria for the following surrogate in the Batch QC sample Matrix Spikes are not applicable: Terphenyl-d14. The analysis of the samples required dilutions, which resulted in a surrogate concentration below the Method Reporting Limit (MRL). No further corrective action was appropriate.

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Butyl Benzyl Phthalate for sample Batch QC are not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

The matrix spike recoveries of most analytes for sample Batch QC were outside control criteria because of suspected matrix interference. A Matrix Spike Duplicate (MSD) was also analyzed, but produced similar results. The results of the original analysis are reported. All recoveries in the associated replicate Laboratory Control Samples (LCS/DLCS) were within control limits, indicating the analytical batch was in control. No further corrective action was appropriate.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate matrix spike analyses of Dimethyl Phthalate and Bis(2-ethylhexyl) Phthalate in sample Batch QC was outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Elevated Method Reporting Limits:

The reporting limits are elevated for sample SS-3-050207. The sample extract was diluted prior to instrumental analysis due to relatively high levels of non-target background components. Clean-up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution. A semi-quantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Elevated Method Reporting Limits:

The reporting limit is elevated for Acenaphthylene in sample S-3-050207. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compound at the reporting limit. The result is flagged to indicate the matrix interference.

Approved by		4	_Date_	afefor	
-------------	--	---	--------	--------	--

The reporting limit is elevated for Naphthalene, Dibenzofuran, and Phenanthrene in sample S-4-050207. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the reporting limit. The results are flagged to indicate the matrix interference. UNA Date 6/6/07 Approved by

000/8

Chain of Custody Documentation

Columbia Analytical Services PC
Services

CHAIN OF CUSTODY

SR#:	140705836
<u>. </u>	

An Employee - Owned Company	13	17 South 13	th Ave. • Ke	lso, WA 9	98626	(360)	577-72	22 • ((800)	895-722	22x07	• FAX	(360)	636-10	68	Р	AGE			OF.			CO	C #		
PROJECT NAME McCall	- PORT	ZAND	_			=	$\overline{}$		7	7	./	7	7	7	10	1		16		7	T^{-}	7	7	T_{-}	7 7	\Box
PROJECT NUMBER							_ /	_/.		BIEX	η,	/ /	<u> </u>	′ /	\ \f	′ /	' /i	Q\\$	' /.	à A	h /	206	' '/	'. /	/ 6	
PROJECT MANAGER TOTAL	REND	4				7.	_/_	Paris by GCAN		6	/	108.6	છું /	_ /	6/	/,	. /Š	<u>ر/ يا</u>	્ /ક	- A	3) /	જ /	1.			•
COMPANY/ADDRESS ANCHOR	ENU-	POX				CONTAINERS	? / -	\&`	<u></u>	D 3		\ğ	:/	ୁ/	S-8151140		1	' / ²] /4	88	40x 1650	The state of the s	/	d)		1
						7 🐔	/ · ·	198	: /	~ \$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0,0	/~		5/ ₀ }			§	چ /	188		?J &			7	/ /	- 1
CITY/STATE/ZIP						\ <u>\ \ \ </u>	' <i>i</i>		/_ ª		A E	E.	Lâ	90	/\$	/Not/	l #//	3	of l	きを	/ð/			7 /	' /	ļ
E-MAIL ADDRESS					-/	္မ /	: /d	\$ <u>``</u> [<u> </u>			EX	PY.			2 k	\$ <u>\$</u> \	¥ /¿	99 /	ر چ`	~ /	3 /	4/	_ /		ļ
™363-670-110 €	1.17	FAXe 6	70 -11	28	7,	ğ/		8/8			* S			8/8	PAHE DESIGNATION OF THE PAHE D	\$ 6		و ا	88	70 X 900		n / Y	3/			ļ
SAMPLER'S SIGNATURE	12		<u> </u>	<u></u>	NUMBES	7/	150			MF.	*/ ©	Ø		1/8	. / ∖ॢ	/يا/	Stanios I	NO ON	સંકૃષ્) \ \	* / Ly	(C)	F/	/	/	
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	√ ≸	/ .	\&\&	\\$\\$	/₽c			8	(శ్రీశ్రీ	18 2	/ R	Metak	78	\£`≷	ĮĘ"ŏ	/	/ "	Υ×	/	/ 🚈	REMARKS	,
	5-201		LAD I.D.	W		-		- 	1.		-					X	-1	V				X	-		· · · · · · · · · · · · · · · · · · ·	ㅓ
5-2-050207	2-201	1445			10				X	ļ		<u> </u>				()		$\frac{\cdot}{\cdot}$				-				
5-3-050207		1500		W	10				X_			X				<u>A</u>		X				X				
5-4-050207		1630		W	10				X			X	[[X	- 1	X		i		X.				
5 -3-650207		1525		5	3				γ			X				X			X			٧		-		
TRIP BLANK	5-2-07			W	2				1																HOLD	\neg
ILIP DUTINA	3.2-01	141		<u> </u>	1				<u> </u>						-					<u> </u>	\vdash	-			HUED	┥
				 	 					_												\vdash				
<u>'</u>																	l									
)						'															
									_																	\neg
											-							-	- 			\vdash				\dashv
	L	IADIC	ICE INFOR	MATIO		لــــا						L					1		1							
REPORT REQUIREM	ENTS		ACE INFOR		`					be and			\sim		0	•	\sim		`	^	~				c /	<u>ء</u> ا
I. Routine Report: N	Method	Bill To:				Tot	al Meta	ls: Al	(Ag)	Sb B	a Be	в Са	(Cg)	Co/9	Z/Cy) Fe (Pb) M	19 (M)	Mo	(NI) I	K (Ag	Na	Se S	r TI	Sn V (2) (Hg	K I
Blank, Surrogate,	as					Dissolv	ved Met	als: Al	ZAS)	Sb B	a Be	ВС	a 7 6)	co 7	c) (c,	Fe	(Pb) N	19 7 4	Mo	A	ĸ 🍇	Na	Se S	r Ti	sn v Zij (Hg sn v Zij (Hg	。)
required Y						*INDI	CATE	STAT	LE HI	/DRO	CARBO	ON PF	ROCE	DURE	: AK	CA	WI	MOI	THW	EST	ЭТНЕ	ER:		_(CIA	CLE ONE)	\Box
II. Report Dup., MS, required	MSD as	TURNAR	OUND REC	UIREM	ENTS	SPEC	CIAL IN	NSTRI	UCTI	ONS/C	MMO	ENTS	 ::								-		.,			\Box
III. Data Validation F		241		_48 hr.		*	511	n P	AH:	s B	182	70	~	+	4-	ME	THY	LPI	HEA	101	. g &	guty	ibe.	NZY	Iphthala	屯
(includes all raw	•	5 D	•			1							hal											_		
IV. CLP Deliverable	,		ndard (10-15		days)	Ì		,	•-		,,_		•	_				. —			,	•				- 1
V. EDD		Pro	vide FAX Re	suits							•															ļ
		Re	quested Rep	ort Date																						
RELINQUIS	HED BY:	-/-	T			EIVED	BY;	/		\neg			REL	INQU	ISHE	D BY:			Τ.			RE	CEIVI	ED BY		ヿ
whow.	5-3-0	7/2000		rain ature	Sku	6	574/ ate/[ir	13-1	705	_					_				ļ							
Signature IM TONE	Date/Time	DR-PDX	Signa	ature	Sol	D	ate/Tir	ne		_	Sig	nature)		Da	te/Tim	16		_ j _ `	Signa	ture			Date	Time	l
Printed Name	Firm		Printe	ed Name	3	F	irm				Prir	ted N	ame		Fi	m				Printe	d Nar	ne		Firm		·
	1 miles reams										- 						DCOC #1 08/0						~!~~			

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC lynda

1. Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Contret Hand Delivered 2. Samples were received in: (circle) Colleg Box Envelope Other NA 3. Were custody seals on coolers? NA N If yes, how many and where? If present, were custody seals intact? No If yes, how many and where? If present, were custody seals intact? No If yes, how many and where? No	Client / Project: Hncher Service Request K07 03836	1		
2. Samples were received in: (circle)	Received: 5/4/07 Opened: 174/02 By: Thuk	•	•	
2. Samples were received in: (circle)	1. Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Courie	er) Ha	nd Deliv	ered
If present, were custody seals intact? N If present, were they signed and dated? N N Y N If shipper's air-bill filed? If not, record air-bill number: NA Y N Temperature of cooler(s) upon receipt (°C): Temperature Blank (°C): If applicable, list Chain of Custody Numbers: Were custody papers properly filled out (ink, signed, etc.)? Packing material used. Inserts Elibble Wrap Gel Packs Relief Sleeves Other 9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. N Were all oftel labels complete (i.e analysis, preservation, etc.)? Were the correct types of bottles used for the tests indicated? Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below NA Y N Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below NA Y N Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below NA Y N NA Y N NA W N NA W N NA Y N Semple 10 on Bottle in the table below NA Y N NA Y N Sample 10 on Bottle Sample			NA	
4. Is shipper's air-bill filed? If not, record air-bill number: NA Y N	3. Were custody seals on coolers? NA N If yes, how many and where? / / NN	<u> </u>		
Temperature of cooler(s) upon receipt (*C): Temperature Blank (*C): If applicable, list Chain of Custody Numbers: Were custody papers properly filled out (ink, signed, etc.)? Packing material used. **Inserts** **Laubhe Wrap** Gel Packs** **Laube** Other** Did all bottles arrive in good condition (unbroken)? **Indicate in the table below.** Were all bottle labels complete (i.e analysis, preservation, etc.)? Were all bottle labels and tags agree with custody papers? **Indicate in the table below** Were the correct types of bottles used for the tests indicated? Were the correct types of bottles used for the tests indicated? Were the orrect types of bottles received at the lab with the appropriate pH? **Indicate in the table below** NA N N AC WAR Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? **Indicate in the table below** A N N A C WA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Were all bottle labels complete (i.e. analysis, preservation, etc.)? Sample ID on COC. Sample ID on Bottle? Sample ID on COC. Sample ID on COC.	If present, were custody seals intact? If present, were they signed and dated?		0	N
Temperature Blank (*C): If applicable, list Chain of Custody Numbers: Were custody papers properly filled out (ink, signed, etc.)? Packing material used. Inserts with the Wrap Gel Packs Rates Sleeves Other Deal all bottles arrive in good condition (unbroken)? Indicate in the table below. Note all bottle labels complete (i.e analysis, preservation, etc.)? Were all bottle labels and tags agree with custody papers? Indicate in the table below Were all bottle labels and tags agree with custody papers? Indicate in the table below Were all of the preserved bottles used for the tests indicated? Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below Note all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below Note and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Note are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. Note are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived with >1/2 the 24hr. hold time remaining from collection? Note and 1631 Mercury bottles are ceived	4. Is shipper's air-bill filed? If not, record air-bill number:	NA	Y	N
Temperature Blank (*C): If applicable, list Chain of Custody Numbers: Were custody papers properly filled out (ink, signed, etc.)? Packing material used. Inserts: Inhibit Wrap Gel Packs Rates Steeves Other Deal all bottles arrive in good condition (unbroken)? Indicate in the table below. No. Were all bottle labels complete (i.e analysis, preservation, etc.)? Did all bottle labels and tags agree with custody papers? Indicate in the table below Were the correct types of bottles used for the tests indicated? No. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below No.			·	
If applicable, list Chain of Custody Numbers: 7. Were custody papers properly filled out (ink, signed, etc.)? Packing material used. **Inserts** **Lighte Wrap** Gel Packs** **Realize** Sleeves** Other** 9. Did all bottles arrive in good condition (unbrocken)? **Indicate in the table below.** N. Were all bottle labels complete (i.e analysis, preservation, etc.)? N. Nower all bottle labels and tags agree with custody papers? **Indicate in the table below** N. Nower the correct types of bottles used for the tests indicated? 3. Were all of the preserved bottles received at the lab with the appropriate pH? **Indicate in the table below** N. Nower VOA vials and 1631 Mercury bottles checked for absence of air bubbles? **Indicate in the table below** N. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? N. Nower Cl2/Res negative? **Sample ID on Bottle** Sample ID on Bottle** Sample ID on Bottle** **Sample ID on Bottle** **Sample ID on Bottle** **Sample ID on Bottle** **Nower Cl2/Res negative?* **Sample ID on Bottle** **Nower Cl2/Res negative?* **Sample ID on Bottle** **Sample ID on Bottle** **Sample ID on Bottle** **Nower Cl2/Res negative* **Sample ID on Bottle** **Sample ID on Bottle** **Sample ID on Bottle** **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Sample ID on Bottle** **Sample ID on Bottle** **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Sample ID on Bottle** **Sample ID on Bottle** **Sample ID on Bottle** **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Sample ID on Bottle** **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Sample ID on Bottle** **Nower Cl2/Res negative* **Sample ID on Bottle** **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Nower Cl2/Res negative* **Nower Cl2/Res negat	5. Temperature of cooler(s) upon receipt (°C): 2.6 3.2 1.0			
NA N	Temperature Blank (°C):			
Packing material used. Inserts Bubble Wrap Gel Packs Nation Sleeves Other 9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 10. Were all bottle labels complete (i.e analysis, preservation, etc.)? 11. Did all bottle labels and tags agree with custody papers? Indicate in the table below 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. No Sample 1D on Bodie 18. Sample 1D on Bodie 19. Number. Initials: 10. Additional Notes, Discrepancies, & Resolutions:	i. If applicable, list Chain of Custody Numbers:			
9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 1. Were all bottle labels complete (i.e analysis, preservation, etc.)? 1. Did all bottle labels and tags agree with custody papers? Indicate in the table below 2. Were the correct types of bottles used for the tests indicated? 3. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below 1. No. 1. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 1. No. 1. No	7. Were custody papers properly filled out (ink, signed, etc.)?	NA	Ø	N
0. Were all bottle labels complete (i.e analysis, preservation, etc.)? 11. Did all bottle labels and tags agree with custody papers? Indicate in the table below 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. Sample ID on COCs 18. Sample ID on Bottle 18. Sample ID on COCs 18. Sample ID on Bottle 18. Sample ID on COCs 18. Sample ID on Bottle 18. Sample ID on COCs 18. Sample ID on COCs 18. Sample ID on Bottle 18. Sample ID on COCs 18. Sample ID on COCs 18. Sample ID on Bottle 18. Sample ID on COCs 18. Sample ID on COCs 18. Sample ID on Bottle 18. Sample ID on COCs 18.	. Packing material used. Inserts Subble Wrap Gel Packs Wet Ice Sleeves Other			
11. Did all bottle labels and tags agree with custody papers? Indicate in the table below 12. Were the correct types of bottles used for the tests indicated? 13. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. 15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? 17. No Sample ID on Bottle 18. Sample ID on Bottle 18. Sample ID on Bottle 19. Sample ID on Bottle 19. Sample ID on Bottle 19. Sample ID on COC. 19. Sample ID on Bottle 19. Sample ID on COC. 19. Sample ID on Bottle 19. Resgent added Number. Initiates. 19. Additional Notes, Discrepancies, & Resolutions:	9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.		Ø	N
2. Were the correct types of bottles used for the tests indicated? 3. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below NA Y N 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. NA S N 5. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? 16. Was C12/Res negative? Sample ID on Bottle Additional Notes, Discrepancies, & Resolutions:	0. Were all bottle labels complete (i.e analysis, preservation, etc.)?		Ø	N
3. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below NA P N 14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. NA D N 5. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? NA Y N 16. Was C12/Res negative? NA Y N 17. Sample ID on Bottle Sample ID on Bottle Sample ID on Bottle Number. Initials: 18. Sample ID on Bottle Number. Initials: 18. And It is a proper in the table below. NA D N 19. Na C12/Res negative? 19. Sample ID on Bottle Sample ID on Bottle Number. Initials: 19. Sample ID on Bottle Number. Initials: 19. And Iditional Notes, Discrepancies, & Resolutions:	11. Did all bottle labels and tags agree with custody papers? Indicate in the table below		Ø	N
14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below. NA S N S Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Y N 16. Was C12/Res negative? Sample ID on Bottle Additional Notes, Discrepancies, & Resolutions:	'2. Were the correct types of bottles used for the tests indicated?		0	N
5. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Y N 16. Was C12/Res negative? Sample ID on Bottle Samp	3. Were all of the preserved bottles received at the lab with the appropriate pH? Indicate in the table below	NA	P	N
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID on COC Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID on COC Sample ID on Bottle Sample ID on COC Samp	14. Were VOA vials and 1631 Mercury bottles checked for absence of air bubbles? Indicate in the table below.	NA	\mathbf{Q}	N
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Sample ID Count Bottle Type Temp space Broken phi Reagent added Number Initials Additional Notes, Discrepancies, & Resolutions:	5. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection?	(NA)	Y	N
Bottle Out of Head Volume Respent Lot Sample ID Count Bottle Type Temp space Broken Sphy Reagent added Number Initials Initials I	16. Was C12/Res negative?	(NA)	$\mathbf{Y}^{'}$	N
Bottle Out of Head Volume Respent Lot Sample ID Count Bottle Type Temp space Broken Sphy Reagent added Number Initials Initials I				
Additional Notes, Discrepancies, & Resolutions:	Sample ID on Bottle Sample ID on COC	nple ID on	coc 🖶	
Additional Notes, Discrepancies, & Resolutions:				
Additional Notes, Discrepancies, & Resolutions:	· · · · · · · · · · · · · · · · · · ·			
Additional Notes, Discrepancies, & Resolutions:				
Additional Notes, Discrepancies, & Resolutions:				
Additional Notes, Discrepancies, & Resolutions:	Bottle No. 1 Page 1 Pag	Reagent	Lot	initiale (
		Medical Control	Application of the last of the	
		· · · · · · · · · · · · · · · · · · ·	-	
		·		
	Additional Notes, Discrepancies, & Resolutions:			
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
00011		0	001	1

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Total Solids

Prep Method:

NONE

Analysis Method: Test Notes:

160.3M

Units: PERCENT

Basis: Wet

Sample Name

Lab Code

Date Collected

Date Received

Date Analyzed

Result

Result

SS-3-050207

K0703836-004

05/02/2007

05/04/2007

05/07/2007

37.1

Notes

Printed: 05/08/2007 10:41 u:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0705406

QA/QC Report

Client: Project: Anchor Environmental McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007 Date Analyzed: 05/07/2007

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method: NONE

Units: PERCENT

Basis: Wet

Test Notes:

160.3M

Relative Duplicate Sample Percent Result Sample Result Result Difference Notes Lab Code Average

Sample Name

K0703836-004

37.1

35.8

36.5

SS-3-050207

Page 1 of 1

Printed: 05/08/2007 10:41 Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0705406

General Chemistry Parameters

Analytical Report

Client:

Anchor Environmental

Project Name:

McCall-Portland

Project Number: NA

Sample Matrix : Sediment Service Request: K0703836

Date Collected: 05/02/07

Date Received: 05/04/07

Carbon, Total Organic

Analysis Method:

ASTM D4129-82M

Units: Percent

Basis: Dry

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Analyzed	Result	Result Notes
SS-3-050207	K0703836-004	0.05	1	05/08/07	19.3	•
Method Blank	K0703836-MB	0.05	1	05/08/07	ND	

M

QA/QC Report

Client:

Anchor Environmental

Project Name:

McCall-Portland

Project Number: Sample Matrix:

NA Sediment

Service Request: K0703836

Date Collected: NA

Date Received: NA

Date Prepared: NA

Date Analyzed: 05/08/07

Duplicate Summary Inorganic Parameters

Sample Name:

Batch QC

K0703604-003DUP

Units: Percent

Lab Code: Test Notes:

Basis: Dry

Analyte

Analysis Method

Sample Sample Result MRL

Result

Duplicate

Average Difference Notes

Percent Result

Carbon, Total Organic

ASTM D4129-82M

0.05

1.49

1.33

1.41

11

Relative

M

QA/QC Report

Client:

Anchor Environmental

Project Name:

McCall-Portland

Project Number: NA Sample Matrix: Sed

Sediment

Service Request: K0703836

Date Collected: NA

Date Received: NA
Date Prepared: NA

Date Analyzed: 05/08/07

Matrix Spike Summary Inorganic Parameters

Sample Name:

Batch QC

Lab Code:

K0703604-003MS

Test Notes:

Units: Percent

CAS

Basis: Dry

Percent Spiked Recovery Sample Percent Acceptance Result Analysis Spike Sample Method Result Recovery Limits Notes MRL Level Result Analyte Carbon, Total Organic ASTM D4129-82M 0.05 7.96 1.49 8.98 94 75-114

M

QA/QC Report

Client:

Anchor Environmental

Project Name:

NA

Project Number: Sample Matrix:

McCall-Portland

Sediment

Service Request: K0703836

Date Collected: NA

Date Received: NA

Date Prepared: NA

Date Analyzed: 05/08/07

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name:

Lab Control Sample

Units: Percent

Lab Code: Test Notes: K0703836-LCS

Basis: Dry

CAS

Percent

Recovery

Result

Notes

Acceptance

Analyte

Prep Method

Method

Analysis

0.89

0.79

True Value Result Recovery

89

Percent

Limits

Carbon, Total Organic

NONE

ASTM D4129-82M

74-123

M

Analytical Report

Client:

Anchor Environmental

Project Name:

McCall-Portland

Project Number: NA Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/07

Date Received: 05/04/07

Solids, Total Suspended (TSS)

160.2

Analysis Method: Test Notes:

Units: mg/L Basis: NA

			Dilution	Date		Result
Sample Name	Lab Code	MRL	Factor	Analyzed	Result	Notes
S-2-050207	K0703836-001	5	1	05/08/07	19	
S-3-050207	K0703836-002	5	1	05/08/07	17	
S-4-050207	K0703836-003	5	1	05/08/07	238	
Method Blank	K0703836-MB	5	1	05/08/07	ND	

QA/QC Report

Client:

Anchor Environmental

Project Name:

McCall-Portland

Project Number: Sample Matrix:

NA Water

Date Collected: NA Date Received: NA

Date Prepared: NA

Date Analyzed: 05/08/07

Service Request: K0703836

Duplicate Summary Inorganic Parameters

Sample Name:

Batch QC

Lab Code:

K0703795-002DUP

Units: mg/L

Basis: NA

Test Notes:

Duplicate Relative Sample Sample Analysis Percent Result Method Result Result Average Difference Notes Analyte MRL ND 5

Solids, Total Suspended (TSS)

160.2

ND

ND

00020

QA/QC Report

Client:

Anchor Environmental

Project Name:

McCall-Portland

NA

Project Number: Sample Matrix: Water

Service Request: K0703836

Date Collected: NA

Date Received: NA

Date Prepared: NA

Date Analyzed: 05/08/07

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name: Lab Code:

Lab Control Sample

K0703836-LCS

Units: mg/L

Basis: NA

Test Notes:

CAS Percent Recovery

Limits

Analyte

Prep Method Analysis Method

True Value Result Recovery

Percent Acceptance

91

Result **Notes**

Solids, Total Suspended (TSS)

NONE

160.2

226

206

85-115

Metals

METALS

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Project Name:

McCall-Portland

Sample No.	Lab Sample ID.
s-2-050207	K0703836-001
S-2-050207 DISS	K0703836-001 DISS
S-2-050207D	K0703836-001D
S-2-050207S	K0703836-001S
S-3-050207	K0703836-002
S-3-050207 DISS	K0703836-002 DISS
S-4-050207	K0703836-003
S-4-050207 DISS	K0703836-003 DISS
Method Blank	K0703836-MB
Batch QCD	K0703963-004D
Batch QCS	K0703963-004S

Were	ICP interelement corrections applied?		Yes/No	YES	
Were	ICP background corrections applied?		Yes/No	YES	
	If yes-were raw data generated before application of background corrections?		Yes/No	NO	
Comm	ents:				
					 -
					•
			, 1		5 .
Signa	iture:	Date:	6/4/07		<u> </u>

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

NA

Date Collected:

05/02/07

Project Name:

McCall-Portland

Date Received: 05/04/07

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: S-2-050207

Lab Code: K0703836-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	5/24/07	5/31/07	0.5	U	
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.12		
Chromium	200.8	0.2	1	5/24/07	5/31/07	1.1		
Copper	200.8	0.1	1	5/24/07	5/31/07	11.3		
Lead	200.8	0.02	1	5/24/07	5/31/07	3.20		
Manganese	200.8	0.05	1	5/24/07	5/31/07	8.36		
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	ט	
Nickel	200.8	0.2	1	5/24/07	5/31/07	1.2		
Silver	200.8	0.02	1	5/24/07	5/31/07	0.02		
Zinc	200.8	0.5	1	5/24/07	5/31/07	149		

% Solids:

0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected: 05/02/07

Project Name:

McCall-Portland

Date Received: 05/04/07

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: S-2-050207 DISS

Lab Code: K0703836-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	5/24/07	5/31/07	0.5	U	
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.05		
Chromium	200.8	0.2	1	5/24/07	5/31/07	0.7		
Copper	200.8	0.1	1	5/24/07	5/31/07	8.8		
Lead	200.8	0.02	1	5/24/07	5/31/07	0.86	Π	
Manganese	200.8	0.05	1	5/24/07	5/31/07	3.25		
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	Ū	
Nickel	200.8	0.2	1	5/24/07	5/31/07	1.2		
Silver	200.8	0.02	1	5/24/07	5/31/07	0.02	Ü	
Zinc	200.8	0.5	1	5/24/07	5/31/07	101		

% Solids:

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected:

05/02/07

Project Name:

McCall-Portland

Date Received:

05/04/07

Matrix:

Units:

µG/L

Basis: NA

WATER

Sample Name: S-3-050207

Lab Code: K0703836-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	5/24/07	5/31/07	0.5	Ū	
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.17		
Chromium	200.8	0.2	1	5/24/07	5/31/07	2.3		
Copper	200.8	0.1	1	5/24/07	5/31/07	19.1		
Lead	200.8	0.02	1	5/24/07	5/31/07	4.85		
Manganese	200.8	0.05	1	5/24/07	5/31/07	23.5	\Box	
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	ט	
Nickel	200.8	0.2	1	5/24/07	5/31/07	2.7		
Silver	200.8	0.02	1	5/24/07	5/31/07	0.07		
Zinc	200.8	0.5	1	5/24/07	5/31/07	375		

% Solids:

0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected: 05/02/07

Project Name: McCall-Portland

Date Received: 05/04/07

Matrix:

WATER

Units:

µG/L

Basis: NA

Sample Name: S-3-050207 DISS

Lab Code: K0703836-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	5/24/07	5/31/07	0.5	ט	
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.15		
Chromium	200.8	0.2	1	5/24/07	5/31/07	0.9		<u> </u>
Copper	200.8	0.1	1	5/24/07	5/31/07	12.8		
Lead	200.8	0.02	1	5/24/07	5/31/07	0.75		
Manganese	200.8	0.05	1	5/24/07	5/31/07	14.3	Π	·
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	Ū	
Nickel	200.8	0.2	1	5/24/07	5/31/07	1.9		
Silver	200.8	0.02	1	5/24/07	5/31/07	0.03		
Zinc	200.8	0.5	1	5/24/07	5/31/07	301		

% Solids:

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected: 05/02/07

Project Name:

McCall-Portland

Date Received: 05/04/07

Matrix:

Units: µG/L

Basis: NA

WATER

Sample Name: S-4-050207 Lab Code: K0703836-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	5/24/07	5/31/07	1.5		
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.51		
Chromium	200.8	0.2	1	5/24/07	5/31/07	5.2		
Copper	200.8	0.1	1	5/24/07	5/31/07	27.7		
Lead	200.8	0.02	1	5/24/07	5/31/07	36.0		
Manganese	200.8	0.05	1	5/24/07	5/31/07	169		
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	ס	
Nickel	200.8	0.2	1	5/24/07	5/31/07	6.9		
Silver	200.8	0.02	1	5/24/07	5/31/07	0.12		
Zinc	200.8	0.5	1	5/24/07	5/31/07	252		

% Solids:

0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected: 05/02/07

Project Name:

McCall-Portland

Date Received: 05/04/07

Matrix:

WATER

Units: µG/L

NA

Basis:

Sample Name: S-4-050207 DISS

Lab Code: K0703836-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	5/24/07	5/31/07	0.5	ט	
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.16		
Chromium	200.8	0.2	1	5/24/07	5/31/07	0.5		
Copper	200.8	0.1	1	5/24/07	5/31/07	14.2		
Lead	200.8	0.02	1	5/24/07	5/31/07	0.54		
Manganese	200.8	0.05	1	5/24/07	5/31/07	46.3		
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	U	
Nickel	200.8	0.2	1	5/24/07	5/31/07	2.8		
Silver	200.8	0.02	1	5/24/07	5/31/07	0.02	ט	
Zinc	200.8	0.5	1	5/24/07	5/31/07	201		

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected:

Project Name:

McCall-Portland

Date Received:

Units: µG/L

Matrix:

WATER

Basis: NA

Sample Name: Method Blank

Lab Code: K0703836-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	c ,	Q
Arsenic	200.8	0.5	1	5/24/07	5/31/07	0.5	ט	
Cadmium	200.8	0.02	1	5/24/07	5/31/07	0.02	ט	
Chromium	200.8	0.2	1	5/24/07	5/31/07	0.2	U	\Box
Copper	200.8	0.1	1	5/24/07	5/31/07	0.1	Ū	
Lead	200.8	0.02	1	5/24/07	5/31/07	0.02	ט	
Manganese	200.8	0.05	1	5/24/07	5/31/07	0.05	ט	
Mercury	7470A	0.2	1	5/24/07	5/25/07	0.2	ט	
Nickel	200.8	0.2	1	5/24/07	5/31/07	0.2	ט	\Box
Silver	200.8	0.02	1	5/24/07	5/31/07	0.02	ט	
Zinc	200.8	0.5	1	5/24/07	5/31/07	0.5	U	

% Solids:

0.0

Comments:

- 5a -

SPIKE SAMPLE RECOVERY

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Units: µg/L

Project Name:

McCall-Portland

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: Batch QCS

Lab Code: K0703963-004S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Mercury	79 - 118	1.1	0.2 0	1.0	109		7470A

METALS - 5a SPIKE SAMPLE RECOVERY

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Units: µg/L

Project Name:

McCall-Portland

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: S-2-050207S

Lab Code: K0703836-001S

Analyte	Control Limit %R	Spike Result	Sample Result	С	Spike Added	₹R	Q	Method
Arsenic	70 - 130	21.4	0.5	ט	20.0	107		200.8
Cadmium	70 - 130	21.1	0.12	\sqcap	20.0	105		200.8
Chromium	70 - 130	23.2	1.1	$T \sqcap$	20.0	110	\neg	200.8
Copper	70 - 130	33.6	11.3	\Box	20.0	112		200.8
Lead	70 - 130	25.2	3.20	$\top \top$	20.0	110		200.8
Manganese	70 - 130	31.2	8.36	ΤТ	20.0	114	$\neg \uparrow$	200.8
Nickel	70 - 130	22.7	1.2		20.0	107		200.8
Silver	70 - 130	21.1	0.02		20.0	105		200.8
Zinc		176	149	TT	20.0	135		200.8

METALS - 6 DUPLICATES

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Units: µg/L

Project Name:

McCall-Portland

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: Batch QCD

Lab Code: K0703963-004D

Analyte	Control Limit(%)	Sample (S) C	=	Duplicate (D)	С	RPD	Q	Method
Mercury		0.2 0	7	0.2	ט			7470A

METALS -6DUPLICATES

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Units: µg/L

Project Name:

McCall-Portland

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: S-2-050207D

Lab Code: K0703836-001D

Analyte	Control Limit (%)	Sample (S)	O	Duplicate (D)	C	RPD	Q	Method
Arsenic		0.5	ט	0.5	Ū			200.8
Cadmium	20	0.12		0.11		7		200.8
Chromium	20	1.1	i	1.2	}	4		200.8
Copper	20	11.3		11.3	Τ	0		200.8
Lead	20	3.20		3.15		2		200.8
Manganese	20	8.36		8.65	Т	3		200.B
Nickel	20	1.2		1.2	Π	2		200.8
Silver		0.02		0.02	T	4		200.8
Zinc	20	149		151	T	1		200.8

-7-LABORATORY CONTROL SAMPLE

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Project Name: McCall-Portland

Aqueous LCS Source:

Inorganic Ventures

Solid LCS Source:

	Aqueous	Aqueous ug/L			Solid (mg/kg)						
Analyte	True Fo	ound	%R	True	Found	C	Limits (%)	%R			
Arsenic	20.0	19.5	98	, , , , , , , , , , , , , , , , , , , 			T				
Cadmium	20.0	19.9	100								
Chromium	20.0	20.4	102								
Copper	20.0	19.2	96								
Lead	20.0	20.2	101			_	1	T			
Manganese	20.0	19.3	96			T					
Mercury	5.00	5.20	104								
Nickel	20.0	18.7	94								
Silver	20.0	18.7	94				T				
Zinc	20.0	20.4	102				-	Ti Ti			

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Cli	ent.	
CLL	eut:	

Anchor Environmental

Service Request: K0703836

Yes/No YES

Project No.:

Project Name:

McCall-Portland

Were ICP interelement corrections applied?

Sample No.	Lab Sample ID.
Batch QCD	K0703793-012D
Batch QCS	K0703793-0125
SS-3-050207	K0703836-004
SS-3-050207D	K0703836-004D
ss-3-050207s	K0703836-0048
Method Blank	K0703836-MB

					_	
Vere	ICP background corrections applied?		Ye	s/No	YES	
	If yes-were raw data generated before application of background corrections?		Ye	s/No	NO	
Comm	ents:					
igna	ature:	Date:	404/07			

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected: 05/02/07

Project Name:

McCall-Portland

Date Received: 05/04/07

Matrix:

SEDIMENT

Units: MG/KG

Basis: Dry

Sample Name: SS-3-050207

Lab Code: K0703836-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.5	5	5/25/07	6/1/07	10.0	П	
Cadmium	6020	0.05	5	5/25/07	6/1/07	1.60		
Chromium	6020	1.0	25	5/25/07	6/1/07	79.1		!
Copper	6020	0.5	25	5/25/07	6/1/07	321	П	
Lead	6020	0.25	25	5/25/07	6/1/07	206		
Manganese	6020	0.25	25	5/25/07	6/1/07	462		
Mercury	7471A	0.02	1	5/30/07	5/30/07	0.24		
Nickel	6020	1.0	25	5/25/07	6/1/07	44.4		
Silver	6020	0.02	5	5/30/07	6/1/07	0.92		
Zinc	6020	2.5	25	5/25/07	6/1/07	938		

37.1 % Solids:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Date Collected:

Project Name:

SEDIMENT

Date Received:

Matrix:

McCall-Portland

Units: MG/KG

Basis: Dry

Sample Name: Method Blank

Lab Code: K0703836-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020	0.5	5	5/25/07	6/1/07	0.5	ט	
Cadmium	6020	0.05	5	5/25/07	6/1/07	0.02	ซ	
Chromium	6020	0.2	5	5/25/07	6/1/07	0.2	ט	
Copper	6020	0.1	5	5/25/07	6/1/07	0.1	Ū	
Lead	6020	0.05	5	5/25/07	6/1/07	0.05	ט	
Manganese	6020	0.05	5	5/25/07	6/1/07	0.05	Ū	
Mercury	7471A	0.02	1	5/30/07	5/30/07	0.02	ט	
Nickel	6020	0.2	5	5/25/07	6/1/07	0.2	ט	
Silver	6020	0.02	5	5/30/07	6/1/07	0.02	Ū	
Zinc	6020	0.5	5	5/25/07	6/1/07	0.5	Ū	

% Solids: 100.0

Comments:

METALS - 5a SPIKE SAMPLE RECOVERY

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

ALCHOL MIVILOIMENGE

Units: mg/kg

Project Name: McCall-Portland

Basis: Dry

Matrix:

SEDIMENT

% Solids: 31.2

Sample Name: Batch QCS

Lab Code: K0703793-012S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	₹R	Q	Method
Mercury	60 - 123	1.32	1.00	0.48	67		7471A

METALS - 5a SPIKE SAMPLE RECOVERY

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Units: mg/kg

Project Name:

McCall-Portland

Basis: Dry

Matrix:

SEDIMENT

% Solids: 37.1

sample Name: SS-3-050207S

Lab Code: K0703836-004S

Analyte	Control Limit %R	Spike Result	Sample Result	C Spike Added	₽R	Q	Method
Arsenic	61 - 128	107	10.0	99.1	98		6020
Cadmium	79 - 127	10.9	1.60	9.91	94		6020
Chromium	48 - 151	119	79.1	39.6	101		6020
Copper		327	321	49.5	14		6020
Lead	51 - 155	290	206	99.1	85		6020
Manganese		532	462	99.1	71		6020
Nickel	80 - 114	146	44.4	99.1	103		6020
Silver	72 - 121	9.76	0.92	9.95	89	\neg	6020
Zinc	-1i	926	938	99.1	-12	$\neg \uparrow$	6020

METALS - 6 DUPLICATES

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Anchor Environmenta.

Units: mg/kg

_

Project Name: McCall-Portland

Basis: Dry

Matrix:

SEDIMENT

% Solids: 31.2

Sample Name: Batch QCD

Lab Code: K0703793-012D

Analyte	Control Limit (%)	Sample (S) C	;	Duplicate (D) C	;	RPD	Ω	Method
Mercury	30	1.00		0.85		16		7471A

METALS -6DUPLICATES

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

WIGHOT FILATIONMENICS

Units: mg/kg

Project Name:

McCall-Portland

Basis: Dry

Matrix:

SEDIMENT

% Solids: 37.1

Sample Name: SS-3-050207D

Lab Code: K0703836-004D

Analyte	Control Limit (%)	Sample (S)	O	Duplicate (D)	С	RPD	Q	Method
Arsenic	30	10.0	Ī	9.6	T	4		6020
Cadmium	30	1.60		1.35		17		6020
Chromium	30	79.1	Π	73.4	Γ	7		6020
Copper	30	321		291	Т	9	Ť	6020
Lead	30	206	П	183	Ī	12		6020
Manganese	30	462		455	Π	2		6020
Nickel	30	44.4	Ī	45.8	Ţ	3		6020
Silver	30	0.92	Ī	0.81	Τ	13		6020
Zinc	30	938	Î i	862	Τ	8		6020

-7-

LABORATORY CONTROL SAMPLE

Client:

Anchor Environmental

Service Request: K0703836

Project No.:

Project Name:

McCall-Portland

Aqueous LCS Source:

Inorganic Ventures

Solid LCS Source: ERA Lot #D045540

	Aqueous				Solid	(mg	/kg)		
Analyte	True	Found	₹R	True	Found	C	Limits	(%)	%R
Arsenic	1			146	125		80.0	115	86
Cadmium	1			92.8	86.2		79.0	127	93
Chromium				172	165		77.0	127	96
Copper				67.0	65.6		80.0	128	96
Lead	1			67.5	68.5		81.0	129	10:
Manganese				196	188		80.0	120	96
Mercury				1.77	1.67		75.0	118	94
Nickel	1			80.0	80.1		83.0	131	100
Silver				93.0	101		76.0	128	109
Zinc				380	348	П	77.0	139	92

NWTPH-Dx

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Diesel and Residual Range Organics

Sample Name:

S-2-050207

Lab Code:

K0703836-001

Extraction Method:

EPA 3510B

Units: ug/L

Basis: NA

Analysis Method:

NWTPH-Dx

Level: Low

			Dilution	Date	Date	Extraction	
Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
ND	U	250	1	05/08/07	05/10/07	KWG0705416	
ND	U	500	1	05/08/07	05/10/07	KWG0705416	
	ND	Result Q ND U ND U	ND U 250	Result Q MRL Factor ND U 250 1	Result Q MRL Factor Extracted ND U 250 1 05/08/07	Result Q MRL Factor Extracted Analyzed ND U 250 1 05/08/07 05/10/07	Result Q MRL Factor Extracted Analyzed Lot ND U 250 1 05/08/07 05/10/07 KWG0705416

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	92	50-150	05/10/07	Acceptable	
n-Triacontane	97	50-150	05/10/07	Acceptable	

Comments:

Printed: 05/11/2007 11:52:45 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

0-02 415of 1 SuperSet Reference: RR71812

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Diesel and Residual Range Organics

Sample Name:

S-3-050207

Lab Code:

K0703836-002

Units: ug/L Basis: NA

Extraction Method:

EPA 3510B

Analysis Method:

NWTPH-Dx

Level: Low

			•	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	290	Z	250	1	05/08/07	05/10/07	KWG0705416	
Residual Range Organics (RRO)	ND	Ù	500	1	05/08/07	05/10/07	KWG0705416	
•								

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	82	50-150	05/10/07	Acceptable	
n-Triacontane	86	50-150	05/10/07	Acceptable	

Comments:

1 of 1

CULUMDIA ANALI LICAL SERVICES, INC.

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007 Date Received: 05/04/2007

Diesel and Residual Range Organics

Sample Name:

S-4-050207

Lab Code:

K0703836-003

Units: ug/L

Extraction Method:

Basis: NA

EPA 3510B

Level: Low

Analysis Method:

NWTPH-Dx

·	_	1.577					
Kesult (<u>Q</u> _	MIKL	Factor	Extracted	Analyzed	Lot	Note
1000	Z	250	1	05/08/07	05/10/07	KWG0705416	
940	Z	500	1	05/08/07	05/10/07	KWG0705416	
	1000	Result Q 1000 Z 940 Z	1000 Z 250	Result Q MRL Factor 1000 Z 250 1	Result Q MRL Factor Extracted 1000 Z 250 1 05/08/07	Result Q MRL Factor Extracted Analyzed 1000 Z 250 1 05/08/07 05/10/07	1000 Z 250 1 05/08/07 05/10/07 KWG0705416

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	81	50-150	05/10/07	Acceptable
n-Triacontane	88	50-150	05/10/07	Acceptable

Comments:

00047

u:\Stealth\Crystal.rpt\Form1m.rpt

CULUMDIA ANALI HCAL SERVICES, INC.

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: NA

Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG0705416-3

Extraction Method:

EPA 3510B

Units: ug/L

Basis: NA

Level: Low

Analysis Method:

NWTPH-Dx

Dilution Date Extraction Date **Analyte Name** Result Q **MRL Factor** Extracted Analyzed Lot Note Diesel Range Organics (DRO) KWG0705416 ND U 250 1 05/08/07 05/10/07 Residual Range Organics (RRO) ND U 500 1 05/08/07 05/10/07 KWG0705416

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	94	50-150	05/10/07	Acceptable	
n-Triacontane	99	50-150	05/10/07	Acceptable	

Comments:

Printed: 05/11/2007 11:52:51 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR71812

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:

EPA 3510B

Units: PERCENT

Level: Low

NWTPH-Dx Analysis Method:

Sample Name Lab Code Sur1 Sur2 92 97 S-2-050207 K0703836-001 S-3-050207 K0703836-002 82 86 81 88 S-4-050207 K0703836-003 94 99 Method Blank KWG0705416-3 106 106 Lab Control Sample KWG0705416-1 **Duplicate Lab Control Sample** KWG0705416-2 105 55

Surrogate Recovery Control Limits (%)

Surl = o-Terphenyl50-150 Sur2 = n-Triacontane50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00049

Printed: 05/11/2007 11:52:55

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page

SuperSet Reference:

RR71812

1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Extracted: 05/08/2007

Date Analyzed: 05/10/2007

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510B Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0705416

Lab Control Sample

KWG0705416-1

Duplicate Lab Control Sample

KWG0705416-2

Lab Control Spike **Duplicate Lab Control Spike** %Rec RPD Limits RPD Limit **Analyte Name** Result Expected %Rec Result Expected %Rec Diesel Range Organics (DRO) 1530 1600 96 1580 1600 99 56-162 3 30 Residual Range Organics (RRO) 715 800 89 101 810 800 53-143 12 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00050

Printed: 05/11/2007 11:52:59 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

RR71812

Gasoline Range Organics

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Gasoline Range Organics

Sample Name:

S-2-050207

Lab Code:

K0703836-001

Units: ug/L

Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

NWTPH-Gx

Analyte Name

Result Q

91

Dilution Factor

Date Extracted

Date Analyzed Extraction Lot

Note

Gasoline Range Organics-NWTPH

ND U

MRL 250

05/11/07

05/11/07

KWG0705592

Surrogate Name 1,4-Difluorobenzene %Rec

Control Limits 50-150

Date Analyzed 05/11/07

Note

Acceptable :

Comments:

00052

Page

Printed: 05/14/2007 18:25:49

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR71901

1 of 1

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Gasoline Range Organics

Sample Name:

S-3-050207

Lab Code:

K0703836-002

Extraction Method:

EPA 5030B

Units: ug/L

Basis: NA

Analysis Method:

NWTPH-Gx

Level: Low

Analyte Name

Result Q

MRL

Dilution **Factor**

Date Date **Extracted** Analyzed

Extraction

Lot Note

Gasoline Range Organics-NWTPH

ND U

250

05/11/07

05/11/07

KWG0705592

Surrogate Name 1,4-Difluorobenzene %Rec

90

Control Limits

50-150

Date Analyzed Note

Acceptable

Comments:

Printed: 05/14/2007 18:25:50

u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

SuperSet Reference: RR71901

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007 Date Received: 05/04/2007

Gasoline Range Organics

Sample Name:

S-4-050207

Lab Code:

K0703836-003

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Analysis Method:

Level: Low

NWTPH-Gx

Dilution

Date Extracted

Date Analyzed Extraction Lot

Analyte Name Gasoline Range Organics-NWTPH Result Q ND U **MRL** 250

Factor

05/11/07 05/11/07

KWG0705592

Note

Surrogate Name

1,4-Difluorobenzene

%Rec

90

Control Limits

50-150

Date Analyzed

Note . .

05/11/07

Acceptable

Comments:

Printed: 05/14/2007 18:25:51

u:\Stealth\Crystal.rpt\Form1rn.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page RR71901

1 of

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland

Water

Service Request: K0703836

Date Collected: NA

Date Received: NA

Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG0705592-4

Extraction Method:

EPA 5030B

Analysis Method:

NWTPH-Gx

Units: ug/L

Basis: NA

Level: Low

Dilution

Factor

Date Extracted Date Analyzed

Extraction

ttraction Lot Note

Analyte Name
Gasoline Range Organics-NWTPH

Result Q ND U

%Rec

MRL 250

1 05/11/07

05/11/07

KWG0705592

Surrogate Name

Control Limits Date Analyzed

Note

1,4-Difluorobenzene

94 50-150

05/11/07

Acceptable

Comments:

Printed: 05/14/2007 18:25:53 u:\Stealth\Crystal.rpt\Form\m.rpt

14----

Form 1A - Organic

บูบูบออ

Page

SuperSet Reference: RR71901

00055

1 of 1

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Gasoline Range Organics

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 5035/5030B

Analysis Method:

NWTPH-Gx

Level: Med

Analyte Name

Result Q

Dilution Date Date

Extraction

Gasoline Range Organics-NWTPH

MRL

Factor Extracted

Analyzed

Lot Note

ND U

14

05/11/07

05/12/07

KWG0705541

Surrogate Name

%Rec

Control · Limits

Date Analyzed

Note

75 05/12/07 4-Bromofluorobenzene 50-150 Acceptable

Comments:

00056

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Soil

Service Request: K0703836

Date Collected: NA

Date Received: NA

Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG0705541-5

Extraction Method:

EPA 5035/5030B

Analysis Method:

NWTPH-Gx

Units: mg/Kg

Basis: Dry

Level: Med

Analyte Name

Result Q

%Rec

103

Dilution MRL **Factor**

Date Extracted

Date Analyzed

Extraction Lot Note

Gasoline Range Organics-NWTPH

ND U

5.0

05/11/07

05/12/07

KWG0705541

Surrogate Name

Control. Limits

Date · Analyzed

Note

4-Bromofluorobenzene

50-150 ·

05/12/07

Acceptable

Printed: 05/14/2007 18:25:55

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR71901

Page 1 of

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B Analysis Method:

NWTPH-Gx

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
S-2-050207	K0703836-001	91
S-3-050207	K0703836-002	90
S-4-050207	K0703836-003	90
S-2-050207DUP	KWG0705592-1	91
Method Blank	KWG0705592-4	94
Lab Control Sample	KWG0705592-2	99
Duplicate Lab Control Sample	KWG0705592-3	99

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 05/14/2007 18:25:59

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR71901

Page 1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5035/5030B Analysis Method:

NWTPH-Gx

Units: PERCENT

Level: Med

Sample Name	Lab Code	Sur1
SS-3-050207	K0703836-004	75
SS-3-050207DUP	KWG0705541-3	77
Method Blank	KWG0705541-5	103
Lab Control Sample	KWG0705541-4	109

Surrogate Recovery Control Limits (%)

Surl = 4-Bromofluorobenzene

50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00059

Printed: 05/14/2007 18:26:02

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

SuperSet Reference:

RR71901

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Extracted: 05/11/2007 Date Analyzed: 05/11/2007

Duplicate Sample Summary Gasoline Range Organics

Sample Name:

S-2-050207

Lab Code:

K0703836-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

NWTPH-Gx

Extraction Lot: KWG0705592

S-2-050207DUP

KWG0705592-1 **Duplicate Sample**

Relative

Percent

Analyte Name

MRL

Sample Result

Result

Average

RPD Limit Difference

Gasoline Range Organics-NWTPH

250

ND

ND

ND

30

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable. Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00060

Printed: 05/14/2007 18:26:05 $u:\Stealth\Crystal.rpt\Form3DUP.rpt$

Form 3B - Organic

Page 1 of 1

SuperSet Reference: RR71901

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836 Date Extracted: 05/11/2007

Date Analyzed: 05/12/2007

Duplicate Sample Summary Gasoline Range Organics

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

Units: mg/Kg Basis: Dry

Extraction Method:

Level: Med

Analysis Method:

EPA 5035/5030B

NWTPH-Gx

Extraction Lot: KWG0705541

SS-3-050207DUP

Relative

KWG0705541-3

Sample Result

Duplicate Sample

Percent

RPD Limit

Analyte Name

MRL

Result

Average

Difference

Gasoline Range Organics-NWTPH

14

ND

ND

ND

40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/14/2007 18:26:08 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

RR71901

SuperSet Reference:

Page

1 of

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Extracted: 05/11/2007

Date Analyzed: 05/11/2007

Lab Control Spike/Duplicate Lab Control Spike Summary **Gasoline Range Organics**

Extraction Method: EPA 5030B Analysis Method:

NWTPH-Gx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0705592

Lab Control Sample

KWG0705592-2

Duplicate Lab Control Sample

KWG0705592-3

Duplicate Lab Control Spike Lab Control Spike

RPD

%Rec Limits **RPD** Limit **Analyte Name** %Rec %Rec Result **Expected** Result Expected Gasoline Range Organics-NWTPH 478 500 96 488 500 98 61-132 2 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00062

Printed: 05/14/2007 18:26:11 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

RR71901

QA/QC Report

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Soil

Service Request: K0703836

Date Extracted: 05/11/2007

Date Analyzed: 05/12/2007

Lab Control Spike Summary **Gasoline Range Organics**

Extraction Method: EPA 5035/5030B

Analysis Method:

NWTPH-Gx

Units: mg/Kg

Basis: Dry

Level: Med

Extraction Lot: KWG0705541

Lab Control Sample KWG0705541-4

Expected

Lab Control Spike

%Rec Limits

Analyte Name Result

Gasoline Range Organics-NWTPH

48.6 50.0

%Rec

97

63-116

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00063

Printed: 05/14/2007 18:26:14 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

RR71901

Polychlorinated Biphenyls PCB's EPA Method 8082

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Water

Service Request: K0703836

Date Collected: 05/02/2007 Date Received: 05/04/2007

Polychlorinated Biphenyls (PCBs)

Sample Name:

S-2-050207

Lab Code:

K0703836-001

Units: ug/L

Basis: NA

Extraction Method:

EPA 3535

Level: Low

Analysis Method:

8082

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1221	ND	U	0.39	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1232	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1242	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1248	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1254	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1260	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	82	27-121	05/11/07	Acceptable

Comments:

1 of 1

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Polychlorinated Biphenyls (PCBs)

Sample Name: Lab Code:

S-3-050207

K0703836-002

Units: ug/L Basis: NA

Extraction Method:

EPA 3535

Level: Low

Analysis Method:

8082

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND	U	0.20	1 .	05/08/07	05/11/07	KWG0705419	
Aroclor 1221	ND	U	0.39	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1232	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1242	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1248	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1254	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1260	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	76	27-121	05/11/07	Acceptable	

Comments:

Printed: 05/21/2007 13:28:07 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 0 0 0 0 6

SuperSet Reference: RR72175

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Polychlorinated Biphenyls (PCBs)

Sample Name:

S-4-050207

Lab Code:

K0703836-003

Units: ug/L Basis: NA

Extraction Method:

EPA 3535

Analysis Method:

8082

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1221	ND	U	0.39	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1232	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1242	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1248	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	•
Aroclor 1254	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	
Aroclor 1260	ND	U	0.20	1	05/08/07	05/11/07	KWG0705419	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	67	27-121	05/11/07	Acceptable

Comments:

00067

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland

Water

Service Request: K0703836

Date Collected: NA Date Received: NA

Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

Aroclor 1260

KWG0705419-4

ND U

Extraction Method: EPA 3535

Units: ug/L

Basis: NA

Level: Low

KWG0705419

05/08/07

05/10/07

Analysis Method: 8082

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND	U	0.20	1	05/08/07	05/10/07	KWG0705419	
Aroclor 1221	ND	Ū	0.39	1	05/08/07	05/10/07	KWG0705419	
Aroclor 1232	ND	U	0.20	1	05/08/07	05/10/07	KWG0705419	
Aroclor 1242	ND	U	0.20	1	05/08/07	05/10/07	KWG0705419	
Aroclor 1248	ND	Ū	0.20	1	05/08/07	05/10/07	KWG0705419	•
Aroclor 1254	ND	U	0.20	1	05/08/07	05/10/07	KWG0705419	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	76	27-121	05/10/07	Acceptable	

0.20

Comments:

00068 Page 1 of

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3535 Analysis Method:

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
S-2-050207	K0703836-001	82
S-3-050207	K0703836-002	76
S-4-050207	K0703836-003	67
Method Blank	KWG0705419-4	76
Batch QC	K0703733-002	81
Batch QCMS	KWG0705419-1	79
Batch QCDMS	KWG0705419-2	88
Lab Control Sample	KWG0705419-3	76

Surrogate Recovery Control Limits (%)

Surl = Decachlorobiphenyl

27-121

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00069

Printed: 05/21/2007 13:28:17

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR72175

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836 Date Extracted: 05/08/2007

Date Analyzed: 05/14/2007

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

Batch QC

Lab Code:

K0703733-002

Units: ug/L Basis: NA

Extraction Method:

EPA 3535

Level: Low

Analysis Method:

8082

Extraction Lot: KWG0705419

Batch QCMS

Batch QCDMS

KWG0705410-1

KWG0705419-2

	Sample		Matrix Spike	<u> </u>	Duplie	%Rec		RPD		
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Aroclor 1016	ND	1.55	1.94	80	1.69	1.92	88	16-139	9	30
Aroclor 1260	ND	1.54	1.94	79	1.76	1.92	91	45-110	13	30

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00070

Printed: 05/21/2007 13:28:20 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of 1 RR72175

SuperSet Reference:

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836 **Date Extracted: 05/08/2007**

Date Analyzed: 05/10/2007

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3535 **Analysis Method:**

8082

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG0705419

Lab Control Sample KWG0705419-3

Lab Control Spike %Rec Limits **Analyte Name** Result Expected %Rec Aroclor 1016 1.64 2.00 82 30-113 Aroclor 1260 1.70 2.00 85 42-110

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00071

Printed: 05/21/2007 13:28:23 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

SuperSet Reference: RR72175

Page 1 of 1

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Polychlorinated Biphenyls (PCBs)

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND	U	11	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1221	ND	U	22	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1232	ND	U	11	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1242	ND	U	11	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1248	ND	U	11	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1254	69		11	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1260	75		11	1	05/10/07	05/25/07	KWG0705498	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	95	33-141	05/25/07	Acceptable

Comments:

1 of 1

Page

Merged

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Soil

Service Request: K0703836

Date Collected: NA

Date Received: NA

Polychlorinated Biphenyls (PCBs)

Sample Name: Lab Code:

Method Blank

KWG0705498-4

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3540C

Analysis Method:

8082

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND	Ū	4.0	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1221	ND	U	8.0	· 1	05/10/07	05/25/07	KWG0705498	
Aroclor 1232	ND	U	4.0	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1242	ND	ับ	4.0	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1248	ND	U	4.0	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1254	ND	U	4.0	1	05/10/07	05/25/07	KWG0705498	
Aroclor 1260	ND	U	4.0	1	05/10/07	05/25/07	KWG0705498	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	82	33-141	05/25/07	Acceptable

Comments:

Printed: 06/04/2007 14:26:29 u:\Stealth\Crystal.rpt\Form1m.rpt

Mergod

Form 1A - Organic

Page

SuperSet Reference: RR72702

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: Analysis Method:

EPA 3540C

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
SS-3-050207	K0703836-004	95
Method Blank	KWG0705498-4	82
Batch QC	K0703870-004	82
Batch QCMS	KWG0705498-1	92
Batch QCDMS	KWG0705498-2	81
Lab Control Sample	KWG0705498-3	78

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

33-141

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00074

Printed: 06/04/2007 14:26:34

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page

SuperSet Reference:

RR72702

1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Soil

Service Request: K0703836 Date Extracted: 05/10/2007

Date Analyzed: 05/25/2007

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

Batch QC

Lab Code:

K0703870-004

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0705498

Batch QCMS

Batch QCDMS

KWG0205408-1

KWG0705498-2

Analyte Name	Sample		Matrix Spike			cate Matrix S		%Rec		RPD Limit
	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits 1	RPD	
Aroclor 1016	ND	195	197	. 99	182	197	92	33-153	7	40
Aroclor 1260	48	264	197	110	258	197	106	31-167	3	40

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00075

Printed: 06/04/2007 14:26:37 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of 1

SuperSet Reference: RR72702

QA/QC Report

Client: Project:

Anchor Environmental McCall-Portland

Sample Matrix:

Soil

Service Request: K0703836 **Date Extracted: 05/10/2007**

Date Analyzed: 05/25/2007

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG0705498

Lab Control Sample KWG0705498-3

Lab Control Spike

%Rec Limits **Analyte Name** Result Expected %Rec Aroclor 1016 160 200 80 42-124 Aroclor 1260 176 200 88 61-128

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00076

Printed: 06/04/2007 14:26:40 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

RR72702

Polynuclear Aromatic Hydrocarbons EPA Method 8270C

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Polynuclear Aromatic Hydrocarbons

Sample Name:

S-2-050207

Lab Code:

K0703836-001

Extraction Method:

EPA 3520

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8270C SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.015		0.0077	1	05/08/07	05/18/07	KWG0705560	
2-Methylnaphthalene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Acenaphthylene	0.019	D	0.016	2	05/08/07	05/21/07	KWG0705560	
Acenaphthene	ND	U	0.016	2	05/08/07	05/21/07	KWG0705560	
Dibenzofuran	ND	U	0.016	2	05/08/07	05/21/07	KWG0705560	
Fluorene	ND	U	0.016	2	05/08/07	05/21/07	KWG0705560	
Phenanthrene	0.027		0.0077	1	05/08/07	05/18/07	KWG0705560	
Anthracene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Fluoranthene	0.018		0.0077	1	05/08/07	05/18/07	KWG0705560	
Pyrene	0.019		0.0077	1	05/08/07	05/18/07	KWG0705560	
Benz(a)anthracene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Chrysene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(b)fluoranthene	ND	Ū	0.0077	1	05/08/07	05/18/07	KWG0705560	•
Benzo(k)fluoranthene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(a)pyrene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Indeno(1,2,3-cd)pyrene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Dibenz(a,h)anthracene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(g,h,i)perylene	0.0085		0.0077	1	05/08/07	05/18/07	KWG0705560	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	63	26-131	05/21/07	Acceptable
Fluoranthene-d10	66	28-150	05/18/07	Acceptable
Terphenyl-d14	74	32-157	05/18/07	Acceptable

Comments:

Printed: 06/05/2007 14:02:26 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

00078 Page 1 of 1

SuperSet Reference: RR72742

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Water

Service Request: K0703836 Date Collected: 05/02/2007 Date Received: 05/04/2007

Polynuclear Aromatic Hydrocarbons

Sample Name:

S-3-050207

Lab Code:

K0703836-002

Extraction Method: EPA 3520 Analysis Method:

8270C SIM

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0087		0.0077	1	05/08/07	05/18/07	KWG0705560	
2-Methylnaphthalene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Acenaphthylene	ND	Ui	0.0082	1	05/08/07	05/18/07	KWG0705560	
Acenaphthene	ND	Ū	0.0077	1	05/08/07	05/18/07	KWG0705560	
Dibenzofuran	0.011		0.0077	1	05/08/07	05/18/07	KWG0705560	
Fluorene	0.0084		0.0077	1	05/08/07	05/18/07	KWG0705560	
Phenanthrene	0.024		0.0077	1	05/08/07	05/18/07	KWG0705560	
Anthracene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Fluoranthene	0.016		0.0077	1	05/08/07	05/18/07	KWG0705560	
Pyrene	0.017	***************************************	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benz(a)anthracene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Chrysene	0.0085		0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(b)fluoranthene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(k)fluoranthene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(a)pyrene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Indeno(1,2,3-cd)pyrene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Dibenz(a,h)anthracene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	
Benzo(g,h,i)perylene	ND	U	0.0077	1	05/08/07	05/18/07	KWG0705560	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	61	26-131	05/18/07	Acceptable	
Fluoranthene-d10	63	28-150	05/18/07	Acceptable	
Terphenyl-d14	68	32-157	05/18/07	Acceptable	

Comments:

Printed: 06/05/2007 14:02:28 u:\Stealth\Crystal.rpt\Form.lm.rpt

Margod

Form 1A - Organic

Page 1 of 1

RR72742

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Water

Service Request: K0703836 Date Collected: 05/02/2007

Date Received: 05/04/2007

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

S-4-050207

K0703836-003

Extraction Method: A

EPA 3520

Units: ug/L Basis: NA

Level: Low

TAY MAGAZIANT TITAATTAM	
nalysis Method:	8270C SIM

			· ·	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q_	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	Ui	0.017	1	05/08/07	05/17/07	KWG0705560	
2-Methylnaphthalene	0.014		0.0077	1	05/08/07	05/17/07	KWG0705560	
Acenaphthylene	ND	U	0.0077	1	05/08/07	05/17/07	KWG0705560	
Acenaphthene	ND	U	0.0077	1	05/08/07	05/17/07	KWG0705560	
Dibenzofuran	ND	Ui	0.013	1	05/08/07	05/17/07	KWG0705560	
Fluorene	ND	U	0.0077	1	05/08/07	05/17/07	KWG0705560	
Phenanthrene	ND	Ui	0.033	1	05/08/07	05/17/07	KWG0705560	
Anthracene	ND	U	0.0077	1	05/08/07	05/17/07	KWG0705560	
Fluoranthene	0.053		0.0077	1	05/08/07	05/17/07	KWG0705560	
Pyrene	0.078		0.0077	1	05/08/07	05/17/07	KWG0705560	
Benz(a)anthracene	0.012	•	0.0077	1	05/08/07	05/17/07	KWG0705560	
Chrysene	0.030		0.0077	1	05/08/07	05/17/07	KWG0705560	
Benzo(b)fluoranthene	0.034		0.0077	1	05/08/07	05/17/07	KWG0705560	
Benzo(k)fluoranthene	ND	U	0.0077	1	05/08/07	05/17/07	KWG0705560	
Benzo(a)pyrene	0.017		0.0077	1	05/08/07	05/17/07	KWG0705560	
Indeno(1,2,3-cd)pyrene	0.020		0.0077	1	05/08/07	05/17/07	KWG0705560	
Dibenz(a,h)anthracene	ND	U	0.0077	1	05/08/07	05/17/07	KWG0705560	
Benzo(g,h,i)perylene	0.027		0.0077	1	05/08/07	05/17/07	KWG0705560	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	26-131	05/17/07	Acceptable
Fluoranthene-d10	· 68	28-150	05/17/07	Acceptable
Terphenyl-d14	70	32-157	05/17/07	Acceptable

Comments:

Merged

Analytical Results

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Water

Service Request: K0703836

Date Collected: NA

Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank KWG0705560-3

Units: ug/L Basis: NA

Level: Low

Extraction Method: EPA 3520 Analysis Method: 8270C SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
2-Methylnaphthalene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Acenaphthylene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Acenaphthene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Dibenzofuran	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Fluorene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Phenanthrene	ND	Ū	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Anthracene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	. •
Fluoranthene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Pyrene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Benz(a)anthracene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Chrysene	ND	Ŭ	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Benzo(b)fluoranthene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Benzo(k)fluoranthene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Benzo(a)pyrene	ND	U	0.0077	. 1	05/08/07	06/04/07	KWG0705560	*
Indeno(1,2,3-cd)pyrene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Dibenz(a,h)anthracene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*
Benzo(g,h,i)perylene	ND	U	0.0077	1	05/08/07	06/04/07	KWG0705560	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	81	26-131	06/02/07	Acceptable	
Fluoranthene-d10	91	28-150	06/02/07	Acceptable	
Terphenyl-d14	113	32-157	06/02/07	Acceptable	

Comments:

00081

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Sediment

Service Request: K0703836

Date Collected: 05/02/2007 Date Received: 05/04/2007

Polynuclear Aromatic Hydrocarbons

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8270C SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	130	6.6	1	05/14/07	05/17/07	KWG0705572	
2-Methylnaphthalene	80	6.6	1	05/14/07	05/17/07	KWG0705572	
Acenaphthylene	31	6.6	1	05/14/07	05/17/07	KWG0705572	
Acenaphthene	24	6.6	1	05/14/07	05/17/07	KWG0705572	
Fluorene	47	6.6	1	05/14/07	05/17/07	KWG0705572	
Dibenzofuran	67	6.6	1	05/14/07	05/17/07	KWG0705572	
Phenanthrene	670	6.6	1	05/14/07	05/17/07	KWG0705572	
Anthracene	58	6.6	1	05/14/07	05/17/07	KWG0705572	
Fluoranthene	780	6.6	1	05/14/07	05/17/07	KWG0705572	
Pyrene	1000	6.6	1	05/14/07	05/17/07	KWG0705572	
Benzo(b)fluoranthene	570	6.6	1	05/14/07	05/17/07	KWG0705572	
Benzo(k)fluoranthene	180	6.6	1	05/14/07	05/17/07	KWG0705572	
Benz(a)anthracene	230	6.6	1	05/14/07	05/17/07	KWG0705572	
Chrysene	390	6.6	1	05/14/07	05/17/07	KWG0705572	
Benzo(a)pyrene	320	6.6	1	05/14/07	05/17/07	KWG0705572	
Indeno(1,2,3-cd)pyrene	500	6.6	1	05/14/07	05/17/07	KWG0705572	•
Dibenz(a,h)anthracene	100	6.6	1	05/14/07	05/17/07	KWG0705572	
Benzo(g,h,i)perylene	1100	6.6	1	05/14/07	05/17/07	KWG0705572	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	47	10-123	05/17/07	Acceptable	
Fluoranthene-d10	41	10-136	05/17/07	Acceptable	
Terphenyl-d14	55	32-123	05/17/07	Acceptable	•

Comments:

Page

SuperSet Reference:

Analytical Results

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Soil

Service Request: K0703836

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank KWG0705572-5

Extraction Method: EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8270C SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
2-Methylnaphthalene	ND U	2.5	. 1	05/14/07	05/16/07	KWG0705572	
Acenaphthylene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Acenaphthene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Fluorene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Dibenzofuran	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Phenanthrene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Anthracene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Fluoranthene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Pyrene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Benzo(b)fluoranthene	ND U	2.5	` 1	05/14/07	05/16/07	KWG0705572	
Benzo(k)fluoranthene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Benz(a)anthracene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Chrysene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Benzo(a)pyrene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Indeno(1,2,3-cd)pyrene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Dibenz(a,h)anthracene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	
Benzo(g,h,i)perylene	ND U	2.5	1	05/14/07	05/16/07	KWG0705572	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	58	10-123	05/16/07	Acceptable
Fluoranthene-d10	61	10-136	05/16/07	Acceptable
Terphenyl-d14	67	32-123	05/16/07	Acceptable

Comments:

Page 1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520

Analysis Method:

8270C SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
S-2-050207	K0703836-001	63 D	66	74
S-3-050207	K0703836-002	61	63	68
S-4-050207	K0703836-003	70	68	70
Method Blank	KWG0705560-3	81 D	91 D	113 D
Lab Control Sample	KWG0705560-1	88 D	88 D	101 D
Duplicate Lab Control Sample	KWG0705560-2	94 D	86 D	107 D

Surrogate Recovery Control Limits (%)

Surl =	Fluorene-d10	26-131
Sur2 =	Fluoranthene-d10	28-150
Sur3 =	Terphenyl-d14	32-157

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 06/05/2007 14:02:36

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR72742

QA/QC Report

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland

Sediment

Service Request: K0703836

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541 **Analysis Method:**

8270C SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
SS-3-050207	K0703836-004	47	41	55
Method Blank	KWG0705572-5	58	61	67
SS-3-050207MS	KWG0705572-1	43 D	39 D	58 D
SS-3-050207DMS	KWG0705572-2	43 D	42 D	54 D
Lab Control Sample	KWG0705572-3	59	56	81
Duplicate Lab Control Sample	KWG0705572-4	59	63	64

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	10-123
Sur2 =	Fluoranthene-d10	10-136
Sur3 =	Terphenyl-d14	32-123

Results flagged with an asterisk (*) indicate values outside control criteria. Results fiagged with a pound (#) indicate the control criteria is not applicable.

00085

Printed: 06/05/2007 14:02:39 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR72742

QA/QC Report

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Sediment

Service Request: K0703836 **Date Extracted: 05/14/2007**

Date Analyzed: 05/17/2007

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

Extraction Method: Analysis Method:

EPA 3541

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0705572

SS-3-050207MS

SS-3-050207DMS

KWG0705572-1

KWG0705572-2

	Sample		Matrix Spike		Duplic	cate Matrix S	pike	%Rec	Rec	RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	130	414	673	42	428	667	44	10-121	3	40
2-Methylnaphthalene	80	442	673	54	487	667	61	13-126	10	40
Acenaphthylene	31	381	673	52	385	667	53	21-121	1	40
Acenaphthene	- 24	376	673	52	386	667	54	18-125	3	40
Fluorene	47	409	673	54	392	667	52	22-125	4	40
Dibenzofuran	67	428	673	54	435	667	55	21-126	2	40
Phenanthrene	670	1000	673	50	1050	667	58	10-143	5	40
Anthracene	58	427	673	55	446	667	58	19-133	4	40
Fluoranthene	780	1030	673	37	1130	667	53	10-149	10	40
Pyrene	1000	1470	673	62	1400	667	53	10-150	5	40
Benzo(b)fluoranthene	570	850	673	42	842	667	41	12-144	1	40
Benzo(k)fluoranthene	180	492	673	46	498	667	47	11-145	1	40
Benz(a)anthracene	230	572	673	51	599	667	56	12-139	5	40
Chrysene	390	862	673	70	883	667	73	12-145	2	40
Benzo(a)pyrene	320	622	673	45	642	667	48	10-148	3	40
Indeno(1,2,3-cd)pyrene	500	867	673	55	949	667	67	10-151	9	40
Dibenz(a,h)anthracene	100	429	673	49	469	667	55	12-143	9	40
Benzo(g,h,i)perylene	1100	1340	673	29	1440	667	45	10-148	8	40

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00086

Printed: 06/05/2007 14:02:42 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

SuperSet Reference:

RR72742

QA/QC Report

Client: Project: Anchor Environmental McCall-Portland

Sample Matrix:

Water

Service Request: K0703836 Date Extracted: 05/08/2007

Date Analyzed: 06/02/2007

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520 Analysis Method:

8270C SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG0705560

Analyte Name	KV	Control Samp VG0705560-1 Control Spik	1	Duplicate Lab Control Sample KWG0705560-2 Duplicate Lab Control Spike			%Rec		RPD
	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	3.75	5.00	75	4.26	5.00	85	35-133	13	30
2-Methylnaphthalene	3.61	5.00	72	4.17	5.00	83	23-141	14	30
Acenaphthylene	4.28	5.00	86	4.90	5.00	98	40-138	13	30
Acenaphthene	4.18	5.00	84	4.75	5.00	95	41-135	13	30
Dibenzofuran	4.42	5.00	88	4.92	5.00	98	10-183	11	30
Fluorene	4.57	5.00	91	5.03	5.00	101	43-139	10	30
Phenanthrene	4.41	5.00	88	5.01	5.00	100	45-138	13	30
Anthracene	4.68	5.00	94	5.45	5.00	109	36-139	15	30
Fluoranthene	4.84	5.00	97	4.96	5.00	99	43-148	3	30
Pyrene	5.35	5.00	107	5.15	5.00	103	37-154	4	30
Benz(a)anthracene	5.19	5.00	104	5.73	5.00	115	46-136	10	30
Chrysene	5.38	5.00	108	6.09	5.00	122	51-134	12	30
Benzo(b)fluoranthene	4.31	5.00	86	4.92	5.00	98	53-139	13	30
Benzo(k)fluoranthene	4.91	5.00	98	5.52	5.00	110	53-140	12	30
Benzo(a)pyrene	4.44	5.00	89	4.96	5.00	99	43-138	11	30
ndeno(1,2,3-cd)pyrene	4.15	5.00	83	4.53	5.00	91	40-146	9	30
Dibenz(a,h)anthracene	4.65	5.00	93	5.11	5.00	102	37-148	9	30
Benzo(g,h,i)perylene	4.20	5.00	84	4.69	5.00	94	42-146	11	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00087

Printed: 06/05/2007 14:02:45 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

QA/QC Report

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Soil

Service Request: K0703836 Date Extracted: 05/14/2007

Date Analyzed: 05/17/2007

Lab Control Spike/Duplicate Lab Control Spike Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method: EPA 3541 Analysis Method:

8270C SIM

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG0705572

Lab Control Sample KWG0705572-3

Duplicate Lab Control Sample KWG0705572-4

	:	Control Spik			Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	327	500	65	334	500	67	48-107	2	40
2-Methylnaphthalene	350	500	70	407	500	81	42-121	15	40
Acenaphthylene	360	500	72	362	500	72	50-111	1	40
Acenaphthene	362	500	72	367	500	73	50-110	1	40
Fluorene	375	500	75	389	500	78	52-112	4	40
Dibenzofuran	378	50 0	76	389	500	78	50-115	3	40
Phenanthrene	391	500	78	385	500	77	53-112	2	40
Anthracene	404	500	81	. 402	500	80	52-115	0	40
Fluoranthene	337	500	67	406	500	81	55-121	18	40
Pyrene	492	500	98	409	500	82	47-129	18	40
Benzo(b)fluoranthene	363	500	73	391	500	78	55-125	8	40
Benzo(k)fluoranthene	· 376	500	75	410	500	82	55-124	9	40
Benz(a)anthracene	382	500	76	383	500	77	51-118	0	40
Chrysene	386	500	77	388	500	78	54-120	1	40
Benzo(a)pyrene	398	500	80	429	500	86	56-122	8	40
Indeno(1,2,3-cd)pyrene	464	500	93	471	500	94	42-133	2	40
Dibenz(a,h)anthracene	436	500	87	454	500	91	37-135	4	40
Benzo(g,h,i)perylene	427	500	85	420	500	84	49-125	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00088

Printed: 06/05/2007 14:02:48 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Semi-Volatile Organic Compounds EPA Method 8270C

Analytical Results

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Water

Service Request: K0703836

Date Collected: 05/02/2007 Date Received: 05/04/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

S-2-050207

K0703836-001

Extraction Method: EPA 3520

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8270C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	0.48	1	05/08/07	05/14/07	KWG0705428	
Dimethyl Phthalate	0.22		0.20	1	05/08/07	05/14/07	KWG0705428	
Diethyl Phthalate	0.47	-	0.20	1	05/08/07	05/14/07	KWG0705428	
Di-n-butyl Phthalate	0.21		0.20	1	05/08/07	05/14/07	KWG0705428	
Butyl Benzyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Bis(2-ethylhexyl) Phthalate	1.4		0.96	1	05/08/07	05/14/07	KWG0705428	
Di-n-octyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	92	25-118	05/14/07	Acceptable	
Nitrobenzene-d5	81	24-131	05/14/07	Acceptable	
2-Fluorobiphenyl	51	26-114	05/14/07	Acceptable	
Terphenyl-d14	87	28-144	05/14/07	Acceptable	

4	Anal	-4-		 _4.
т	ALLE	A LE	Lun	пи

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00090

1 of 1

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836 Date Collected: 05/02/2007

Date Received: 05/04/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

S-3-050207

Lab Code:

K0703836-002

Extraction Method: EPA 3520

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
4-Methylphenol†	ND	U	0.48	1	05/08/07	05/14/07	KWG0705428	
Dimethyl Phthalate	0.32		0.20	1	05/08/07	05/14/07	KWG0705428	
Diethyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Di-n-butyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Butyl Benzyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Bis(2-ethylhexyl) Phthalate	ND	U	0.96	1	05/08/07	05/14/07	KWG0705428	
Di-n-octyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	88	25-118	05/14/07	Acceptable	
Nitrobenzene-d5	75	24-131	05/14/07	Acceptable	
2-Fluorobiphenyl	75	26-114	05/14/07	Acceptable	
Terphenyl-d14	82	28-144	05/14/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Page

Printed: 06/05/2007 15:40:41 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

RR72767 SuperSet Reference:

Analytical Results

Client:

Anchor Environmental

McCall-Portland

Project: Sample Matrix:

Water

Service Request: K0703836 Date Collected: 05/02/2007

Date Received: 05/04/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

S-4-050207 K0703836-003

Extraction Method:

EPA 3520

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
4-Methylphenol†	ND	U	0.48	1	05/08/07	05/14/07	KWG0705428	
Dimethyl Phthalate	0.29		0.20	1	05/08/07	05/14/07	KWG0705428	
Diethyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Di-n-butyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Butyl Benzyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Bis(2-ethylhexyl) Phthalate	ND	U	0.96	1	05/08/07	05/14/07	KWG0705428	
Di-n-octyl Phthalate	ND	Ū	0.20	1	05/08/07	05/14/07	KWG0705428	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	90	25-118	05/14/07	Acceptable	
Nitrobenzene-d5	80	24-131	05/14/07	Acceptable	
2-Fluorobiphenyl	72	26-114	05/14/07	Acceptable	
Terphenyl-d14	65	28-144	05/14/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00092

1 of 1

Page

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0705428-3

Extraction Method:

EPA 3520

Units: ug/L Basis: NA

Analysis Method:

8270C

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	0.48	1	05/08/07	05/14/07	KWG0705428	
Dimethyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Diethyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Di-n-butyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Butyl Benzyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	
Bis(2-ethylhexyl) Phthalate	ND	U	0.96	1	05/08/07	05/14/07	KWG0705428	
Di-n-octyl Phthalate	ND	U	0.20	1	05/08/07	05/14/07	KWG0705428	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	88	25-118	05/14/07	Acceptable	
Nitrobenzene-d5	81	24-131	05/14/07	Acceptable	
2-Fluorobiphenyl	74	26-114	05/14/07	Acceptable	
Terphenyl-d14	86	28-144	05/14/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 06/05/2007 15:40:43

u:\Stealth\Crystal.pt\Form1m.rpt

Merged

Form 1A - Organic

Page RR72767 SuperSet Reference:

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland Sediment

Service Request: K0703836

Date Collected: 05/02/2007

Date Received: 05/04/2007

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

SS-3-050207

Units: ug/Kg Basis: Dry

Lab Code:

K0703836-004

Level: Low

Extraction Method: Analysis Method:

EPA 3541 8270C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	Ū	680	5	05/16/07	05/30/07	KWG0705656	
Dimethyl Phthalate	ND	U	680	5	05/16/07	05/30/07	KWG0705656	
Diethyl Phthalate	ND	U	680	5	05/16/07	05/30/07	KWG0705656	
Di-n-butyl Phthalate	840	D	680	5	05/16/07	05/30/07	KWG0705656	
Butyl Benzyl Phthalate	ND	U	680	5	05/16/07	05/30/07	KWG0705656	
Bis(2-ethylhexyl) Phthalate	12000	D	6800	5	05/16/07	05/30/07	KWG0705656	
Di-n-octyl Phthalate	ND	บ	680	5	05/16/07	05/30/07	KWG0705656	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	67	17-101	05/30/07	Acceptable	
Nitrobenzene-d5	- 68	10-108	05/30/07	Acceptable	
2-Fluorobiphenyl	65	10-108	05/30/07	Acceptable	
Terphenyl-d14	91	26-122	05/30/07	Acceptable	

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00094

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Soil

Service Request: K0703836

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0705656-5

Extraction Method: Analysis Method:

EPA 3541 8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	5.0	1	05/16/07	05/23/07	KWG0705656	
Dimethyl Phthalate	ND	U	5.0	1	05/16/07	05/23/07	KWG0705656	
Diethyl Phthalate	ND	U	5.0	1	05/16/07	05/23/07	KWG0705656	
Di-n-butyl Phthalate	ND	U	7.9	1	05/16/07	05/23/07	KWG0705656	
Butyl Benzyl Phthalate	ND	U	5.0	1	05/16/07	05/23/07	KWG0705656	
Bis(2-ethylhexyl) Phthalate	ND	U	50	1	05/16/07	05/23/07	KWG0705656	
Di-n-octyl Phthalate	ND	U	5.0	1	05/16/07	05/23/07	KWG0705656	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	51	17-101	05/23/07	Acceptable	
Nitrobenzene-d5	38	10-108	05/23/07	Acceptable	
2-Fluorobiphenyl	42	10-108	05/23/07	Acceptable	
Terphenyl-d14	74	26-122	05/23/07	Acceptable	

+ Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00095

Printed: 06/05/2007 15:40:45

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

RR72767 SuperSet Reference:

Page 1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Water

Service Request: K0703836

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520 **Analysis Method:**

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	<u>Sur4</u>
S-2-050207	K0703836-001	92	81	51	87
S-3-050207	K0703836-002	88	75	75	82
S-4-050207	K0703836-003	90	80	72	65
Method Blank	KWG0705428-3	88	81	74	86
Lab Control Sample	KWG0705428-1	93	.84	76	87
Duplicate Lab Control Sample	KWG0705428-2	103	92	85	95

Surrogate Recovery Control Limits (%)

Surl = Phenol-d6	25-118	
Sur2 = Nitrobenzene-d5	24-131	
Sur3 = 2-Fluorobiphenyl	26-114	
Sur4 = Terphenyl-d14	28-144	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

00096

Printed: 06/05/2007 15:40:50 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	<u>Sur2</u>	Sur3	Sur4
SS-3-050207	K0703836-004	67 D #	68D#	65 D #	91 D #
Method Blank	KWG0705656-5	51	38	42	74
Batch QC	K0703896-001	113 D #	99 D#	91 D #	0D#
Batch QCMS	KWG0705656-1	82	81	75	234 D #
Batch QCDMS	KWG0705656-2	74	73	71	0D#
Lab Control Sample	KWG0705656-3	75	67	65	80
Duplicate Lab Control Sample	KWG0705656-4	<i>7</i> 7	68	69	77

Surrogate Recovery Control Limits (%)

		· · · · · · · · · · · · · · · · · · ·
Surl = Phenol-d6	17-101	
Sur2 = Nitrobenzene-d5	10-108	•
Sur3 = 2-Fluorobiphenyl	10-108	
Sur4 = Terphenyl-d14	26-122	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00097

Printed: 06/05/2007 15:40:53 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Soil

Service Request: K0703836 **Date Extracted: 05/16/2007**

Date Analyzed: 05/23/2007 -

05/30/2007

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Batch QC

Lab Code:

K0703896-001

Extraction Method: Analysis Method:

EPA 3541

8270C

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0705656

Batch QCMS

Batch QCDMS

	Sample	KWG0705656-1 Matrix Spike		KWG0705656-2 Duplicate Matrix Spike			%Rec		RPD	
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
4-Methylphenol	ND	315	249	126 *	410	249	164 *	10-119	26	40
Dimethyl Phthalate	ND	378	249	152 *	787	249	316 *	26-110	70 *	40
Diethyl Phthalate	ND	318	249	127 *	238	249	96	12-124	28	40
Di-n-butyl Phthalate	ND	ND	249	0 *	ND	249	0 *	10-137		40
Butyl Benzyl Phthalate	3300	4640	249	520 #	3590	249	100 #	10-135	25	40
Bis(2-ethylhexyl) Phthalate	ND	4880	249	1959 *	8040	249	3224 *	10-137	49 *	40
Di-n-octyl Phthalate	ND	ND	249	0 *	ND	249	0 *	24-116		40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

Anchor Environmental

Project: Sample Matrix: McCall-Portland

Water

Service Request: K0703836 **Date Extracted: 05/08/2007**

Date Analyzed: 05/14/2007

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520 Analysis Method:

8270C

Units: ug/L

Basis: NA

Extraction Lot: KWG0705428

Level: Low

	Lab Control Sample KWG0705428-1 Lab Control Spike		Duplicate Lab Control Sample KWG0705428-2 Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
4-Methylphenol	4.35	5.00	87	4.71	5.00	94	30-116	8	30
Dimethyl Phthalate	4.46	5.00	89	5.02	5.00	100	43-116	12	30
Diethyl Phthalate	4.08	5.00	82	4.57	5.00	91	42-120	11	30
Di-n-butyl Phthalate	4.61	5.00	92	5.21	5.00	104	46-119	12	30
Butyl Benzyl Phthalate	4.62	5.00	92	5.16	5.00	103	43-121	11	30
Bis(2-ethylhexyl) Phthalate	4.67	5.00	93	5.15	5.00	103	34-136	10	30
Di-n-octyl Phthalate	4.80	5.00	96	5.32	5.00	106	39-123	10	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00099

Printed: 06/05/2007 15:40:59 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of

RR72767

QA/QC Report

Client:

Anchor Environmental

McCall-Portland

Project: Sample Matrix:

Soil

Service Request: K0703836 Date Extracted: 05/16/2007

Date Analyzed: 05/23/2007

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analyte Name

4-Methylphenol

Dimethyl Phthalate

Di-n-butyl Phthalate

Di-n-octyl Phthalate

Butyl Benzyl Phthalate

Bis(2-ethylhexyl) Phthalate

Diethyl Phthalate

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG0705656

Analysis Method: 8270C

> Lab Control Sample KWG0705656-3 Lab Control Spike

> > **Expected**

250

250

250

250

250

250

250

Result

157

162

169

198

201

210

204

Duplicate Lab Control Sample

<u>. </u>		/G0705656-4 • Lab Control		%Rec		RPD	
%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
63	157	250	63	24-94	0	40	
65	174	250	69	33-107	7	40	
68	171	250	68	35-107	1	40	
79	190	250	76	37-118	4	40	
80	195	250	78	36-123	3	40 .	
84	202	250	81	34-133	4	40	
81	196	250	79	34-125	4	40	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

nntub

Printed: 06/05/2007 15:41:02 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference: RR72767

June 11, 2007

Analytical Report for Service Request No: K0703836

John Renda Anchor Environmental 6650 SW Redwood Lane Suite 110 Portland, OR 97224

RE: McCall-Portland

Dear John:

Enclosed are the additional report pages for the samples submitted to our laboratory on May 04, 2007. For your reference, these analyses have been assigned our service request number K0703836.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3358. You may also contact me via Email at LHuckestein@kelso.caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda Huckestein

Client Services Manager

LH/di

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated the to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X . See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	
Arizona DHS	AZ0339	
Arkansas - DEQ	88-0637	
California DHS	2286	
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)	-	

Analytical Results

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Sediment

Service Request: K0703836 Date Collected: 05/02/2007

Date Received: 05/04/2007

Diesel and Residual Range Organics

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result	Q
Diesel Range Organics (DRO)	1400	DH
Residual Range Organics (RRO)	9300	DO

Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
5	05/11/07	05/16/07	KWG0705535	
5	05/11/07	05/16/07	KWG0705535	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	112	50-150	05/16/07	Acceptable
n-Triacontane	94	50-150	05/16/07	Acceptable

MRL 340

1400

Comments:

Analytical Results

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Date Collected: NA

Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG0705535-3

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Analysis Method:

NWTPH-Dx

Level: Low

Analyte Name
Diesel Range Organics (DRO)
Residual Range Organics (RRO)

Result Q	MRL
ND U	25
ND U	100

Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1	05/11/07	05/15/07	KWG0705535	
1	05/11/07	05/15/07	KWG0705535	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	88 98	50-150 50-150	05/15/07 05/15/07	Acceptable Acceptable	

Comments:

000.6

1 of 1

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B Analysis Method:

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
SS-3-050207	K0703836-004	112 D	94 D
SS-3-050207DUP	KWG0705535-4	113 D	129 D
Method Blank	KWG0705535-3	88	98
Lab Control Sample	KWG0705535-2	96	102

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 06/11/2007 16:31:17 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of

QA/QC Report

Client:

Anchor Environmental

Project:

McCall-Portland

Sample Matrix:

Sediment

Service Request: K0703836

Date Extracted: 05/11/2007

Date Analyzed: 05/16/2007

Duplicate Sample Summary Diesel and Residual Range Organics

Sample

Result

1400

9300

Sample Name:

SS-3-050207

Lab Code:

K0703836-004

MRL

340

1400

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

0

40

Analysis Method:

Analyte Name

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

NWTPH-Dx

Extraction Lot: KWG0705535

SS-3-050207DUP

9300

KWG0705535-4 Relative **Duplicate Sample** Percent **RPD** Limit Difference Result Average 1400 1400 1 40

9300

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000.8

Printed: 06/11/2007 16:31:20 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

Page l of l

SuperSet Reference:

RR73040

QA/QC Report

Client:

Anchor Environmental McCall-Portland

Project: Sample Matrix:

Sediment

Service Request: K0703836 Date Extracted: 05/11/2007

Date Analyzed: 05/15/2007

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B **Analysis Method:**

NWTPH-Dx

Units: mg/Kg

Basis: Dry Level: Low

Extraction Lot: KWG0705535

Lab Control Sample KWG0705535-2

Lab Control Spike %Rec Limits %Rec **Analyte Name** Result Expected Diesel Range Organics (DRO) 245 267 92 62-159 Residual Range Organics (RRO) 127 133 95 53-143

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2007 16:31:23 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 1 SuperSet Reference: RR73040

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

April 13, 2007 030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: First Quarter 2007 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the first quarter 2007, and work planned for the second quarter 2007 for the McCall Oil and Chemical site in Portland, Oregon.

WORK COMPLETED FIRST QUARTER 2007

- data management and reporting
- prepared and submitted Stormwater and Catch Basin Sediment Sampling Plan (February 2, 2007)
- received and reviewed DEQ's March 5, 2007 comments on Stormwater and Catch Basin Sediment Sampling Plan
- submitted email response to DEQ's March 5, 2007 comments on Stormwater and Catch Basin Sediment Sampling Plan
- project management and meetings

PLANNED SECOND QUARTER 2007 RI TASKS

- data management and reporting
- meet with DEQ to discuss project status and DEQ's March 5, 2007 comments on Stormwater and Catch Basin Sediment Sampling Plan (April 2, 2007)

- prepare written response to DEQ's March 5, 2007 comments on Stormwater and Catch Basin Sediment Sampling Plan (April 9, 2007)
- collect stormwater and catch basin sediment samples pending DEQ's authorization (weather permitting)
- project management and meetings

RESULTS

No samples were collected in first quarter 2007 and no new data was generated.

PROBLEMS ENCOUNTERED

No problems were encountered during first quarter 2007.

If you have any questions, please let us know.

Sincerely,

John Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G.

Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

January 12, 2007 030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Fourth Quarter 2006 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the fourth quarter 2006, and work planned for the first quarter 2007 for the McCall Oil and Chemical site in Portland, Oregon.

WORK COMPLETED FOURTH QUARTER 2006

- data management and reporting
- project management and meetings

PLANNED FIRST QUARTER 2007 RI TASKS

- data management and reporting
- project management and meetings

RESULTS

No samples were collected in fourth quarter 2006 and no new data was generated.

PROBLEMS ENCOUNTERED

No problems were encountered during fourth quarter 2006.

P:\Projects\McCall Portland\Reports\QtlyReport-4Q2006.doc

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

October 15, 2006 030162-01

Mr. Tom Gainer, P.E. Oregon Department of Environmental Quality 2020 SW 4th Avenue, Suite 400 Portland, Oregon 97201-4987

Re: Third Quarter 2006 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the third quarter 2006, and work planned for the fourth quarter 2006 for the McCall Oil and Chemical site in Portland, Oregon.

WORK COMPLETED THIRD QUARTER 2006

- Prepared report Assessment of McCall Oil and Chemical Site Impacts to The Willamette River (September, 2006), and submitted report to DEQ on September 29, 2006.
- data management and reporting
- project management and meetings

PLANNED FOURTH QUARTER 2006 RI TASKS

- data management and reporting
- project management and meetings

RESULTS

No samples were collected in third quarter 2006 and no new data was generated.

McCall provided the facility Remedial Investigation report to DEQ in July 2004 and have received no comments from the agency to date. Last month McCall provided DEQ with the report Assessment of McCall Oil and Chemical Site Impacts to the Willamette River, which includes a complete evaluation of upland sources. The conclusions of these reports are that the facility has been fully characterized and that source control actions are not necessary. McCall is not planning any further site characterization activities related to Willamette river source control. McCall looks forward to discussing the July 2004 RI and September 2006 Assessment reports with DEQ.

PROBLEMS ENCOUNTERED

No problems were encountered during third quarter 2006.

If you have any questions, please let us know.

Sincerely,

Cc:

John I Pondo P.C

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

Ted McCall; McCall Oil and Chemical

ASSESSMENT OF MCCALL OIL AND CHEMICAL SITE IMPACTS TO THE WILLAMETTE RIVER

Prepared for

McCall Oil and Chemical Corporation
Portland, Oregon

Prepared by

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, Oregon 97224-7192

September 2006

ASSESSMENT OF MCCALL OIL AND CHEMICAL SITE IMPACTS TO THE WILLAMETTE RIVER

Prepared for

McCall Oil and Chemical Corporation
Portland, Oregon

Prepared by

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, Oregon 97224-7192

September 2006

Table of Contents

1	SUMMARY OF FINDINGS	1
2	INTRODUCTION	9
_	2.1 Background	
	2.2 Purpose	
	z.z rurpose	4
3	SITE CONDITIONS	6
	3.1 Conceptual Site Model	6
	3.2 Contaminants of Interest (COIs)	7
4	INVESTIGATION AND CLEANUP HISTORY	10
	4.1 Historic Releases and Cleanup Actions	
	4.1.1 McCall Site	
	4.1.2 Tube Forgings	
	4.1.3 Willbridge Terminal	
	4.2 McCall Upland Preliminary Assessment and Groundwater Assessment	
	4.3 McCall Upland Remedial Investigation	
	4.4 LWG In-Water Remedial Investigation	
		20
5	LWG FINDINGS	14
	5.1 Sediment Chemistry	14
	5.1.1 Downstream Trends in Concentration	15
	5.1.2 Risk-Based Screening of Bulk Sediment Concentrations	17
	5.2 Sediment Toxicity	
,	LIDI AND COLIDORO	•
	UPLAND SOURCES	
	6.1 McCall	
	6.1.1 Groundwater Occurrence	
	6.1.2 Groundwater Quality	
	6.1.3 Stormwater and Catch Basin Sediment Quality	
	6.2 Front Avenue, LLP	
	6.2.1 Groundwater	
	6.2.2 Stormwater	
	6.3 Willbridge Groundwater	
	6.4 City Portland Stormwater	30
7	MCCALL RISK SCREENING EVALUATION	31
	7.1 Groundwater Screen	
	7.2 Stormwater Screen	
	7.3 Bioaccumulation Screen	
R	REFERENCES	38

Table of Contents

List of Tables

Table 1	McCall Oil & Chemical Corporation Summary of Historical Spill Releases
Table 2	Great Western Chemical Corporation Summary of Historical Spill Releases
Table 3	Groundwater Sampling Rationale
Table 4	LWG Round 2A Sediment Sample Results and Risk Screening Analysis
Table 5	Bioassay Results
Table 6	TPH in Groundwater and Stormwater
Table 7	PAHs and SVOCs in Groundwater and Stormwater
Table 8	VOCs in Groundwater
Table 9	Metals in Groundwater and Stormwater
Table 10	TPHs in Upland Soil and Catch Basin Sediment
Table 11	PAHs and SVOCs in Upland Soil and Catch Basin Sediment
Table 12	Metals in Upland Soil and Catch Basin Sediment
Table 13	Shoreline Groundwater Comparison with Surface Water Screening Criteria
Table 14	Comparison of Stormwater Data to Surface Water Criteria
Table 15	Contaminant Loading Analysis

List of Figures

Figure 1	Vicinity Map
Figure 2	Land Use Map
Figure 3	McCall Oil & Chemical Conceptual Site Model
Figure 4	Quadra Outfall 3 and COP Outfall 22
Figure 5	Boring and Well Location Map
Figure 6	Sediment Sampling and Monitoring Well Location Map
Figure 7	LWG Round 2 A Sample Locations
Figure 8	LWG Sediment Chemistry Data
Figure 9	Groundwater Potentiometric Surface Contour Map, March 2002
Figure 10	Groundwater Potentiometric Surface Contour Map, October 2002
Figure 11	Benzo(a)pyrene in groundwater
Figure 12	Chlorinated Solvents in Groundwater

List of Appendices

Appendix A Various Figures from 2004 McCall RI Report

- 1. X-Sections, RI Figures 6A through 6E
- 2. TPH groundwater time trend concentration graphs from RI Appendix
- 3. LPAH and HPAH groundwater time trend graphs from RI Appendix

1 SUMMARY OF FINDINGS

An assessment of the environmental conditions at the McCall Oil and Chemical Site (Site) was performed to determine whether historical or ongoing Site activities may be causing impacts to the beneficial uses of the Willamette River. Following are the key findings of this assessment:

- Chemical concentrations of constituents of interest (COIs) in sediments adjacent to the Site are below relevant risk-based sediment quality guidelines, including draft Lower Willamette Group (LWG) Level 1 ("no effects") levels (Windward et al. 2006), Washington State freshwater Lowest Apparent Effects Thresholds (LAET) (WDOE 2003), and consensus-based Probable Effects Levels (PEL) (MacDonald et al. 2000). These results are confirmed by bioassay tests conducted in sediments adjacent to the Site, which exhibited no biological effects to Chironomus growth and survival or Hyalella survival. Thus there is no evidence that discharges from the Site have resulted in contaminant accumulations in sediments at concentrations that would cause direct toxicity to benthic organisms in the Willamette River.
- None of the constituents of concern in shoreline monitoring wells at the Site were above
 chronic water quality criteria in any of the monitoring events (see Table 13). Therefore,
 there is no evidence that groundwater discharges from the Site are causing direct
 toxicity to aquatic life in the Willamette River.
- In stormwater samples from the Site, concentrations of polynuclear aromatic hydrocarbons (PAHs), semivolatile organic compounds (SVOCs), arsenic, and chromium are well below their respective chronic water quality criteria (see Table 14). Total copper, cadmium, and lead concentrations are near or below naturally occurring background values in a majority of samples. Zinc concentrations, although higher than background, are nevertheless lower than the mean zinc concentration in ambient urban runoff from the Portland metropolitan area, and well below the National Pollutant Discharge Elimination System (NPDES) stormwater benchmark. Therefore, stormwater discharges from the Site are expected to cause negligible, if any, effects on aquatic life in the Willamette River, especially when consideration is given to the intermittent and variable nature of stormwater discharges as well as mixing and dilution processes in the receiving water.
- The total loadings of metals and PAHs from stormwater and groundwater at the Site are negligible compared to other sources in and around the harbor, and thus the Site provides an insignificant contribution to bioaccumulation risk in the Willamette River.

In particular, it is estimated that Site contribution to the total load of metals and PAHs to the harbor ranges from less than one thousandth of a percent to a few tenths of a percent compared to naturally occurring background metals in transit in the river and ambient urban runoff from the Portland metropolitan area. Other sources of metals and PAHs, including discharges from vessels and marinas, combined sewer overflows, and other less-controlled industrial sites will further dwarf McCall's negligible contribution.

McCall continues to implement stormwater best management practices (BMPs) to
minimize the potential for mobilization of site-related constituents to the river, and to
maintain the effectiveness of its ongoing source control efforts. Site stormwater BMPs
include use of an oil-water separator to treat runoff from the oil terminal, catch basin
inlet protection, routine cleanout of catch basins, and maintenance of Spill Prevention,
Countermeasures, and Control Plan (SPCC) plans and procedures.

2 INTRODUCTION

2.1 Background

The Site is located in the industrialized area of northwest Portland along NW Front Avenue (see Figure 1). It occupies approximately 36 acres on the southwest bank of the Willamette River. The Site encompasses six tax lots. The property is currently occupied by two separate facilities: McCall Oil and Chemical Corporation (MOCC), which operates a marine terminal and asphalt facility, and Quadra Chemical (Quadra), which operates the former Great Western Chemical Corporation (GWCC) chemical distribution facility.

Before 1966, most of the land now occupied by the McCall Oil Terminal was submerged beneath the Willamette River (Figure 2). The Port of Portland (Port) created new land along the Willamette during the mid-1960s by dredging and filling along the shore. This land, including a portion of the Site, was deeded to the Port by the State of Oregon in 1967. A detailed description of the ownership and operational history of the Site is in the McCall Oil and Chemical Corporation Focused Remedial Investigation Workplan (Workplan) (IT Corporation, November 16, 2000), and in the Remedial Investigation (RI) Proposal, which is Appendix D to the Workplan.

Until 1995, the GWCC facilities consisted of two operating units, the GWCC Technical Center and the GWCC Portland Branch. The Technical Center included the former Chemax operations. In 1995, GWCC's two operating units were merged into the Portland Branch. Current and historical activities associated with the operations of each of these facilities are discussed in detail in chapters two through five of the RI Proposal (Appendix D to the Workplan). McCall purchased the marine terminal property from the Port in 2004 and now owns all of the property shown on Figure 6.

The Site is included in the Willamette Greenway (Greenway) established by the City of Portland to monitor and control land use next to the river. The Site and surrounding properties are zoned for heavy industrial use, both within the Greenway on the northwest (i.e., downriver) bank and outside of the Greenway. Surrounding industries include: petroleum bulk distribution terminals, chemical plants, sand and gravel operations, a steel fabrication facility, shipyards, and rail yards.

In the mid-1920s, the Port purchased the property now occupied by MOCC and Quadra as part of an approximately 65-acre parcel that stretched from the lands now owned by Conoco/Phillips on the west, to the Willamette River. Prior to the mid-1940s the property was vacant. In 1946, Pioneer Flintkote Company (Flintkote) purchased two parcels from the Port. Those parcels are currently occupied by Quadra and the MOCC asphalt plant, respectively.

Flintkote manufactured asphalt roofing shingles and tiles on the property from 1947 to approximately 1982. Historical occupation records indicate that Standard Oil Company operated a distribution center at the site during the 1950s (SAFE 1994). By 1960, Douglas Oil Company (Douglas) occupied this address, and operated an asphalt facility. In 1962, Douglas purchased the facility from Flintkote. Douglas and Flintkote continued to operate their respective facilities until 1982, when both parcels and the improvements were sold to MOCC. Chemax began operations on the former Flintkote site in early 1984. The Portland branch began its on-site operations in late 1985. In 1985, MOCC operated a lube oil distribution facility on part of the asphalt plant site. The lube oil operations were discontinued in 1991.

In the early to mid-1960s, the Port used dredge spoils from the Willamette River channel (primarily fine sand) to create new land along the Willamette River next to the Flintkote and Douglas facilities. As stated previously, this land was subsequently deeded to the Port by the state of Oregon in 1967. In the mid-1970s, MOCC constructed the marine terminal on the filled land.

2.2 Purpose

This report pulls together the findings from MOCC upland investigations and LWG inwater investigations to provide an assessment of river impacts from historic and current Site industrial operations. This report will show that the environmental information obtained by MOCC and LWG indicate that industrial operations at the Site have not significantly impacted beneficial uses of the Willamette River. Several documents referenced in this report were obtained from publicly available LWG records. We understand that these draft documents are currently under review by EPA and its federal, state, and tribal partners, and are subject to change in whole or in part.

Section 3 of this report describes the Site conditions with focus on the conceptual site model and identification of upland COIs. Section 4 provides a summary of historic releases, cleanup actions, and investigations conducted at the Site and neighboring properties. LWG in-water findings on sediment chemistry and toxicity are described in Section 5. Section 6 is a summary of information on potential upland groundwater and stormwater sources to the river from MOCC and neighboring properties. Section 7 provides a risk screening evaluation of potential impacts of Site groundwater and stormwater to the river.

3 SITE CONDITIONS

This description of Site conditions is from the July 2004 MOCC RI Report, modified to focus on potential upland contaminant pathways to the river.

3.1 Conceptual Site Model

The Conceptual Site Model (CSM) identifies the sources, pathways, and receptors that were considered in designing the focused Workplan (Figure 3). Although MOCC and Quadra operate independently, the CSM covers both facilities because the two facilities are adjacent to each other, and have potentially overlapping exposure pathways to the Willamette River.

The CSM illustrates the site's potential exposure pathways from potential source areas to potential receptors. The CSM considers all media including: soil, groundwater, surface water, sediment, and air.

Five classes of potential receptors were identified on Figure 3 on the basis of current and reasonably likely future land use. The site and surrounding area are currently used for industrial purposes, are zoned industrial, and are likely to remain industrial for the foreseeable future.

Of primary concern to this report are the ecological receptors of the Willamette River. For the purposes of the CSM, all flora and fauna potentially exposed to river water or sediments are grouped under the heading of ecological receptors. Potential secondary contaminant sources to these receptors are groundwater and stormwater (i.e., surface water) that discharge to the Willamette River water and sediments. These are two complete pathways that are addressed in this report.

The CSM also identifies some exposure routes for Site trench workers, construction workers, and industrial (occupational) on-site workers. These exposure pathways do not impact beneficial uses of the Willamette River and are not considered further in this report. They will be considered further in the context of the RIFS being conducted under the Agreement with Oregon Department of Environmental Quality (DEQ).

Recreational users of the Willamette River are unlikely to contact sediments and shallow river water adjacent to the Site during swimming and wading activities because the Site and surrounding properties are industrial in nature with no public access facilities. These are therefore considered insignificant pathways. Fish-eating humans and wildlife may be exposed to contaminants that have bioaccumulated in fish tissue; however, bioaccumulation is a watershed-scale issue that is best evaluated in the context of the regional investigation currently underway by the LWG.

3.2 Contaminants of Interest (COIs)

The Site COIs evaluated by MOCC in the Site upland RI were selected on the basis of chemicals that were (1) historically or currently used or stored at the facility, (2) detected in adjacent Willamette River sediment samples, or (3) detected in Site stormwater. The classes of COIs historically or currently used or stored at the Site include:

- Chlorinated volatile organic compounds (VOCs)
- Total petroleum hydrocarbons (TPH) as diesel and oil
- PAHs
- Metals (in particular, arsenic, chromium, and copper)

TPHs have been tested at the Site for the purpose of identifying and characterizing potential upland source areas. TPH concentrations at the Site were also screened using DEQ's "Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites" (DEQ 2003). The DEQ guidance was also used to evaluate toxic components of diesel- and oil-range hydrocarbons in soil and groundwater, PAHs in particular.

Because of the extended history of petroleum storage, handling, and shipping at the various bulk terminals in the vicinity of the Site, the following COI's were included in the investigation, although no significant on-site sources of these chemicals are known:

- TPH as gasoline
- Benzene, toluene, ethylbenzene, xylenes (BTEX), and related target volatile compounds per DEQ (2003)

Chlorinated VOCs have not been identified as Willamette River target compounds by DEQ, but chlorinated VOCs have been detected in groundwater at the site. These have therefore been investigated as COIs for the site.

During the Portland Harbor Sediment Investigation Report (Weston 1998), U.S. Environmental Protection Agency's (EPA's) contractor collected and analyzed sediment samples from six Willamette River locations near the site.

The Weston samples were tested for inorganic, SVOCs, VOCs, pesticides, and organotin compounds. On pages 2 and 3 of the Agreement, the agency listed the following compounds that exceeded baseline concentrations, based on the Weston data, established for the Portland Harbor Study Area:

Surface Sediment Constituents Exceeding Baseline Values:

- Aluminum
- Cadmium
- Cobalt
- Lead
- Mercury

- Zinc
- 4-methylphenol
- butyl benzyl phthalate
- di-n-octyl phthalate

Subsurface Sediment Constituents Exceeding Baseline Values:

- Aluminum
- Barium
- Cobalt
- Mercury
- Zinc

- 4-methylphenol
- dibenzofuran
- LPAH
- HPAH

With one exception, all of the constituent concentrations in sediment were well below dredged material screening levels (USACE et al. 1998). The exception was the shallow sample from SD 120 that had a 4-methylphenol concentration of 880 μ g/kg. The dredged material screening level for this compound is 670 μ g/kg. Of these chemicals, the four SVOCs and PAHs (see above) were retained for testing at the Site. None of the listed metals are part of any process nor are they stored at the MOCC/GWCC facility. Cadmium, lead,

and zinc were added to the list of COIs, not on the basis of the Portland Harbor sediment evaluation, but rather because of their occurrence in Site stormwater. Three additional metals—copper, chromium, and arsenic—were also selected as COIs because they were previously used in the production of wood-treating chemicals (CCA) on Site.

In summary, the following COIs were identified for investigation during the Site upland RI:

- Chlorinated VOCs
- TPH as diesel, oil, and gasoline
- PAHs
- BTEX
- Metals (arsenic, cadmium, chromium, copper, lead, and zinc)
- Miscellaneous SVOCs (4-methylphenol, butyl benzyl phthalate, di-n-octyl phthalate, and dibenzofuran)

The above COI were approved by Oregon DEQ, as presented in the RI Workplan.

4 INVESTIGATION AND CLEANUP HISTORY

4.1 Historic Releases and Cleanup Actions

4.1.1 McCall Site

During the period 1955 to present, MOCC and the previous owner, Douglas Asphalt, kept careful records of accidental releases that occurred during industrial operations. MOCC releases related to the Marine Terminal and asphalt plant are documented on Table 1. Great Western Chemical Company also documented historic releases, as shown on Table 2.

Review of Tables 1 and 2 show that most of the releases at the McCall Oil Terminal and the asphalt plant consisted of petroleum products, including diesel, raw asphalt, and bunker C. The table also shows the action taken to clean up each release. Most of the releases at the Great Western Chemical operations were various acids.

The GWCC release history includes a 1992 release of copper-chrome-arsenic (CCA) that occurred at the CCA process area of the GWCC plant. In cooperation with DEQ, excavation and off-site landfill disposal of CCA contaminated soil was completed. The details of the CCA soil cleanup are in Appendix D of the RI Workplan. Monitoring wells MW-1, 2, 3, and 4 were installed to assess possible groundwater quality impacts from the CCA release. These wells were later used in the upland RI.

The Site release history and the locations of key industrial processes were primary factors in the design of the upland RI.

4.1.2 Tube Forgings

Bunker C fuel was released from an underground storage tank on the Tube Forgings plant site. During the McCall RI, bunker C nonaqueous phase liquid (NAPL) was detected adjacent to the Tube Forgings property at the location shown on Figure 5. This is the only petroleum NAPL detected on the McCall Site.

Cleanup of the underground storage tank bunker C release occurred on the Tube Forgings property, and the cleanup is documented in the Groundwater Investigation Report, Front Avenue LLP Site (Maul, Foster, Along, Inc., 2004). However, soil and

groundwater data from the McCall RI Geoprobe borings and monitoring wells shows that a zone of bunker C NAPL exists on the McCall Asphalt plant property adjacent to the location of the former bunker C underground storage tank (UST) on the Tube Forgings property. Forensic analysis conducted during the McCall RI confirms that the light non-aqueous phase liquid (LNAPL) adjacent to the Tube Forgings property line is bunker C. The LNAPL footprint is not connected to any of the McCall fuel storage facilities.

However, the McCall RI data indicate the bunker C NAPL is not migrating, and will not migrate to the Willamette River. The location of the bunker C NAPL is approximately 700 feet from the river shoreline, is not considered a future threat to Willamette River beneficial uses, and will only be further evaluated with respect to potential human health risk to site workers or future utility workers.

4.1.3 Willbridge Terminal

Since at least the early 1970s, floating petroleum hydrocarbon products, primarily diesel, with some gasoline, have discharged to the Willamette River along the backfill of the former wood stave Doane Avenue stormsewer and along the backfill of the 1982 City of Portland replacement concrete stormsewer (current City outfall 022). The stormsewer and outfall 022 are located on Conoco/Phillips property within a few feet of the western Site property line. The City stormsewer outfall 022 location is shown on Figures 4, 5, and 6.

From the 1970s through the present, various oil companies have conducted free product recovery cleanup actions where the City stormsewer outfall 022 discharges to the river, just west of the Site. The 2006 photo on Figure 4 shows the location of City outfall 022 in relation to the Site property line and the Site stormwater outfall.

Historic petroleum product releases have occurred on the Chevron Asphalt and Conoco/Phillips tank farms located upgradient from the Site. The petroleum free product has migrated along the City stormsewer backfill to the river. Free product recovery efforts have been conducted on both sites. Dissolved petroleum hydrocarbon plumes exist on both sites.

The current and historic petroleum free product discharges to the river at City stormsewer outfall 022 are relevant to this report because several of the LWG river sediment sampling sites were located very close to the floating petroleum collection booms in the river. As will be discussed later in this report, petroleum-related COIs detected by LWG at sediment sample locations G401, G404, C532, and G399 may be at least partially sourced from the adjacent historic free product discharges in this area of the shoreline.

4.2 McCall Upland Preliminary Assessment and Groundwater Assessment

At DEQ's request, MOCC conducted a 1993 Preliminary Assessment (PA) at the Site, including the MOCC and GWCC facilities. The assessment included a comprehensive review of historic site industrial operations, inventory of historic release records, and identification of potential data gaps for further assessment. The findings of the PA are described in the *Preliminary Assessment of McCAll Oil & Chemical Corporation and Great Western Chemical Company* (Emcon Northwest, Inc. April 5, 1994).

Following the PA, MOCC conducted a preliminary groundwater investigation that included the installation of monitoring wells EX-1 through EX-7. These wells are shown on Figure 5 and were later used in the upland RI. Groundwater quality data obtained during the 1990s from these wells is reported in the 2004 RI report.

4.3 McCall Upland Remedial Investigation

The McCall upland RI Workplan was designed to assess documented upland release locations to determine the nature and extent of groundwater and soil contamination downgradient of each of the suspected upland source areas. Each of the reported releases listed on Tables 1 and 2 were considered in the development of the RI Workplan.

Monitoring wells MW-1 through 5 and EX-1 through 7 existed at the site before the RI began.

As part of the RI, 63 Geoprobe borings were installed at locations designed to assess all of the suspected upland source areas identified in the release records and based on the locations of key industrial processes. The locations of the RI Geoprobe borings and monitoring wells are on Figure 5. Soil samples and groundwater grab samples were obtained at the Geoprobe boring locations. The soil and groundwater samples were tested for the COI identified in Section 3.

The RI also included sampling of MOCC and GWCC stormwater and catch basin sediment, with laboratory testing for relevant COIs.

The soil and groundwater data from the Geoprobe borings, in conjunction with groundwater data from the existing monitoring wells, was used to site additional monitoring wells. During the RI, monitoring wells MW-6 through 15 were installed to completely characterize groundwater quality at the Site. Table 3 describes the rationale for selecting groundwater COIs for testing at various wells and Geoprobe borings based on suspected upland source areas.

The RI groundwater and stormwater data have been screened against relevant criteria to assess potential impact to the river. The screening results are presented in Section 7.

4.4 LWG In-Water Remedial Investigation

The LWG is currently conducting the in-water Portland Harbor RI under an Agreed Order on Consent (AOC) with EPA Region X. The in-water RI has included sampling of sediment adjacent to the Site and adjacent properties owned by Front Avenue LLP and the Willbridge terminal owners. Figures 5, 6, and 7 show LWG sample locations adjacent to the Site, Front Avenue LLP, and Conoco/Phillips properties. The river stormwater outfall locations are also shown on Figure 6.

Figure 7 shows the LWG Round 2A sediment sample sites for a distance of approximately ½ mile upstream and downstream from the Site. The sediment sample locations on Figures 5, 6, and 7 are estimated based on maps in the Round 2A Sediment Site Characterization Summary Report Map Folio (Integral, 2005).

The in-water RI has included sediment chemistry and toxicity testing. The findings from that testing are discussed in Section 5.

5 LWG FINDINGS

5.1 Sediment Chemistry

LWG Round 2 included eight sediment sample locations adjacent to the Site, as shown on Figure 6. The upstream boundary of the Site with Tube Forgings, LLP is at approximate river mile 8.03 and the downstream boundary of the Site with Conoco/Phillips is at approximate river mile 7.8. Table 4 is a list of all the sediment sample sites, including those within approximately ½ mile upstream and downstream of the Site boundaries. The sample sites listed on Table 4 are shown on Figure 7.

Table 4 shows that the following eight LWG sediment sample sites are adjacent to MOCC and GWCC, in order from upstream to downstream:

- G413, C413
- G410
- G407
- G403, C403
- G399
- G391
- C532
- G404

The sample numbers with the G prefix are surface samples obtained within the upper 10 cm of the mudline, and those with the C prefix are subsurface core samples obtained from various deeper intervals.

The LWG sediment samples were tested for a wide range of target analytes, some of which are also COIs in the MOCC Site upland RI. To assess the results of LWG sediment chemistry testing, the concentrations of the following eight Site COIs were plotted on Figures 8.1 to 8.8.

- Figure 8.1 LPAH (total)
- Figure 8.2 HPAH (total)
- Figure 8.3 Arsenic
- Figure 8.4 Chromium
- Figure 8.5 Copper

- Figure 8.6 Zinc
- Figure 8.7 Dibenzofuran
- Figure 8.8 4-methylphenol
- Figure 8.9 Butylbenzyl phthalate
- Figure 8.10 Di-n-octy phthalate

In addition, Figure 8.11 is a plot of total PCB concentrations. PCBs are not a Site COI, but because PCBs are a key COI for the Portland Harbor, and because PCBs were detected in samples adjacent to the Site, as well as upstream and downstream of the Site, this constituent warranted further evaluation.

5.1.1 Downstream Trends in Concentration

Figure 8 plots the concentration of each COI in μ g/kg on the vertical axis versus the sample location in approximate river miles. The LWG samples within 1/2 mile upstream and downstream of the Site along the left bank of the river are plotted; those samples located adjacent to the Site are indicated on each graph. Each of the sample locations plotted on Figure 8 and listed on Table 4 can also be found on the sample location map, Figure 7. The plots are oriented with upstream samples to the right and downstream samples to the left on each graph.

Beginning with Figures 8.1 and 8.2, the total LPAH and HPAH concentrations of the samples adjacent to the Site have significantly lower concentrations than the samples obtained upstream and downstream of the Site. The total LPAH and HPAH concentrations of the samples adjacent to the Site are all well below the overall mean concentration of all of the Portland Harbor LWG surface samples, and most are below the median concentration of the LWG Harbor-wide surface samples. The mean and median concentrations for all of the LWG surface samples were obtained from Table 4.1 in the Round 2A Sediment Site Characterization Summary Report (Integral, 2005).

The arsenic concentrations on Figure 8.3 are generally about the same as the upstream and downstream samples. The arsenic concentrations for the samples adjacent to the Site are below the LWG overall harbor-wide mean of 4.2 mg/kg in half the samples and are above the harbor-wide median of 3.7 mg/kg in six of eight samples. It should be

noted that arsenic concentrations for the site and upstream and downstream samples are all in a fairly consistent narrow range of concentrations between 1.9 to 5.4 mg/kg.

Chromium concentrations on Figure 8.4 are generally at or lower than the upstream and downstream samples. The chromium concentrations for the samples adjacent to the Site are typically above the LWG overall harbor-wide mean of 32 mg/kg and the harbor-wide median of 31 mg/kg consistent with both upstream and downstream sample results.

The copper concentrations on Figure 8.5 are generally lower than the upstream samples, and about the same as the downstream samples. The copper concentrations for the samples adjacent to the Site are all below the LWG overall harbor-wide mean of 53.8 mg/kg, and four of the samples are below the harbor-wide median of 39.1 mg/kg.

The zinc concentrations plotted on Figure 8.6 are lower than both the upstream and downstream samples and all but one sample have zinc concentrations below the overall harbor-wide mean concentration of 139 mg/kg.

The dibenzofuran concentrations plotted on Figure 8.7 are lower than both the upstream and downstream samples. All eight of the samples adjacent to the Site have concentrations well below the harbor-wide mean of 283 μ g/kg, and all but three samples have dibenzofuran concentrations below the overall harbor-wide mean concentration of 4.4 mg/kg.

The 4-methylphenol concentrations on Figure 8.8 are generally lower than the upstream samples, and somewhat higher than the downstream samples. All but one of the samples adjacent to the Site have concentrations well below the harbor-wide mean of 77.9 μ g/kg, and three are below the harbor-wide median of 16 μ g/kg.

The butylbenzyl and di-n-octy phthalate concentrations of samples adjacent to the Site were mostly below detection limits, and the few detections were all well below the harbor-wide median concentrations.

Figure 8.11 shows that total PCB was detected in all of the LWG surface sediment samples tested between river miles 7.5 and 8.5. The concentrations measured in samples adjacent to the Site were all well below the harbor-wide mean 216 μ g/kg, and all but three of the samples were below the harbor-wide median of 29 μ g/kg. Eight of the ten samples obtained upstream of the Site had concentrations exceeding the harbor-wide median, and two of the samples exceeded the harbor-wide mean. Three of the seven samples downstream of the Site had concentrations exceeding the harbor-wide median and one sample exceeded the harbor-wide mean.

5.1.2 Risk-Based Screening of Bulk Sediment Concentrations

The sediment samples listed above were compared to risk-based screening levels to determine whether and to what extent the sediments adjacent to the Site may be toxic to aquatic organisms. Because risk-based sediment quality criteria are still under review and development for the Portland Harbor, several different screening levels were considered in this analysis to provide a consensus-based approach to the screening evaluation.

- Windward et al. 2006 (Draft). These draft sediment quality guidelines, developed using bioassay testing results for the Portland Harbor, are still undergoing agency review. The biological endpoints considered were Chironomus growth, Chironomus mortality, a pooled Chironomus endpoint, and Hyalella mortality. The Hyalella growth and pooled Hyalella endpoints were not used because they showed inferior performance and reliability, and weak or no correlation with contaminant concentrations. The lowest and second lowest of the Level 1 Floating Percentile Method (FPM) values were preferentially used in this analysis. If FPM values were not available for certain constituents, Apparent Effects Threshold (AET) values were used as secondary guidelines.
- WDOE 2003. The Washington State Department of Ecology (WDOE) developed preliminary freshwater sediment quality guidelines. The biological endpoints considered in this analysis were Chironomus growth, Chironomus mortality, and Hyalella mortality. The Microtox endpoint was not used because it has questionable relevance to ecological receptors, and because EPA excluded Microtox bioassays from the development of sediment quality criteria in the Commencement Bay Superfund Site. The lowest and second lowest freshwater

- AET values (LAET and 2LAET, respectively) from this recent WDOE study are listed in Table 4.
- McDonald et al. 2000. The consensus-based PEC from this study were also used
 to evaluate LWG data. The PEC values represent a compilation of existing
 literature values for sediment quality criteria from various regions of the USA
 and Canada. Threshold Effects Concentrations (TEC) were not used because
 they exhibit unreasonably high false positive error rates and low reliability
 (Windward et al. 2006).

The three sets of screening criteria are listed in Table 4. All of the criteria are in reasonably good agreement with each other, although the PEC values for several metals (chromium, copper, and zinc) are somewhat lower than the other guidelines. The lowest and most stringent of all criteria are indicated in the table.

None of the sediments adjacent to MOCC and GWCC exceed any of the listed sediment quality guidelines. In fact, many of the sediment concentrations are one to two orders of magnitude lower than the guidelines. Based on this analysis, Site sediments would not be expected to cause toxicity to benthic organisms. This prediction is confirmed by the results of sediment bioassay tests, as discussed below.

5.2 Sediment Toxicity

This section discusses the results of bioassay testing of river sediment samples obtained near the Site. LWG conducted bioassay tests on sediment samples G401, G403, and G413. In summary, none of the three samples showed any significant biological effects to *Chironomus* growth or survival or *Hyalella* survival, and therefore there is no indication that these sediments exhibit toxicity to benthic invertebrates or to the invertebrate prey base of upper level organisms such as salmonids.

Below is a brief description of the freshwater bioassay performance standards and endpoints used in the biological testing program.

Freshwater Amphipod Bioassay. This bioassay measures the survival of amphipods
(Hyalella azteca) after a 28-day exposure to the test sediment. Although this bioassay
also has a growth endpoint, the growth endpoint was shown to respond primarily to

the physical characteristics of the sediment (e.g., percent fines and ammonia) and to have low reliability in predicting toxicity (Windward et al. 2006); therefore, this endpoint was not included in the analysis.

• Freshwater Midge Bioassay. This test measures the survival and growth of the midge *Chironomus tentans* after a 10-day exposure to the test sediment.

The response of bioassay organisms exposed to the tested material representing each sediment unit is compared to the response of these organisms in control treatments, given that freshwater reference sites are not yet available in the region. The LWG in consultation with EPA established three levels of biological effects:

- "No Effects" (Level 1): Greater than 90 percent of control survival or growth
- "Low Effects" (Level 2): Greater than 80 percent of control survival or growth
- "Moderate Effects" (Level 3): Greater than 70 percent of control survival or growth

These biological effects levels (Levels 1, 2, and 3) are based on statistically significant differences between the test sediment and control sediment as well as exceedence of the minimum difference thresholds.

The three sediment samples chosen by LWG to perform bioassays appear to be representative of the full range of PAH concentrations detected across the Site. The samples selected are G401, G403, and G413. G401 is located adjacent to Conoco/Phillips property near City stormwater outfall 022, just past the downstream boundary of the Site, as shown on Figures 6 and 7. The test results are shown on Tables 5.1, 5.2, and 5.3.

Hyalella Bioassay. The Hyalella bioassay control had an acceptable absolute mean mortality of 1.25 percent. Hyalella mortality in the test sediments G401, G403, and G413 is 3.75 percent, 3.75 percent, and 1.25 percent, respectively (Table 5.1). Each test response is less than 10 percent over the control mortality, therefore, the test sediments exhibited no significant biological effects at the most stringent "No Effects" level for the Hyalella mortality endpoint.

Chironomus Bioassay. The Chironomus bioassay control had an acceptable absolute mean mortality of 5 percent and an acceptable growth performance greater than 0.6 mg minimum

mean weight per organism. Table 5.2 shows that each of the test sediments had less than 10 percent mortality over the control mortality and therefore the test sediments exhibited no significant biological effects at the most stringent "No Effects" level for the *Chironomus* mortality endpoint. Table 5.3 shows that each of the test sediments had less than 10 percent reduction in growth over the control sediment, and therefore the test sediments exhibited no significant biological effects at the most stringent "No Effects" level for the *Chironomus* growth endpoint.

6 UPLAND SOURCES

6.1 McCall

6.1.1 Groundwater Occurrence

On the basis of soil and bedrock samples obtained from the GeoProbe and monitoring well borings drilled during the upland RI, there are three geologic units of interest underlying the uplands at the Site. The uppermost geologic unit is dredge fill derived from the Willamette River. The dredge fill overlies river alluvium. The dredge fill was placed in the 1960s by the Port in the area where McCall later built the marine terminal above-ground tank farm. The alluvium overlies basalt bedrock. The combined thickness of the dredge fill and alluvium is approximately 75 feet, based on the depth to basalt bedrock at borings GP-41, 42, 43, and 44. Because the dredge fill and alluvial sediments both consist primarily of fine to medium sand and silt, the contact between the two units is difficult to identify in borings.

Logs from site borings have not identified a consistent lithologic boundary between the dredge fill sediments and the underlying alluvial sediments. Both units are quite sandy and contain silty-sand or silt interbeds. Although some boring logs indicate that the underlying alluvium is siltier than the dredge fill sediments, the water level data do not indicate that groundwater in the dredge fill is consistently perched on the underlying alluvium. For these reasons the dredge fill sediments and alluvial sediments are considered to be one hydrogeologic unit. For the purpose of this report the dredge fill and alluvium are termed the alluvial aquifer.

Five subsurface geologic cross sections are on Figures 6A through 6E in Appendix A. The cross sections are from the 2004 RI report. The section locations are shown on Figure 5 of this report. The sections identify the type of soil encountered in the GeoProbe and monitoring well borings. Section B-B' on Figure 6B also shows the full thickness of the alluvial aquifer down to basalt bedrock.

On a regional basis, the Willamette River is the discharge boundary for shallow and deep groundwater. For this project we are concerned primarily with characterizing the groundwater flow system in the alluvial aquifer overlying basalt bedrock. The properties of the COIs and water quality data collected to date indicate that only

groundwater in the upper portion of the alluvial aquifer has water quality impacts. The organic COIs that have been detected in site groundwater have specific gravities less than one, except the chlorinated VOCs. Therefore, we expect to encounter those light COIs in groundwater in the upper portion of the alluvial aquifer. Four borings were drilled to bedrock in the chlorinated VOC plume to look for evidence of chlorinated VOC dense non-aqueous phase liquid (DNAPL). Groundwater from those borings was tested for chlorinated VOCs from multiple depths down to bedrock. No evidence of DNAPL was detected. The results from those borings, GP-41, 42, 43, and 44 were reported in the April 2001 Focused RI Interim Status Report.

Groundwater potentiometric surface contour maps were prepared for March and October 2002 (Figures 9 and 10, respectively). The contour patterns on these maps indicate that groundwater in the alluvial aquifer flows northeast to the Willamette River. Comparison of the groundwater elevations shown next to the monitoring wells on Figures 9 and 10 indicates that there was up to 2 feet of difference in groundwater elevation between the October dry season and March wet season conditions. The flow pattern did not change significantly from the dry to wet season in 2002.

Because most of the Site is paved, groundwater in the alluvial aquifer is recharged primarily by underflow from areas to the south (Tube Forgings) and to the west (Chevron Asphalt and Willbridge terminals). The entire facility is paved, with two exceptions. The rectangular shaped area between the Quadra Chemical facility and the McCall Marine Terminal has a gravel surface. Although it is unpaved, vehicle traffic has compacted the gravel and the resulting low permeability causes rainfall to runoff to the catch basins in this area. Stormwater from those catch basins flows to the McCall terminal oil water separator located at S-4. The area within the McCall terminal aboveground tank farm is also unpaved. Some infiltration may occur in this area, although much of the rainwater that falls into the tank farm runs off and is routed to the oil water separator at S-4. The alluvial aquifer is also temporarily recharged near the shoreline when the Willamette River rises due to daily tidal, storm, and seasonal fluctuations.

The hydraulic conductivity of the alluvial aquifer was determined by field testing at monitoring wells EX-5, MW-6, and MW-7. A time lag method was used for these tests at

the suggestion of DEQ. This method uses the time lag between river level fluctuations and the river induced groundwater level fluctuations to determine the alluvial aquifer hydraulic conductivity. The data and results of the field tests were reported in the July 15, 2002 Status Report. The horizontal hydraulic conductivity values determined for the three wells were 0.005 ft/minute for MW-6, 0.003 feet/minute for EX-5, and 0.16 feet/minute for MW-7.

6.1.2 Groundwater Quality

The groundwater quality data from the first phase of the RI was provided in the April 30, 2001 Interim Status Report. That report used tables and maps to display the range of COPC concentrations that had been detected in GeoProbe groundwater grab samples and in groundwater samples from the site monitoring wells. A primary purpose of that data analysis was to use the GeoProbe groundwater quality data to identify areas where monitoring wells should be installed. Based on the GeoProbe data the supplemental RI included the installation of monitoring wells MW-6 through MW-13.

This section describes the general occurrence and concentration time trends of the primary COI groups: TPHs, PAHs, SVOCs, VOCs, and metals. When reviewing the tabulated water quality data, note that detections are shown in bold.

Total Petroleum Hydrocarbons

The data on Table 6 show that petroleum hydrocarbons have been detected at least once in every monitoring well at the site with the exception of newly installed monitoring well MW-15. The TPH detections have been in the gasoline, diesel, and heavy fuel oil ranges. The groundwater concentrations for each hydrocarbon range are generally less than one mg/l, but since RI monitoring began in 2000, wells MW-1, MW-3, MW-4, MW-7, MW-8, MW-11, MW-12, and MW-13 have had concentrations exceeding 1 mg/l.

Wells MW-11 and MW-8 have the highest TPH concentrations.

A petroleum LNAPL has been detected in the vicinity of well MW-11. Forensic testing has identified the LNAPL as a residual bunker C or diesel fuel. The LNAPL was also

detected in GeoProbe borings GP-31, 45, 46, 47, 54, 55, 56, and 59 near well MW-11. The LNAPL was not detected in GeoProbe borings GP-57, 58, 60, 61, 62, and 63, which were advanced to delineate the onsite extent of the plume. The estimated footprint of the LNAPL plume on McCall property was defined using the GeoProbe boring results and the estimated boundary is shown on Figure 5. Review of the Tube Forgings UST file shows that a bunker C release occurred near the McCall property boundary with Tube Forgings. The shape and location of the LNAPL plume on McCall property, shown on Figure 5, implies that the plume extends onto the Tube Forgings property. The forensic evidence, LNAPL location, and geometry all indicate that the LNAPL is sourced from the bunker C release on Tube Forgings property.

At well MW-8, petroleum hydrocarbons were logged in sand at a depth of 30 feet below ground surface (bgs) when the well was being installed, but LNAPL has not been detected during subsequent sampling of the well. This well is adjacent to the marine terminal above-ground tank farm, so the tank farm is a potential source for the hydrocarbons detected in well MW-8. There is no record of a specific release that occurred in the northwest corner of the tank farm. However, there is a surface depression in this corner of the tank farm, several feet below the surrounding grade; the depression has been observed to pool runoff water, which could subsequently infiltrate beneath the berm of the tank farm. Documented releases in the marine terminal tank farm were identified on Table 1.

Time trends of total TPH concentrations in groundwater have been plotted for the monitoring wells and are located in Appendix A. For the oldest wells, the TPH data go back as far as 1994. These plots do not show any discernible trends (either downward or upward) in TPH groundwater concentrations over time. For most of the wells the total TPH concentrations vary within the range of 0.1 to 1 mg/l. For the newer wells, such as MW-8, the period of record is too short to draw any significant conclusions.

PAHs

The data on Table 7 shows that PAHs have been detected in all site monitoring wells. The PAHs are components of the petroleum hydrocarbons in groundwater described in the previous section. Table 7 shows that the LPAH and HPAH compounds have been

individually quantified for this investigation. The table also shows the total LPAHs and HPAHs concentrations for each well at each monitoring event.

The PAH concentrations in groundwater are generally at the trace level or extremely low, with total LPAH and HPAH concentrations less than 1 μ g/L at all wells except MW-6, 8, 9, and 11. The highest concentrations of PAHs are in wells MW-8 and MW-11, which is consistent with the elevated petroleum hydrocarbon detections in those wells.

Maximum and average benzo(a)pyrene (BAP) concentrations in groundwater are displayed next to the site wells on Figure 11. Benzo(a)pyrene has not been detected in all monitoring wells. The concentrations in Figure 11 are further discussed in the groundwater risk screen analysis in Section 7. For those locations where BAP was not detected, a concentration equal to one half of the method detection limit is shown as the average concentration.

Time trend plots of total LPAH and HPAH concentrations are in Appendix A.

Concentrations of the LPAHs and HPAHs seemed to generally increase between the

October 2001 and March 2002 events, but there was no general concentration trend from

March 2002 to February 2004.

SVOCs

Four SVOCs are COIs for this Site, 3- and 4-methylphenol (co-elution), dibenzofuran, butyl benzyl phthalate, and di-n-octyl phthalate. The SVOC groundwater quality data are on Table 7.

Trace concentrations of 3-and 4-methylphenol were detected in wells EX-2, EX-3, EX-5, and MW-6. Wells MW-8 and MW-12 had concentrations between 1 and 2 μ g/L and well MW-13 had a concentration of 28 μ g/L. That concentration at MW-13 was measured in the first sample obtained following installation of well MW-13. The concentrations were 1.5 and 0.4 μ g/L for the later March and October 2002 samples, so the 28 μ g/L concentration is not considered representative.

Trace concentrations of dibenzofuran were detected in MW-8, MW-11, and MW-13.

Trace concentrations of butyl benzyl phthalate were detected in wells EX-7, MW-1, MW-5, MW-8, MW-9, and MW-10. There were no detections of di-n-octyl phthalate in groundwater.

VOCs

Table 8 shows all of the VOC groundwater quality data obtained at the site since 1994.

Two areas of chlorinated solvent groundwater contamination are shown on Figure 12. The average and maximum concentrations of representative VOC compounds are displayed at each Figure 12 well location. Those compounds are further discussed as part of the risk screen analysis presented in Section 7.

The largest area of contamination represents a plume that originates near well EX-1 in the former solvent drumming area and extends downgradient to wells MW-7 and MW-8 near the river. The plume trend and geometry is consistent with a source area near EX-1 and a northerly groundwater flow direction. The location of the plume boundary is estimated from the groundwater quality data from the monitoring wells and GeoProbe groundwater grab samples. The GeoProbe data are also in Table 8. The VOC compounds and concentrations that occur in the downgradient wells near the river are consistent with the degradation products that would be expected from breakdown of the VOC compounds in wells EX-1 and MW-6.

The second area of contamination includes monitoring wells MW-1, 2, 3, 4, and 10. This area of contamination may be a plume that has developed from a single source, or it may represent commingled plumes from multiple sources. The combination of VOC compounds at each well, their concentration, and the well locations suggest that more than one source, including an off-site source, may be involved. The VOCs at MW-10 may be sourced from offsite because MW-10 is located upgradient of any known on-site source areas. PCE has not been detected at well MW-10, but is present in wells MW-1 and MW-2, suggesting that the contamination at MW-10 is from a different source. The concentrations and types of VOC compounds at MW-3 and MW-4 suggest that they are degradation products of the VOCs that are found in wells MW-1 and MW-2.

BTEX compounds were also detected at very low concentrations in well MW-11. Other than a few trace level detections of toluene at monitoring wells EX-3, MW-1, MW-7, and MW-12, this monitoring well is the only one on site with detections of BTEX compounds, another indication that the LNAPL at this location is sourced from off site.

Metals

Monitoring wells MW-1, 2, 3, 4, and 5 were installed in 1993 as part of the 1993 cleanup of the former CCA formulation facility that operated from 1984 to 1986 at the Chemax portion of the former Great Western Chemical Corporation. That cleanup was reported in the *Great Western Chemical Company, Technical Center Facility, 5700 NW Front Avenue, Portland, Oregon Soil Cleanup and Groundwater Monitoring Report,* prepared for Great Western Chemical Company, March 31, 1994, by EMCON Northwest, Inc. That report was also provided to DEQ as Appendix L to the Preliminary Assessment of McCall Oil and Chemical Company and Great Western Chemical Company, NW Front Avenue Properties, Portland, Oregon, ECSI ID #134, Volume 3, by EMCON Northwest, Inc., April 5, 1994.

For the first three groundwater RI sampling events, monitoring wells MW-1, 2, 3, 4, 6, 7, and 8 were tested for arsenic, chromium, and copper to determine the extent and concentration of residual CCA components remaining in groundwater near the former CCA facility. The metals data are on Table 9. Both total and dissolved metals concentrations were measured. All of the wells tested had detections of all three CCA compounds in total and dissolved forms. This is expected, since these metals naturally occur in shallow groundwater in Western Oregon (U.S. Geological Survey 1999). Well MW-1 had the highest average dissolved copper concentration of 280 μ g/L. However, downgradient wells MW-4 and MW-7 had average dissolved copper concentrations of 0.8 and 1.0 μ g/L, respectively. MW-1 also had the highest average dissolved total chromium concentration of 3.93 μ g/L. Well MW-3 had the highest average dissolved arsenic concentration of 43.9 μ g/L. Downgradient well MW-4 had an average dissolved arsenic concentration of 13.1 μ g/L.

For the fourth groundwater monitoring event (February, 2004) DEQ requested that additional wells be tested for arsenic to help determine arsenic background concentrations. For that sampling round groundwater from the following additional wells was tested for total and dissolved arsenic: EX-1, EX-2, EX-3, EX-7, MW-5, MW-9, 10, 12, 14, and 15.

6.1.3 Stormwater and Catch Basin Sediment Quality

The stormwater quality and sediment quality data are summarized in the following tables. Detections are highlighted on the tables.

- Stormwater total petroleum hydrocarbons Table 6
- Stormwater PAHs and SVOCs Table 7
- Stormwater metals Table 9
- Catch basin sediment total petroleum hydrocarbons Table 10
- Catch basin sediment PAHs and SVOCs Table 11
- Catch basin sediment metals Table 12

The stormwater TPH data on Table 6 are somewhat inconsistent, with 1.1 mg/l gasoline detected at catch basin S-1 from the December 2000 sampling event, but no other hydrocarbons detected in S-1 in the December 2000 or March 2002 events. Gasoline was also detected at 0.13 mg/l at catch basin S-2 in the March 2002 sample, but no other hydrocarbons were detected in S-2 at that event or the December 2000 event. Gasoline and diesel were detected at outfall S-3 at 1.30 and 0.510 mg/l respectively in the 2000 event, but only diesel was detected in S-3 at 0.110 mg/l in the 2002 event. Gasoline and diesel were detected at outfall S-4 for both events; with concentrations ranging from 0.220 to 0.270 mg/l gasoline and from 0.280 to 1.30 mg/l diesel. Heavy fuel range hydrocarbons were detected at a concentration of 0.550 mg/l at S-4 in the April 2002 sample. The 10 mg/l oil and grease NPDES limit for the Quadra Chemical and McCall Oil stormwater permits were not exceeded at any of the sample points.

Very low concentrations of PAHs were detected in all of the stormwater samples tested from all four sample stations (Table 7). Very low concentrations of the SVOC target analytes 3-and 4-methylphenol, dibenzofuran, and butyl benzyl phthalate were also

detected in the stormwater samples from all four sample stations. Di-n-octyl phthalate was not detected in any of the stormwater samples.

The target analyte metals were detected in all of the stormwater samples tested (Table 9). The NPDES stormwater permit limits for copper (0.1 mg/l), lead (0.4 mg/l), and zinc (0.6 mg/l) were not exceeded in any of the samples.

Gasoline, diesel, and heavy fuel oil range hydrocarbons were detected in the sediment samples obtained from catch basins S-1, 2, and 3 (Table 10). A sediment sample was not obtained for testing from station S-4, since the oil/water separator is designed to capture stormwater sediment and prevent sediment release to the river. A trace detection of heavy fuel oil range hydrocarbons was detected in the river sediment sample S3-01C.

PAHs were detected in the sediment samples obtained from stations S-1, 2, 3, and S3-01C (Table 11). All of the target SVOCs except di-n-octyl phthalate were detected in the sediment samples from catch basins S-1, 2, and 3. A trace concentration of di-n-octyl phthalate was detected in the river sediment sample from station S3-01C.

All target metal analytes were detected in the three catch basin sediment samples S-1, 2, and 3, and in the river sediment sample, S3-01C.

6.2 Front Avenue, LLP

6.2.1 Groundwater

As described in Section 6.1.2, bunker C NAPL has been mapped at Site monitoring well 11, adjacent to the Tube Forgings LLP facility. There was a historic release of bunker C from an UST on the Tube Forgings property, and the NAPL is believed to be sourced from that release. The NAPL boundaries were determined using Geoprobe borings during the RI. The boring locations and NAPL boundary are on Figure 5. The borings were also used to determine if the NAPL is migrating along potential utility backfill pathways, and no NAPL was detected outside of the plume boundaries shown on Figure 5. The bunker C NAPL is about 700 feet from the river shoreline, does not appear to be migrating, and is not believed to be a threat to the river.

6.2.2 Stormwater

There are three private stormwater outfalls on the shoreline near the boundary of Front Avenue LLP property and McCall property. These outfalls apparently receive stormwater from the three properties currently owned by Front Avenue LLP, including Glacier Northwest, Tube Forgings, and CMI Northwest. All three of these private outfalls are just upstream from LWG sediment sample location G413, as shown on Figure 6.

6.3 Willbridge Groundwater

As described in Section 4.1.3, petroleum NAPL has been discharging along groundwater and utility backfill pathways into the river near the Willbridge terminal docks since the 1970s. Conoco/Phillips and other Willbridge owners have been conducting free product recovery operations along the shoreline, particularly near City stormwater outfall 22, as shown on Figures 4 and 6.

6.4 City Portland Stormwater

As shown on Figure 6, the City of Portland operates regional stormwater outfall 22 located just downstream of the McCall/Unocal property line.

7 MCCALL RISK SCREENING EVALUATION

A risk screening evaluation has been performed as part of the Site upland RI. Of particular focus in this report are the potential for direct effects to aquatic organisms in the Willamette River, and the potential for bioaccumulative effects to humans and upper-level wildlife species that consume fish and shellfish from the river. The Site RI also included a risk screening evaluation of soil and groundwater data to identify potential concerns to upland site workers via soil and groundwater contact, inhalation of dust and volatiles, and related upland exposure pathways. Because the risk screening evaluation to upland Site workers is not relevant to river beneficial uses, it is not included in this report.

7.1 Groundwater Screen

Shoreline monitoring wells at the McCall site were screened against surface water quality criteria for protection of aquatic life in the Willamette River. Shoreline monitoring wells include EX-2, EX-3, EX-5, MW-5, MW-7, MW-8, and MW-14. These wells were sampled during several groundwater monitoring events between December 2000 and October 2004.

The quality of shoreline groundwater was screened against ambient water quality criteria for protection of aquatic life in the Willamette River, including the chronic water quality criteria presented in the Portland Harbor Joint Source Control Strategy (JSCS) augmented with updated criteria where appropriate (i.e., EPA 2003). In particular, the following screening levels were used to assess potential impacts to the Willamette River from groundwater discharges at the McCall site (see Table 13):

- Chronic Water Quality Criteria per JSCS. Chronic metals criteria are derived from EPA 2004 National Recommended Water Quality Criteria, adjusted to a hardness value of 25 mg/l and expressed on a dissolved basis. Criteria for two PAHs (naphthalene and acenaphthene) two phthalates (butyl benzyl phthalate and dinoctyl phthalate), and two VOCs (trichloroethene and tetrachloroethene) are from DEQ 2004 ambient water quality criteria, and the Tier II secondary chronic value for dibenzofuran is from Oak Ridge National Laboratory (Suter and Tsao 1996).
- Final Chronic Values for PAHs are from EPA 2003. The most recent and comprehensive ambient water quality criteria for PAHs were developed by EPA for the ultimate purpose of developing sediment benchmarks using the equilibrium

partitioning approach. Final chronic values for all PAH constituents are provided in Table 3-4 of EPA 2003.

Following is a summary of the groundwater screening evaluation.

- PAHs. All PAHs are below their respective chronic water quality criteria in shoreline groundwater at the McCall site.
- Miscellaneous SVOCs. The miscellaneous SVOCs listed as COIs at the McCall site
 are all below their respective chronic water quality criteria in shoreline monitoring
 wells.
- VOCs. All VOCs are below their respective chronic water quality criteria in shoreline groundwater at the McCall site, for those constituents for which water quality criteria are available (i.e., TCE and PCE). In fact, TCE and PCE were not detected in any of the shoreline monitoring wells at the Site.
- Metals. All dissolved metals concentrations are below their respective chronic water quality criteria in shoreline groundwater at the Site.

In summary, none of the constituents of concern in shoreline monitoring wells at the Site were above the chronic water quality criteria in any of the monitoring events. Therefore, groundwater discharges from the Site are expected to cause no direct toxicity to aquatic life in the Willamette River.

7.2 Stormwater Screen

Stormwater quality at the Site was sampled at four locations (S-1 through S-4) covering the various operational areas of the Site between December 2000 and April 2005 (see Table 14).

Stormwater quality was screened against ambient water quality criteria, including the chronic water quality criteria as recommended in the JSCS and presented in Section 7.1 above. Although EPA guidance states it is generally inappropriate to use chronic criteria to evaluate stormwater quality, due to the variable and intermittent nature of stormwater discharges that violate the basis of exposure for these criteria (i.e., continuous 4-day average exposure concentrations are not realized in stormwater discharges) (EPA 1996), chronic criteria are nevertheless used in our screening evaluation to be consistent with the JSCS and

to provide an ultra-conservative, albeit unrealistic, assessment of stormwater quality at the McCall site.

This screening evaluation also considers naturally occurring background concentrations in the Lower Columbia River basin and ambient concentrations of contaminants in urban runoff from the Portland metropolitan area. Specifically, the following criteria were included in the stormwater screening evaluation (see Table 14):

- Background Values for Metals in Lower Columbia River Basin. Because of the typically low hardness in Willamette River water (i.e., 25 mg/l), hardness-based water quality criteria for several metals (copper, cadmium, lead, and zinc) are below naturally occurring background concentrations. Regional background concentrations for metals in the Lower Columbia River Basin were determined by the USGS (Fuhrer et al. 1996) and subsequently acknowledged in DEQ guidance (DEQ 2002).
- Portland Ambient Urban Runoff Concentrations. Metals and PAHs are common contaminants in urban runoff. For comparison purposes, mean concentrations of these constituents were calculated for the Portland metropolitan area using the City of Portland Bureau of Environmental Services database (dated January 30, 2004). Mean metals concentrations were calculated using monitoring data from a variety of urban land uses (i.e., residential, commercial, industrial, and transportation corridors) between 1991 and 2003. PAH data in the BES database are sparse. Mean PAH concentrations were calculated from stormwater influent to infiltration sumps sampled for the Underground Injection Control program. The City of Portland used a higher detection limit (0.1 µg/L) compared to the McCall data (0.01 µg/L), so several of the PAH constituents in the municipal data set are "censored" and mean concentrations could only be calculated for those constituents that had detected concentrations.
- NPDES Stormwater Permit Limits. McCall's stormwater discharges are currently regulated under the DEQ 1200-Z industrial stormwater permit. This permit contains water quality benchmarks for total copper, lead, and zinc.

Following is a summary of the stormwater screening evaluation.

- PAHs. All PAHs are below their respective chronic water quality criteria in stormwater at the McCall site, often one or more orders of magnitude below these criteria. In addition, the mean concentration of PAHs in McCall stormwater is similar to, if not better than, typical urban runoff in the Portland metropolitan area, including runoff not only from other industrial sites but also from lower impact land uses.
- Miscellaneous (SVOCs. The miscellaneous SVOCs listed as COIs at the McCall site
 are all below their respective chronic water quality criteria in stormwater at the Site,
 often one or more orders of magnitude below these criteria.
- Metals. Arsenic and chromium, two of the key metals of potential concern at the Site, are well below their respective chronic water quality criteria in stormwater. In a majority of cases, copper (six out of 10 samples), cadmium (three out of four samples), and lead (three out of four samples) are at or below natural background concentrations. In all cases, total copper, cadmium, lead, and zinc are lower than the mean concentrations in ambient urban runoff from the Portland metropolitan area. Copper, lead, and zinc concentrations are also well below the NPDES stormwater benchmarks for the site.

In summary, concentrations of PAHs, SVOCs, arsenic, and chromium are well below their respective chronic water quality criteria in all stormwater samples from the Site. Total copper, cadmium, and lead concentrations are near or below naturally occurring background values in a majority of samples. Zinc concentrations, although higher than background, are nevertheless lower than the mean zinc concentration in ambient urban runoff from the Portland metropolitan area, and well below the NPDES stormwater benchmark. Therefore, stormwater discharges from the Site are expected to cause negligible, if any, effects on aquatic life in the Willamette River, especially when due consideration is given to the intermittent and variable nature of stormwater discharges as well as mixing and dilution processes in the receiving water.

7.3 Bioaccumulation Screen

A key pathway of interest for the risk assessment in the Portland Harbor is the potential bioaccumulation of contaminants in fish and shellfish and subsequent risks posed to upper-level organisms such as humans that eat fish from the harbor, piscivorous birds and

mammals, and risks to the fish themselves resulting from the body burden of contaminants in their tissues. It is well recognized in agency guidance that the assessment of bioaccumulation pathways must take into account appropriate scales of exposure in time and space (EPA 1991; EPA 2006).

Bioaccumulation exposures are averaged temporally over the lifetime of the fish being exposed to contaminants in the river, as well as the lifetimes of the human and wildlife receptors that are consuming fish from the river. Bioaccumulation exposures are also averaged spatially over the home range of the fish and the harvesting area of the receptors. For these reasons, application of bioaccumulation criteria at a specific point in space and/or a point in time, without consideration of these exposure scales, is inappropriate. Rather, the assessment must account for the cumulative effects of all contaminant inputs to the conditions in the receiving water body over the spatial and temporal scales of interest.

As a result, our assessment of the potential for stormwater and groundwater discharges from the McCall site to contribute substantively to bioaccumulation risk in the river is based on a comparison of average COI concentrations and flows at the site relative to other sources of contaminant loadings in and around the harbor, consistent with the key components of the "weight of evidence" evaluation described in the JSCS. In addition to average groundwater and stormwater COI concentrations from the McCall site, COI concentrations and flows are provided for municipal stormwater runoff and ambient upstream sources. Although stormwater and ambient upstream sources are expected to contribute a relatively large portion of metals and PAH loads, other industrial sources in and around the Portland Harbor may also be significant and should be incorporated as they become available. Concentration and flow data for these sources are summarized in Table 15.

Key inputs to the bioaccumulation assessment are described below:

McCall Stormwater Runoff Volume. The McCall site covers 36 acres and includes
roughly equal portions of pavement and gravel surfaces. A lumped runoff
coefficient of 0.75 would therefore be appropriate for this site with an annual
incident rainfall of 37 inches in the Portland area.

- McCall Groundwater Discharge Volume. The mean groundwater gradient in the
 shoreline area of the McCall site is 0.025 (range from 0.01 to 0.05) and the geometric
 mean hydraulic conductivity is 0.013 feet/minute (range from 0.003 to 0.16
 feet/minute). The length of the shoreline is approximately 1,500 feet and the
 saturated thickness of the shallow water-bearing zone (i.e., in the fill sands overlying
 native alluvium) is approximately 10 feet.
- Portland Municipal Stormwater Runoff Volume. The City of Portland estimates 44,000 acres drains directly to the Willamette River in the metropolitan area, not including the tributary inputs from Johnson, Tryon, or Fanno Creeks, or the Columbia Slough (City of Portland 2004). An estimated 40 percent of this urban watershed (i.e., 17,600 acres) is covered by impervious surfaces. Our estimate of municipal stormwater runoff is based on the impervious surfaces only with an assumed runoff coefficient of 0.75.
- Mean Annual Willamette River Discharge. The mean annual discharge in the
 Willamette River from 1973 to the present is about 33,000 cfs, according to the U.S.
 Geological Survey (USGS) Portland gage #14211720
 (http://waterdata.usgs.gov/nwis).
- Stormwater, Groundwater, and River Concentrations. Mean groundwater and stormwater concentrations at the Site are presented in Tables 13 and 14, respectively. Mean concentrations in Portland municipal stormwater from a variety of land uses (residential, commercial, industrial, and transportation) were calculated from the BES stormwater database (dated January 30, 2004). Ambient background concentrations of metals in the Lower Columbia River Basin are from the USGS (Fuhrer et al. 1996).

The results of the bioaccumulation assessment are described below.

Metals. Naturally occurring volcanic soils in western Oregon contribute significant
quantities of background metals to the Willamette River via erosion and runoff
which are transported to the Portland Harbor at the base of the watershed. In
addition, significant quantities of metals are conveyed in urban runoff from vehicle
wear and exhaust, dry deposition on impervious surfaces, and various other urban
sources. By comparison, the loadings from the Site are insignificant.

PAHs. Significant quantities of PAHs are conveyed in urban runoff from vehicle
exhaust, oil pan drippings, petroleum handling and spills in the drainages,
deposition of particulate air pollutants, and various other urban sources. By
comparison, the loadings from the Site are insignificant. Moreover, this does not
account for other sources of PAHs to the harbor, in particular natural sources (e.g.,
forest fires, erosion of coal deposits), direct inputs from vessel traffic and marinas,
combined sewer overflows, and discharges from other less-controlled industrial
sites.

In summary, the total loadings of metals and PAHs from stormwater and groundwater at the Site would be negligible compared to other sources in and around the harbor, and thus McCall discharges provide an insignificant contribution to bioaccumulation risk in the Willamette River.

8 REFERENCES

- Anchor Environmental, L.L.C. July 2004. Remedial Investigation Report. Prepared for McCall Oil and Chemical.
- Anchor Environmental, L.L.C. July 2002. Status Report. Prepared for McCall Oil and Chemical.
- City of Portland. January 2004. Database transmittal from Frank Wildensee at the Bureau of Environmental Services.
- EMCON Northwest, Inc. April 1994. Preliminary Assessment of McCall Oil and Chemical Corporation and Great Western Chemical Company, NW Front Avenue Properties.
- EMCON Northwest, Inc. April 1994. Preliminary Assessment of McCall Oil and Chemical Company and Great Western Chemical Company, NW Front Avenue Properties, Portland, Oregon, ECSI ID #134, Volume 3.
- EMCON Northwest, Inc. March 1994. Great Western Chemical Company, Technical Center Facility, 5700 NW Front Avenue, Portland, Oregon Soil Cleanup and Groundwater Monitoring Report. Prepared for Great Western Chemical Company.
- Fuhrer, G. et al. 1996. Water Quality of the Lower Columbia River Basin: Analysis of Current and Historical Water-Quality Data through 1994.
- Integral Consulting Inc. July 2005. Portland Harbor RI/FS Round 2A Sediment Site Characterization Summary Report, Map Folio. Prepared for The Lower Willamette Group.
- Integral Consulting Inc. July 2005. Portland Harbor RI/FS Round 2A Sediment Site Characterization Summary Report, Volume I: Text, Figures, and Tables. Prepared for The Lower Willamette Group.
- IT Corporation. April 2001. McCall Oil and Chemical Corporation Focused Remedial Investigation Interim Status Report. Prepared for McCall Oil and Chemical Corporation.
- IT Corporation. November 2000. McCall Oil and Chemical Corporation Focused Remedial Investigation Workplan. Prepared for McCall Oil and Chemical Corporation.
- IT Corporation. June 2000. McCall Oil and Chemical Corporation Remedial Investigation Proposal. Prepared for McCall Oil and Chemical Corporation.

- MacDonald, D. et al. 2000. "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems." Archives of Environmental Contamination and Toxicology 39:20-31.
- Maul Foster and Alongi, Inc. November 2004. Groundwater Investigation Report, Front Avenue LP Site. Prepared for Front Avenue Corporation.
- Oregon DEQ and U.S. EPA. December 2005. Portland Harbor Joint Source Control Strategy.
- Oregon DEQ. September 2003. Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites.
- Oregon DEQ. October 2002. Memo from Toxicology Workgroup to DEQ Cleanup Project Managers. Subject: Default background concentrations for metals.
- Safe Research, Inc. January 1994. Site History Research Report.
- Suter, G., Tsao, C., Oak Ridge National Laboratory. June 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for the U.S. Department of Energy.
- United States Geological Survey. Natural Water Information System. http://waterdata.usgs.gov/nwis.Accessed_July_2006.
- United States Geological Survey. 1999. Arsenic in Ground Water of the Willamette Basin, Oregon, Water-Resources Investigations Report 98-4205.
- U.S. Army Corps of Engineers, U.S. EPA, et al. November 1998. Dredged Material Evaluation Framework, Lower Columbia River Management Area.
- U.S. EPA. May 2006. Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment.
- U.S. EPA. 2004. National Recommended Water Quality Criteria.
- U.S. EPA. November 2003. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures.
- U.S. EPA. September 1996. Interim Permitting Approach for Water Quality-Based Effluent Limitations in Storm Water Permits.
- U.S. EPA. March 1991. Technical Support Document for Water Quality-based Toxics Control.

- Washington Department of Ecology. September 2003. Phase II Report: Development and Recommendation of SQVs for Freshwater Sediments in Washington State. Prepared by Avocet Consulting.
- Washington Department of Ecology. October 1994. Natural Background Soil Metals Concentrations in Washington State, #94-115.
- Weston, U.S. EPA. May 1998. Portland Harbor Sediment Investigation Report.
- Windward Environmental LLC. March 2006. Portland Harbor Superfund Site Ecological Risk Assessment: Interpretive Report: Estimating Risks to Benthic Organisms Using Predictive Models Based on Sediment Toxicity Tests. Prepared for the Lower Willamette Group.

Table 1

McCall Oil & Chemical Corporation

Summary of Historical Spill Releases – McCall

Spill No.	Dates	Material Released	Location					
1	1955-80	Medium cure (MC) products (containing kerosene distillates); Rapid cure (RC) products (containing petroleum naphthalene); stove oil; all used to manufacture asphalt cold-patch.	Douglas Asphalt Plant	Approximately 4 or 5 spill incidents involving 4,000 to 10,000 gallons per incident occurred in this area prior to the construction of the lube oil tank farm in 1982. Typically, the spilled product was recovered to the extent practicable, and the waste materials would be collected in 55-gallon metal drums and sent to St. John's Landfill.				
2	Mid-1960's	MC-250; MC-products contain kerosene distillates; MC-250 is 25% stove oil and 75% paving-grade asphalt.	Douglas Asphalt Plant	Operator error during the routine transfer of MC-250 resulted in the release of approximately 8,000 to 10,000 gallons of MC-250 into the aboveground storage tank containment area at the Douglas MC plant. The MC-250 remained a homogeneous mixture as it quickly cooled and hardened. The usable material was recovered using jackhammers and shovels. Unusable spilled material was sent to the St. John's Landfill.				
3	Mid-1970's	Oil and water	Marine Terminal Slop Tank	The slop tank valve was inadvertently left open and an unknown quantity of oil and water was released into the Willamette River.				
4	1982	Lube oil	McCall Lube Oil Plant	The lube oil plant was constructed in 1982. During construction, a lube oil spill occurred resulting in the release of an unknown quantity of lube oil into the aboveground storage tank area. Lube oil was recovered to the extent practical using a vacuum truck.				
5	1955-80	Re-refined oil	Marine Terminal Tanks 10 and 7	The re-refined oil line between tanks 7 and 10 in the McCall Terminal leaked as a hose was disconnected from a product-transfer truck, resulting in the release of a small quantity (<25 gallons) of oil onto the surrounding soil. All visibly stained soil was excavated and disposed in an off-site landfill. The oil was nearly solid at ambient temperature.				

Table 1

McCall Oil & Chemical Corporation

Summary of Historical Spill Releases – McCall

Spill No.	Dates	Material Released	Location	
6	Mid-1970's	Asphait	Marine Dock	
7	Early-1980's	Bunker Fuel	Marine Terminal Tank 6	The bunker fuel tank (Tank 6) at the McCall Terminal was overfilled, resulting in the release of approximately 100 gallons of bunker fuel onto the surrounding soil. The spill was immediately cleaned up and all visibly stained soil was excavated and disposed at Hillsboro landfill.
8	1984	Bunker Fuel (#6 fuel oil, marine fuel or industrial fuel oil)	Asphalt Plant Tank 20	Approximately 800 barrels of bunker fuel was released at the McCall asphalt plant due to a tank manhole cover left open during tank filling operations. The Oregon DEQ was notified and cleanup operation were conducted by Environmental Pacific.
9	1985	Caustic soda	Asphalt Plant	Tanker truck at the former loading rack (currently the asphalt loading rack) contained caustic soda. Tanker truck overfill resulted in the release of approximately 60 gallons of caustic soda.
10	1989	Oil and water	Marine Terminal Slop Tank	The contents of the slop tank overflowed and an unknown quantity of oil and water was released onto the ground. Visibly impacted soils were removed immediately following the incident.
11	1989	Asphalt	Asphalt Plant Tank 24	Approximately 200 gallons of asphalt were inadvertently released from Tank 24. The spilled asphalt was collected using jackhammers and shovels and disposed of at an off-site landfill. Cleanup conducted by NW Field Services.
12	Unknown	Asphalt flux	Flintkote	Small shipments (i.e., 1-2 truckloads) of asphalt flux overfilled on several occasions. The quantity is estimated to be small, but occurred periodically. The material was cleaned up following each incident.
13	1991	Asphalt	Marine Dock	A hose barge burst during asphalt loading operations at the new marine dock resulting in the release of an unknown quantity of asphalt into the river.

Table 1

McCall Oil & Chemical Corporation
Summary of Historical Spill Releases – McCall

Spill No.	Dates	Material Released	Location					
14	1983	Water and emulsified asphalt	Marine Terminal	Emulsified asphalt was sprayed onto the soil berm surrounding the aboveground storage tank farm at the McCall Oil terminal to prevent berm erosion. Following the application of asphalt, rain ensued prior to the asphalt hardening, resulting in storm water discharge containing trace amounts of asphalt.				
15	1991	Bunker Fuel	Asphalt Plant Railcar Loading Area	A railcar tank bleeder-valve handle was inadvertently opened during product transfer operations and approximately 20 gallons of bunker fuel was released onto the surrounding soil during a period of heavy rainfall. Absorbent pads were immediately placed on the standing water and soil impacted with bunker fuel. No subsequent soil excavation was required.				
16	1975-82	Oil and Water	Marine Terminal Slop Tank	Two separate spills of diesel fuel from slop Tank 12 occurred during this period. Approximately 50 gallons of oil and water were released during each incident. While skimming the oil water separator, the operator left the skimmer unattended and overfilled a tank.				
17	10/13/98	Diesel Fuel	Oil Water Separator	Oil and water Spill OERS No. 98-2471. Temporary blockage of outlet for new separator resulted in light sheen on river. Estimate less than 2 gallons of diesel.				
18	11/19/99	Bunker Fuel	Rail tank car	Rail tank car overflow during offloading. Foss Environmental removed 11 drums soil and ballast. Estimated 85 gallons released.				

Table 1

McCall Oil & Chemical Corporation

Summary of Historical Spill Releases – McCall

Spill No.	Dates	Material Released	Location	
19	7/16/95	RFO Bunker Blend	Marine Terminal	A flange gasket cracked and split, allowing oil to seep by it under the pressure of the positive displacement pump. Estimated 50 gallons released and recovered.
20	1/12/90	Reclaimer motor oil	Lube tank farm area	A camlock fitting came loose during delivery pump off. Oil absorbent applied immediately. NW Field Services vacuumed standing oil, dug out oil, stained fill/absorbent. Estimated 200 gallons spilled onto area paved with asphalt and recovered.
21	8/10/90	Asphalt Mix Oil	Asphalt Plant/NW Front Avenue	Spill occurred as customer truck departed the facility. Product drained into storm drain on Front Avenue in sufficient volume to react with storm water and boil over.
22	10/4/2000	Bunker Fuel	Marine terminal near 10" flow meter	Spill occurred when the casing of a 10" flow meter failed. Pipeline pressure caused 250 to 300 gallons to spray on the ground near meter. Foss Environmental vacuum removed five 55 gallon drums of oil. Approximately 7.5 tons contaminated soil was removed and placed in a drop box for landfill disposal at?

Table 2

Great Western Chemical Corporation
Summary of Historical Spill Releases - GWCC

Number	Dates	Material Released	Location	Description
1	1988 or 1989?	H₂SO₄	On blacktop (drumming area)	A drum of H ₂ SO ₄ split open. Spill was diked and cleaned up with sorbent material.
2	?	CO630 (surfactant)	Railcar loading area	Release during tank car offloading - cleaned up.
3	?	H₂SO₄	Acid tank farm	Valve apparently left open; quantity unknown, but spill contained within bermed area.
4	1987 or 1988?	H ₂ SO ₄	Acid tank farm	Bottom of tank corroded, approximately 20,000 gallons spilled into bermed area. Acid was pumped into trucks and tanks were repaired and raised onto pads.
5	?	Rinsate	Drum rinse area	Rinsate from acid drum rinsing operations occasionally flowed onto unpaved area
6	?	Calgon Cat-Floc	Technical Center railcar loading area	Several incidental spills, cleaned up and put into totes.
7	1990	1,1,9-Triethylamine	Portland Branch railcar loading area	Railcar leaked over the weekend in the loading area. Soil was tested by Hahn & Associates. No further action required. No detections. Amount of spill was below the reportable quantity limit.
8	1984 (?) - 1988	CuSO₄	CUSO ₄ containment structure	Crack in the concrete CuSO ₄ containment structure was discovered during decommissioning activities. Soil was overexcavated beneath the structure and soil and concrete were disposed of off-site at Chemical Waste Management hazardous waste landfill at Arlington, Oregon.
9	1984 (?) - 1989	CCA	CCA process area	A prior release was discovered in 1992 during excavation in the former CCA Process Area. Soil and concrete were excavated and confirmation samples were collected from the excavation. Concrete and soil were disposed of off-site at Chemical Waste Management hazardous waste landfill at Arlington, Oregon. Groundwater monitoring continues.
10	1/21/99	Sodium hydroxide (caustic soda)	Storage yard	Tote bin of caustic soda fell from forklift. Contents released onto asphalt pavement drainage ditch. Spill diked and fully contained; no release to land or water. All materials cleaned up. Estimated 2,000 lbs. of combined material and absorbent material.
11	4/28/93	Diesel Fuel	Parking lot	A distributor was operating a truck and backed over a stake on the RR grade, puncturing the diesel tank. Estimated 30 gallons was spilled onto asphalt-paved parking area. All materials thoroughly cleaned up – no release to land or water.

Table 2

Great Western Chemical Corporation
Summary of Historical Spiil Releases - GWCC

Number	Dates	Material Released	Location	Description				
12	3/26/96	Sulfuric acid Acid loading rack		A driver was filling his tanker truck with no gauges, resulting in an overflow of product. Estimated 150-200 gallons was spilled in contained area. All materials cleaned up – no release to land or water.				
13	6/24/99	Sulfuric acid	GWEM receiving dock	Drum slipped from drum pick, dropping 12-18". Drum split open; 55 gallons of product splashed onto receiving dock. Spill cleaned – no release to environment.				
14	5/19/99	Sulfuric acid	GWEM warehouse	Drum slipped off the drum pick while being lifted causing release of 500 gallons of product onto floor. Spill cleaned – no release to environment.				
15	4/26/00	Sulfuric acid	Tank farm	Contractor dropped pipe onto valve resulting in leakage of product onto graveled area adjacent to the truck scale. Foss Environmental excavated materials and performed confirmation sampling. Estimated release of 70 gallons.				
16	8/5/98	Lacquer thinner	Warehouse	Forklift pierced bottom of drum resulting in release of approximately 25 gallons of product onto warehouse floor. Product was contained and absorbed. No release to the environment.				
17	9/22/98	Sodium hypochlorite	GWEM Warehouse	A tote ruptured while being moved to the trailer. Approximately 220 gallons of product was spilled. Material was contained with absorbent. No release to the environment.				
18	1/7/99	pH water	Storage yard	A hose ruptured during pumpdown of one of the pH pumps. Unknown quantity ran into the asphalt trench. Drainage valves were closed – no material reached the river. Ditch was hosed down, materials were pumped into a tote and returned to remediation tank.				
19	3/1/99	Lubricoat	Tech Center loading bay	Tote overturned causing release of 200 gallons of product onto paved truck area. Sewer hole was covered immediately. Material was absorbed. No release to tank or water.				
20	3/21/96	Naphtha solvent	Rail tank car	A gasket leaked while unloading a railcar. Salvaged product was pumped into recovered drums. Estimated 40 lbs released and recovered.				

Table 3

Groundwater Sampling Rationale

McCall Oil and Chemical Corporation Focused RI Workplan

Potential Source Area	Sampling Locations	Chemical Class Tested ^a	Rationale
McCall Oil & Chemical Corp.	·		,
Diesel rack (marine terminal)	EX-2, GP-20	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of TPH/PAHs
Asphalt rack (asphalt plant)	GP-8	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of TPH/PAHs
Asphalt plant AST tank farm	GP-8, -9, -21,-28, -29, -30, -37	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of TPH/PAHs
•	GP-48, -49, -50	TPH (soil only)	Evaluate extent of TPH detected at GP-9
Railcar loading/unloading facility	GP-6, -7	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs and TPH/PAHs
Marine terminal AST tank farm	GP-15 to GP-20, GP-22, -23, -24, -25, -26, -	VOCs, SVOCs, PAHs, TPH	Document groundwater quality in AST farm and leaving site
	27, -34, -35, -36, EX-2, EX-3, EX-5, MW-8, -		
	13		•
Former Great Western Chemical Co.			
Railcar loading/unloading facility	GP-6, -7	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs and TPH/PAHs
Acid/solvent AST tank farm	EX-1, EX-6, GP-8, GP-9	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs
Drumming shed	EX-1, EX-6, GP-9, -10, -38, -39, MW-6, -7	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs
	GP-41, -42, -43, -44	VOCs	Evaluate vertical extent of contamination
		1	Downgradient of documented source of metals. Source has been
Former CCA production area	EX-4 (MW-2), MW-1, -3, -4, -5	VOCs, SVOCs, PAHs, TPH	removed.
•	GP-11, -12, -13, -14, -15	VOCs, SVOCs, PAHs, TPH, Metals	
,	GP-51, -52, -53	Metals	
Upgradient Off-Site Source Areas	GP-1, -2, -31, EX-7, MW-9, -10, -11, -12	VOCs, SVOCs, PAHs, TPH	Evaluate groundwater quality entering the site from upgradient sources
	GP-3, -4, -5	VOCs, SVOCs, PAHs, TPH, Metals	
	GP-32, -33, -40	VOCs, SVOCs, PAHs, TPH	
	GP-45, -46, -47	ТРН	Evaluate extent of free product
	GP-54 through GP-63	Not Tested	Evaluate extent of free product

NOTE: VOCs = chlorinated VOCs; SVOCs = four semivolatile organic compounds listed in workplan; PAHs = polynuclear aromatic hydrocarbons;

TPH = total petroleum hydrocarbons as diesel and oil; Metals = dissolved arsenic, chromium, and copper.

^a List of chemicals to be tested for each chemical class is shown in QAPP (Appendix B of RI Workplan).

Table 4 **LWG Round 2A Sediment Sample Results** River Miles 7.5 to 8.5 Portland, Oregon

Station ID	Approximate River Mile	Total LPAHs (ug/kg)	Total HPAHs (ug/kg)	Total PAHs (ug/kg)	Arsenic (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Zinc (mg/kg)	Dibenzofuran (ug/kg)	4-Methylphenol (ug/kg)	Butylbenzyl phthalate (ug/kg)	Di-n-octyl phthalate (ug/kg)	Total PCBs (ug/kg)	Bioassay Result ⁽¹⁾
G389	7.50	31	192	223	4.3	36	41	109	1.3	12	3.7 U	3 U	20	
G377	7.55	13	120	133	2.9	23	16	75	0.39	4	2.1 U	1.7 U	0.9	PASS
G374	7.60	33	218	251	4.6	35	41	110	1.2	18	5.5	2.8 U	23	
G389	7.65	1	2	3	1.9	25	16	52	0.28 U	4.4 U	2.3 U	1.8 U	2.7	CM HIT
G381	7.68	87	238	325	4.5	34	42	175	2.8	15	2.9 U	2.3 U	85	
G394	7.73	3,290	1,800	5,090	4.2	39	50	244	52	200 U	130 U	110 U	703	
G401	7.79	674	3,560	4,234	4.5	30	36	140	17	29 U	15 U	40	36	PASS
G404	7.80	225	1,020	1,245	4.2	34	40	120	12	16	2.9 U	15	27	
C532	7.81	256	546	802	5.0	37	54	170	8.5	110	15 U	12 U	141	
G391	7.82 <u>1</u>	41	188	229	4.5	41	46	126	1.9	11	4.4	2.8 U	13	
G399	7.88 S	359	1,900	2,259	5.4	28	32	105	5.5	26	2.5 U	2 U	25	
G403	7.88	69	143	212	3.7	15	16	72	1.1	3.9 U	2 U	1.6 U	2.4	PASS
G407	7.97	51	288	339	3.6	34	38	124	2.4	23	5.6	2.5 U	97	
G410	8.01	29	118	147	4.1	37	41	116	1.2	14	3.8 U	3 U	22	
G413	8.03	13	104	117	2.4	17	28	142	0.52	6	2.1 U	1.7 U	51	PASS
G418	8.11	31	150	181	4.2	40	46	137	1.8	> 200	6.2	3.2 U	14	
G422	8.15	229	419	648	3.8	34	40	205	5.2	38	2.8 U	2.2 U	84	
G423	8.21	22	148	170	4.4	- 35	46	186	1.1	17	3.6 U	2.9 U	49	
G427	8.30	74	240	314	4.1	34	48	160	3.9	21	3.3 U	2.8 U	80	
G431	8.32	490	3,600	4,090	2.9	26	75	167	14	10 U	16	4.2 U	127	
G432	8.33	565	2,550	3,115	3.8	36	81	343	19	25 U	13 U	24	590	
G434	8.35	1,420	7,200	8,620	4.1	28	47	189	11	47	13 U	11 U 🕟	245	
G437	8.40	113	553	688	3.7	27	44	157	4.4	37	2.8 U	2.3 U	56	PASS
G439	8.43	200	1,320	1,520	3.4	34	36	124	7.1	25	12	2.1 U	47	
G436	8.46	19	78	97	8.7	13	13	41	1.5	3.6 U	10	1.5 U	4.3	
edt. Quality G						-								
	FPM/ AET ⁽²⁾	-	-	22,000	23	>224	562	703		390	1,200		220	
.WG 2nd-Low	est FPM/ AET ⁽²⁾			1,270,000	24	>224	562	1,360		>510	>2,800		300	
WDOE 2003 LAET(3)		6,590	31,640	-	31	133	619	683	443	760	386	201	354	
WDOE 2003 2LAET(3)		41,970	120,500		51	133	829	1,080	660	2360	980	256	394	
McDonald	et al PEC ⁽⁴⁾	,	·	22,800	33	111	149	459] -	-	-	_	676	
Harbor-wide	Mean value	25,800	34,500	60,000	4.2	32	54	139	283	78	73	155	216	•
	Median Value	149	832	1,010	3.7	31	39	109	4.4	18	12	38	29	

⁽¹⁾ includes Level 1 results for Chironomus mortality (CM), Chironomus Growth (CG), and Hyalelia Mortality (HM) endpoints

⁽²⁾ Includes lowest and second lowest Level 1 FPM/AET values for Chironomus mortality, Chironomus growth, Chironomus pooled, and Hyalella mortality endpoints; Floating Percentile Method (FPM) values are given highest priority; Apparent Effects Threshold (AET) values used if FPM values are not available Data from Windward et al. 2006 (Draft)

⁽³⁾ Includes lowest and second lowest AET values for *Chironomus* mortality, *Chironomus* growth, and *Hyalella* mortality endpoints; WDOE 2003 (4) Probably Effects Concentration (PEC) from McDonald et al. 2000

Boxed value is the most stringent of the listed sediment quality values

Table 5 LWG Bioassay Testing Results McCall Oil and Chemical

Table 5.1
Results of *Hyalielia azteca* Mortality Test

Bioassay Station ID	Bioassay Type	Bioassay Variab le	Mean survivorship	Mean Percent Mortality
Control	HYA28	Mortality	9.875	1.25
G401	HYA28	Mortality	9.625	3.75
G403	HYA28	Mortality	9.625	3.75
G413	HYA28	Mortality	9.875	1.25

Table 5.2
Results of *Chironomus tentans* Mortality Test

Bioassay Station ID	Bioassay Type	Bioassay Variable	Mean Survivorship	Mean Percent Mortality
Control	CHR10	Mortality	9.500	5.00
G401	CHR10	Mortality	9.375	6.25
G403	CHR10	Mortality	9.125	8.75
G413	CHR10	Mortality	9.375	6.25

Table 5.3
Results of *Chironomus tentans* Growth Test

Bioassay Station ID	Bloassay Type	Bicassay Variable	Mean Growth
Control	CHR10	Growth	1.08
G401	CHR10	Growth	1.01
G403	CHR10	Growth	1.07
G413	CHR10	Growth	1.15

Table 6
TPH in Groundwater and Storm Water
McCall Oil and Chemical

1)	ı			TPH - FIQ			
	Date						
Location	Sampled	Gasoline		Diesel		Heavy Fuel Oi	1
Geoprobe Borings	- Water μg/L (ppb)						
GP-1	12/11/00	100	U	100	U	250	U
GP-2	12/11/00	130	H	100	U	250	U
GP-3	12/11/00	170	H	280	L	250	U
GP-4	12/11/00	2500	H	7100	F	250	U
GP-5	12/11/00	620	H	430	Y	250	U
GP-6	12/14/00	100	U	100	U	250	U
GP-7	12/14/00	100	U	100	U	250	U
GP-8	12/12/00	100	U	100	Y	250	U
GP-9	12/12/00	100	U	130	Y	250	U
GP-10	12/12/00	100	U	100	Y	250	U
GP-11	12/12/00	100	U	130	Y	250	U
GP-12	12/13/00	100	U	130	H	250	U
GP-12 Duplicate	12/13/00	100	U	160	Y	250	U
GP-13	12/12/00	110	Z	260	Y	250	U
GP-14	12/13/00	100	U	100	U	250	U
GP-15	12/13/00	100	U	2800	F	250	U
GP-16	12/13/00	100	U	100	U	250	U
GP-17	12/13/00	100	U	100	U	250	U
GP-18	12/14/00	100	U	100	U	250	U
GP-19	12/14/00	100	U	100	U	250	U
GP-19 Duplicate	12/14/00	100	Ū	100	Ū	250	Ū
GP-20	12/14/00	100	Ü,	550	Y	250	Ū
GP-21	12/12/00	100	Ū	120	Ÿ	250	Ū
GP-22	02/09/01	210	H	1100	F	250	Ū
GP-23	02/09/01	100	Ū	440	H	250	Ū
GP-24	02/09/01	100	Ū	270	H	250	Ū
GP-25	02/09/01	100	Ū	280	Н	250	Ū
GP-26	02/09/01	100	Ū	300	H	250	Ŭ
GP-27	02/12/01	100	Ū	170	H	250	Ū
GP-28	02/12/01	100	Ū	100	Ü	250	Ŭ
GP-29	02/12/01	100	Ü	100	Ŭ	250	Ŭ
GP-30	02/12/01	100	บ	100	Ū	250	Ŭ
GP-30 Duplicate	02/12/01	100	Ū	120	H	250	Ü
GP-31	02/13/01	1800	H	7600	Y	250	Ŭ
GP-32	02/13/01	100	Ū	700	H	250	Ū
GP-33	02/13/01	100	Ŭ	320	Y	250	Ŭ,
GP-34	02/13/01	130	H	2100	Ŷ	250	Ū
GP-35	02/13/01	100	Ü	200	H	250	Ŭ
GP-36	02/13/01	100	Ü	210	Ÿ	250	Ü
GP-37	02/14/01	100	ΰ	100	Û	250	Ū
GP-38	02/14/01	100	Ü	100	Ŭ	250	Ū
GP-38 Duplicate	02/14/01	100	Ü	100	Ü	250	Ü
GP-39	02/14/01	100	Ü	100	Ü	250	Ü
GP-40	02/14/01	100	Ŭ	640	Y	250	Ü
GP-45	11/14/01	> 667		1680	Ū	1680	Ü
GP-46	11/14/01	> 714		38700	-	28000	9
GP-47	11/14/01	> 250		630	U	630	U

Table 6
TPH in Groundwater and Storm Water
McCall Oil and Chemical

				TPH - FIQ			
	Date			1			
Location	Sampled	Gasoline		Diesel		Heavy Fuel Oil	1
Monitoring Wells -							
EX-1	09/08/94	50	Ū	50	U	266	
EX-1 Duplicate	09/08/94	5	U			ŀ	
EX-1	12/30/94	50	U	50	U	632	
EX-1	03/29/95	50	U	50	U	454	
EX-1	07/14/95	50	U	50	U	200	U
EX-1	05/02/97	167	Y	50	U	200	U
EX-1 Duplicate	05/02/97	188	Y	50	U	200	U
EX-1	02/04/99	100	U	100	U	924	
EX-1 Duplicate	02/04/99	100	U	100	U	814	
EX-1	12/20/00	990	Z	100	U	250	U
EX-1	03/07/02	460	H	280	Y	550	0
EX-1	10/03/02	100	U	100	U	250	U
EX-1	02/11/04	500	Z	120	Y	250	U
EX-1 Duplicate	02/11/04	450	Z	120	Y	250	U
EX-1	10/22/04	210	Z	110	H	250	U
EX-2	09/08/94	50	U	50	U	200	
EX-2	12/30/94	50	U	50	U	441	
EX-2	03/29/95	50	U	50	U	398	
EX-2	07/14/95	50	U	50	U	885	
EX-2	05/01/97	50	U	519	Y	200	U
EX-2	02/04/99	10	U	10	U	569	
EX-2	12/20/00	100	U	100	U	250	U
EX-2	03/07/02	110	U	170	Y	270	U
EX-2	10/04/02	100	U	270	Y	290	0
EX-2	02/12/04	100	U	110	Y	250	U
EX-2	10/21/04	100	U	160	Y	250	U
EX-3	09/08/94	50	U	50	U	200	
EX-3 Duplicate	09/08/94	50	U	50	U	200	
EX-3	12/30/94	- 50	U	50	U	474	
EX-3	03/29/95	50	U	50	U	226	
EX-3	07/14/95	50	U	50	U	200	U
EX-3	05/01/97	50	U	64	Y	200	U
EX-3	02/04/99	100	U	100	U	564	
EX-3	12/20/00	690	Z	100	U	250	U
EX-3	03/07/02	110	U	110	Y	270	U
EX-3	10/04/02	100	U	120	Y	250	Ū
EX-3	02/12/04	100	U	100	U	250	Ū
EX-3	10/21/04	100	U	100	U	250	U

Table 6
TPH in Groundwater and Storm Water
McCall Oil and Chemical

				TPH - FIQ			
	Date					T	
Location	Sampled	Gasoline		Diesel		Heavy Fuel Oi	1
EX-4/MW-2	09/08/94	50	U	50	U	200	
EX-4/MW-2	12/30/94	50	U	1000	Ū	3840	
EX-4/MW-2	03/29/95	50	U	2140		200	U
EX-4/MW-2	07/14/95	50	U	343		200	U
EX-4/MW-2 Duplic		50	Ū	50	U	200	U
EX-4/MW-2	05/01/97	50	Ū	1310	Y	200	U
EX-4/MW-2	02/03/99	100	U	787	Y	250	U
EX-4/MW-2	12/20/00	640	Z	100	U	250	U
EX-4/MW-2	03/07/02	160	H	920	Y	290	0
EX-4/MW-2	10/03/02	150	Н	980	Y	250	U
EX-4/MW-2	02/13/04	120	H	920	Y	280	0
EX-4/MW-2	10/22/04	240	H	1700	Y	610	L
		4					
EX-5	12/30/94	50	U	50	U	1400	
EX-5	03/29/95	50	U	50	U	639	
EX-5 Duplicate	03/29/95	50	U	50	U	767	
EX-5	07/14/95	50	U	1500		200	U
EX-5	05/01/97	50	U	50	U	200	U
EX-5 Duplicate	05/01/97	50	U	50	U	200	U
EX-5	02/04/99	100	U	573	Y	250	U
EX-5 Duplicate	02/04/99	100	U	550	Y	250	U
EX-5	12/20/00	950	Z	100	U	250	U
EX-5	03/07/02	100	U	140	Y	250	U
EX-5	10/04/02	100	U	120	Y	270	0
EX-6	12/30/94	50	U	50	U	842	
EX-6 Duplicate	12/30/94	50	U	50	U	851	
EX-6	03/29/95	50	U	50	U	1160	
EX-6	07/14/95	50	U	50	U	200	U
EX-6	05/02/97	50	U	50	U	1450	
EX-6	02/04/99	100	U	1280	Y	250	U
EX-7	12/30/94	50	บ	50	U	200	U
EX-7	03/29/95	50	U	50	U	200	U
EX-7	07/14/95	50	U	50	U	200	U
EX-7	05/02/97	50	U	50	U	200	U
EX-7	02/03/99	100	U	250	. U	250	U
EX-7	12/20/00	530	Z	100	U	250	U
EX-7	03/06/02	100	U	100	U	250	U
EX-7	10/03/02	100	U	100	U	250	U
EX-7	02/13/04	100	U	100	U	250	U
EX-7	10/21/04	100	U	100	U	250	U
EX-7 Duplicate	10/21/04	100	U	100	U	270	0
L		<u> </u>		<u> </u>		<u> </u>	

Table 6
TPH in Groundwater and Storm Water
McCall Oil and Chemical

Date					TPH - FIQ			
MW-1								
MW-1				T1		37		
MW-1 MW-1 03/07/02 100 U 1110 Y 250 MW-1 1003/02 100 U 120 Y 250 MW-1 1003/02 100 U 120 Y 250 MW-1 1002/04 100 U 120 Y 250 MW-1 1002/04 100 U 120 Y 320 MW-1 1002/04 100 U 120 Y 320 MW-1 1002/04 100 U 120 Y 320 MW-1 1002/04 100 U 1270 Y 320 MW-3 MW-3 02/03/99 100 U 1190 Y 250 MW-3 10/20/00 720 Z 100 U 1190 Y 250 MW-3 03/07/02 240 H 1000 Y 390 MW-3 10/03/02 320 H 3000 Y 410 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/02/04 150 H 2000 Y 250 MW-4 10/03/02 100 U 1716 Y 250 MW-4 10/03/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 1312 Y 200 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 100 U 100 U 250 MW-5 05/01/97 50 U 204 Y 250 MW-5 05/01/97 50 U 312 Y 250 MW-5 05/01/97 50 U 310 Y 250 MW-5 05/01/97 50 U 311 Y 250 MW-5 05/01/97 50 U 310 Y 250 MW-5 01/03/02 170 H 1200 Y 250 MW-5 01/03/02 170 H 1200 Y 250 MW-5 01/03/02 100 U 310 Y 250 MW-6 01/03/02 100 U 330 Y 330 W	II .							U
MW-1 03/07/02 100 U 110 Y 250 MW-1 10/03/02 100 U 220 Y 250 MW-1 02/11/04 100 U 120 Y 250 MW-1 10/22/04 100 U 300 Y 320 MW-3 05/01/97 50 U 1430 Y 200 MW-3 02/03/99 100 U 1190 Y 250 MW-3 12/20/00 720 Z 100 U 250 MW-3 10/03/02 240 H 1000 Y 350 MW-3 10/03/02 220 H 1000 Y 390 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/02/04 300 H 2000 Y 250 MW-3 10/02/04 300 H 2000 Y 250 M	11							U U
MW-1 10/03/02 100 U 220 Y 250 MW-1 02/11/04 100 U 120 Y 250 MW-1 10/22/04 100 U 300 Y 320 MW-1 Duplicate 10/22/04 100 U 270 Y 320 MW-3 05/01/97 50 U 1430 Y 200 MW-3 02/03/99 100 U 1190 Y 250 MW-3 12/20/00 720 Z 100 U 1190 Y 250 MW-3 03/07/02 240 H 1000 Y 390 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/02/04 150 H 2400 Y 540 MW-3 10/22/04 150 H 2400 Y	13	l I			ĺ		1	
MW-1 MW-1 10/22/04 100 U 300 Y 320 MW-1 Duplicate 10/22/04 100 U 270 Y 320 MW-3 10/22/04 100 U 270 Y 320 MW-3 10/22/04 100 U 270 Y 320 MW-3 10/22/09 100 U 1190 Y 250 MW-3 10/22/00 720 Z 100 U 250 MW-3 10/30/02 240 H 1000 Y 390 MW-3 10/30/02 220 H 3000 Y 250 MW-3 10/30/02 320 H 3000 Y 250 MW-3 10/30/02 320 H 3000 Y 250 MW-3 10/03/02 320 H 3000 Y 250 MW-3 10/03/02 320 H 3000 Y 250 MW-3 10/22/04 150 H 2400 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 10/20/09 100 U 716 Y 250 MW-4 10/30/02 1100 U 100 U 250 MW-4 10/30/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 312 Y 200 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 391 Y 250 MW-5 05/01/97 00 U 391 Y 250 MW-5 05/01/97 00 U 391 Y 250 MW-5 05/01/97 00 U 390 Y 250 MW-5 00 MW-6 00 U 390 Y 250 MW-6 00 U 390 Y 250 MW-6 00 U 390 Y 250 MW-6 00 U 390 U 390 Y 250 MW-6 00 U 390 Y 390 U 39	13	l I		_				U U
MW-1 10/22/04 100 U 300 Y 320 MW-1 Duplicate 10/22/04 100 U 270 Y 320 MW-3 05/01/97 50 U 1430 Y 200 MW-3 12/20/00 720 Z 100 U 250 MW-3 10/20/02 240 H 1000 Y 390 MW-3 03/07/02 240 H 1000 Y 390 MW-3 10/03/02 320 H 3000 Y 250 MW-3 10/03/02 320 H 3000 Y 250 MW-3 10/22/04 150 H 2400 Y 250 MW-3 10/22/04 150 H 2400 Y 250 MW-3 10/22/04 150 H 2400 Y 250 MW-4 05/01/97 50 U 312 Y 200 <	11	1 1						Ü
MW-1 Duplicate 10/22/04 100 U 270 Y 320 MW-3 05/01/97 50 U 1430 Y 200 MW-3 12/20/00 720 Z 100 U 250 MW-3 Duplicate 03/07/02 240 H 1000 Y 390 MW-3 10/03/02 320 H 1000 Y 410 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/22/04 150 H 2000 Y 520 MW-4 05/01/97 50 U 312 Y 200 MW-4 12/20/00 100 U 716 Y 250	11							L
MW-3 MW-3 02/03/99 100 U 1190 Y 250 MW-3 Duplicate 03/07/02 MW-3 10/03/02 100 02 100 04 1190 Y 250 MW-3 Duplicate 03/07/02 240 H 1000 Y 410 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/22/04 150 H 2400 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 02/03/99 100 U 716 Y 250 MW-4 10/03/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 312 Y 200 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 312 Y 200 MW-5 05/01/97 50 U 312 Y 200 MW-5 05/01/97 50 U 312 Y 200 MW-5 05/01/97 50 U 310 U 320 MW-5 05/01/97 50 U 3310 Y 250 MW-5 03/07/02 100 U 3310 Y 250 MW-5 10/03/02 100 U 3310 Y 250 MW-5 10/03/02 100 U 3310 Y 330 MW-6 02/11/04 100 U 320 Y 330 MW-6 02/11/04 100 U 320 Y 330 MW-6 03/08/02 160 Z 240 Y 330 MW-6 04-6 03/08/02 160 Z 240 Y 350 MW-6 03/08/02 160 Z 240 Y 350 MW-6 04-7 10/25/01 250 U 630 U 330 U 630 MW-6 04-7 10/25/01 00 U 330 U 330 U 630 MW-6 04-7 10/25/01 00 U 330 U 630 U 630 MW-6 02/12/04 100 U 330 U 330 U 630 MW-6 02/12/04 100 U 330 U 330 U 630 MW-6 02/12/04 100 U 330 U 330 U 630 MW-6 02/12/04 100 U 330 U 330 U 630 MW-6 02/12/04 100 U 330 U 330 U 630							b .	
MW-3 02/03/99 100 U 1190 Y 250 MW-3 12/20/00 720 Z 100 U 250 MW-3 Duplicate 03/07/02 240 H 1000 Y 390 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/03/02 320 H 3000 Y 520 MW-3 10/22/04 150 H 2000 Y 250 MW-3 10/22/04 150 H 2000 Y 520 MW-3 10/22/04 150 H 2000 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 02/03/99 100 U 100 U 250 MW-4 10/03/02 180 H 870 Y 350 MW-5 05/01/97 50 U 204 Y 200	MW-1 Duplicate	10/22/04	100	U	2/0	1	320	L
MW-3 12/20/00 720 Z 100 U 250 MW-3 03/07/02 240 H 1000 Y 390 MW-3 03/07/02 220 H 1000 Y 410 MW-3 10/03/02 320 H 3000 Y 520 MW-3 02/11/04 300 H 2000 Y 250 MW-3 10/22/04 150 H 2400 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 05/01/97 50 U 312 Y 200 MW-4 12/20/00 100 U 100 U 250 MW-4 10/03/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5	MW-3	05/01/97			1430			U
MW-3 Duplicate 03/07/02 240 H 1000 Y 390 MW-3 03/07/02 220 H 1000 Y 410 MW-3 10/03/02 320 H 3000 Y 520 MW-3 02/11/04 300 H 2000 Y 250 MW-3 10/22/04 150 H 2400 Y 540 MW-3 10/22/04 150 H 2400 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 02/03/99 100 U 100 U 250 MW-4 10/03/02 170 H 1200 Y 250 MW-4 10/03/02 170 H 1200 Y 250 MW-5 02/03/99 100 U 391 Y 250 MW-5 02/03/99 100 U 391 Y 250	MW-3	02/03/99		U	1190		II.	U
MW-3	MW-3	12/20/00	720		100		B .	U
MW-3 10/03/02 320 H 3000 Y 520 MW-3 02/11/04 300 H 2000 Y 250 MW-3 10/22/04 150 H 2400 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 02/03/99 100 U 100 U 250 MW-4 12/20/00 100 U 100 U 250 MW-4 03/07/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5 05/01/97 50 U 204 Y 200 MW-5 02/03/99 100 U 391 Y 250 MW-5 10/03/02 100 U 310 Y 260 MW-5 </td <td></td> <td>03/07/02</td> <td>240</td> <td></td> <td></td> <td></td> <td></td> <td>0</td>		03/07/02	240					0
MW-3 02/11/04 300 H 2000 Y 250 MW-3 10/22/04 150 H 2400 Y 540 MW-4 05/01/97 50 U 312 Y 200 MW-4 02/03/99 100 U 716 Y 250 MW-4 12/20/00 100 U 100 U 250 MW-4 03/07/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5 02/03/99 100 U 391 Y 250 MW-5 10/03/92 100 U 310 Y 260 MW-5 03/07/02 100 U 310 Y 250 MW-5<	13				1000			0
MW-3	MW-3	10/03/02			3000		1	L
MW-4 05/01/97 50 U 312 Y 200 MW-4 02/03/99 100 U 716 Y 250 MW-4 12/20/00 100 U 100 U 250 MW-4 03/07/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 391 Y 250 MW-5 12/20/00 100 U 391 Y 250 MW-5 10/03/02 100 U 310 Y 260 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 310 Y 250 MW-5 Duplicate 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/03/02 160 Z 240 Y 300 MW-6 10/03/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 10/03/02 100 U 310 Y 350 MW-6 10/03/02 100 U 320 Y 350 MW-6 10/03/02 100 U 280 Y 350 MW-6 10/03/02 100 U 230 Y 270 MW-6 10/03/02 100 U 310 Y 250 MW-6 10/03/02 100 U 310 Y 250 MW-6 10/21/04 100 U 310 Y 250 MW-7 10/25/01 250 U 630 U 630	II .	02/11/04						U
MW-4 02/03/99 100 U 716 Y 250 MW-4 12/20/00 100 U 100 U 250 MW-4 03/07/02 180 H 870 Y 350 MW-5 10/03/02 170 H 1200 Y 250 MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 100 U 250 MW-5 12/20/00 100 U 310 Y 260 MW-5 10/03/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 10/03/02 100 U 310 Y 250 MW-5 10/03/02 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6	MW-3	10/22/04	150	H	2400	Y	540	L
MW-4 02/03/99 100 U 716 Y 250 MW-4 12/20/00 100 U 100 U 250 MW-4 03/07/02 180 H 870 Y 350 MW-5 10/03/02 170 H 1200 Y 250 MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 100 U 250 MW-5 12/20/00 100 U 310 Y 260 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 10/03/02 100 U 310 Y 250 MW-5 10/03/02 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6	MW-4	05/01/97	50	U	312	Y	200	U
MW-4 12/20/00 100 U 100 U 250 MW-4 03/07/02 180 H 870 Y 350 MW-5 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 391 Y 250 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-6 10/25/01 250 U 630 U 630 MW-6 <td>IR I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>250</td> <td>U</td>	IR I						250	U
MW-4 03/07/02 180 H 870 Y 350 MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 100 U 250 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 02/11/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 10/25/01 250 U 630 U 630 MW-6 10/03/02 100 U 280 Y 350 MW-6	LI I	1					Tr Control of the Con	U
MW-4 10/03/02 170 H 1200 Y 250 MW-5 05/01/97 50 U 204 Y 200 MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 100 U 250 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 310 Y 250 MW-5 Duplicate 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/03/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 10/03/02 100 U 290 Y 350 MW-6 10/03/02 100 U 540 Y 330 MW-6 Duplicate 10/03/02 100 U 280 Y 350 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 10/03/02 100 U 280 Y 350 MW-6 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 230 Y 270 MW-6 10/21/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-6 10/21/04 100 U 210 Y 250	11	1 1		Н	870			0
MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 100 U 250 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 10/03/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 130 Y 250 MW-	11		170	H	1200		250	U
MW-5 02/03/99 100 U 391 Y 250 MW-5 12/20/00 100 U 100 U 250 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 10/03/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 130 Y 250 MW-	MW-5	05/01/97	50	IJ	204	Y	200	U
MW-5 12/20/00 100 U 100 U 250 MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 Duplicate 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630								Ū
MW-5 03/07/02 100 U 310 Y 260 MW-5 10/03/02 100 U 280 Y 250 MW-5 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-6 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630							1	Ū
MW-5 10/03/02 100 U 280 Y 250 MW-5 Duplicate 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630								ŏ
MW-5 Duplicate 10/03/02 100 U 310 Y 250 MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 130 Y 250 MW-7 10/25/01 250 U 630 U 630		1					l .	Ū
MW-5 02/11/04 100 U 290 Y 250 MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630	II :				310		l .	U
MW-5 10/22/04 100 U 540 Y 330 MW-6 10/25/01 250 U 630 U 630 U MW-6 Duplicate 10/25/01 250 U 630 U 630 U MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630					ł .			U
MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630	5 1 .			U	ľ			L
MW-6 Duplicate 10/25/01 250 U 630 U 630 MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630	MW-6	10/25/01	250	TT	630	II	630	บ
MW-6 03/08/02 160 Z 240 Y 500 MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630	11	1						Ŭ
MW-6 10/03/02 100 U 280 Y 350 MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-7 10/25/01 250 U 630 U 630 U 630		1 3						ŏ
MW-6 Duplicate 10/03/02 100 U 230 Y 270 MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630	MW-6							Ĺ
MW-6 02/12/04 100 U 130 Y 250 MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630		1						Ĺ
MW-6 10/21/04 100 U 210 Y 250 MW-7 10/25/01 250 U 630 U 630		i i						Ū
								Ū
	10V 7	10/25/01	250	17	£20	T T	620	U
	II i						li de la companya de	
	11							0
	FI .							U
	ži –							Ü
MW-7 Duplictate 02/12/04 100 U 240 Y 250 MW-7 10/21/04 100 U 430 Y 250								Ü

Table 6
TPH in Groundwater and Storm Water
McCall Oil and Chemical

Date Sampled 10/25/01 03/07/02 10/04/02 02/12/04	Gasoline 250 650	U	Diesel		Heavy Fuel Oi	i <u>1</u>
10/25/01 03/07/02 10/04/02	250 650	U	Diesel		Heavy Fuel Oi	<u>il</u>
03/07/02 10/04/02	650	U				
03/07/02 10/04/02	650	-	3090		1840	
10/04/02		Н	20000	Y	9200	0
	1100	H	35000	DY	23000	DO
	100	U	330	Y	250	U
10/21/04	100	Ū	1300	Ÿ	830	ŏ
01/22/02	140	ш	490	v	310	o
						Ŭ
						Ū
						Ū
						Ū
10/22/04	130	H	1100	Y	510	L
01/22/02	100	U	250	Y	510	0
03/06/02	110	U	170	Y	320	0
10/03/02	100	U	170	Y	250	U
02/13/04	100	U	370	Y	250	U
10/21/04	100	U	650	Y	310	L
01/22/02	1900	н	15000	Y	4300	0
03/08/02	1700	H	11000	Y	2600	0
01/22/02	110	н	630	Y	1000	0
				-		ō
						ō
		-		-		Ŭ
10/21/04	100	Ū	360	Ÿ	410	Ö
01/22/02	300	н	1000	v	2300	0
				_		Ö
						Ö
10/04/02	150	Z	650	Ÿ	1300	ŏ
02/12/04	100	II	300	Y	250	U
10/21/04	100	U	430	Ÿ	280	L
02/12/04	100	Ţī	100	Ţī	250	U
10/22/04	100	U	110	H	250	Ŭ
	01/22/02 03/06/02 10/03/02 10/03/02 02/13/04 10/22/04 01/22/02 03/06/02 10/03/02 02/13/04 10/21/04 01/22/02 03/08/02 01/22/02 03/06/02 10/04/02 02/13/04 10/21/04 01/22/02 01/22/02 01/04/02 02/12/04 02/12/04	01/22/02 140 03/06/02 200 03/06/02 210 10/03/02 150 02/13/04 100 10/22/04 130 01/22/02 100 03/06/02 110 10/03/02 100 02/13/04 100 10/21/04 100 01/22/02 1900 03/08/02 1700 01/22/02 110 03/06/02 150 10/21/04 100 01/22/02 360 03/06/02 150 10/04/02 150 02/12/04 100 10/21/04 100 02/12/04 100 02/12/04 100 02/12/04 100 02/12/04 100	01/22/02	01/22/02 140 H 480 03/06/02 200 H 520 03/06/02 210 H 600 10/03/02 150 H 850 02/13/04 100 U 300 10/22/04 130 H 1100 01/22/02 100 U 250 03/06/02 110 U 170 10/03/02 100 U 170 02/13/04 100 U 370 10/21/04 100 U 650 01/22/02 1900 H 15000 03/08/02 1700 H 11000 01/22/02 110 H 630 03/06/02 150 H 1100 01/22/02 360 H 1100 01/22/02 360 H 1300 01/22/02 360 H 1300 01/22/02 360 H 1300 01/22/02 360 H 1300 01/22/02 360 <td< td=""><td>01/22/02 140 H 480 Y 03/06/02 200 H 520 Y 03/06/02 210 H 600 Y 10/03/02 150 H 850 Y 02/13/04 100 U 300 Y 10/22/04 130 H 1100 Y 01/22/02 100 U 250 Y 03/06/02 110 U 170 Y 10/03/02 100 U 170 Y 02/13/04 100 U 370 Y 10/21/04 100 U 650 Y 01/22/02 1900 H 15000 Y 03/08/02 1700 H 11000 Y 01/22/02 110 H 630 Y 03/06/02 150 H 1100 Y 01/04/02 100 U 570 Y 02/13/04 100 U 340 Y 01/22/02 360 H 100 U 01/22/02 360 H 1300 Y 01/22/02 360 H 1300 Y 01/04/02 150 Z 650 Y 02/12/04 100 U 300 Y 10/04/02 150 Z 650 Y</td><td>01/22/02</td></td<>	01/22/02 140 H 480 Y 03/06/02 200 H 520 Y 03/06/02 210 H 600 Y 10/03/02 150 H 850 Y 02/13/04 100 U 300 Y 10/22/04 130 H 1100 Y 01/22/02 100 U 250 Y 03/06/02 110 U 170 Y 10/03/02 100 U 170 Y 02/13/04 100 U 370 Y 10/21/04 100 U 650 Y 01/22/02 1900 H 15000 Y 03/08/02 1700 H 11000 Y 01/22/02 110 H 630 Y 03/06/02 150 H 1100 Y 01/04/02 100 U 570 Y 02/13/04 100 U 340 Y 01/22/02 360 H 100 U 01/22/02 360 H 1300 Y 01/22/02 360 H 1300 Y 01/04/02 150 Z 650 Y 02/12/04 100 U 300 Y 10/04/02 150 Z 650 Y	01/22/02

Table 6
TPH in Groundwater and Storm Water
McCall Oil and Chemical

				TPH - FIQ			
Location	Date Sampled	Gasoline		Diesel		Heavy Fuel Oi	1
Catch Basins - Sto	rm Water µg/L (pp	b)					
S-1W	12/20/00	1,100	Z	100	Ŭ	250	Ū
S-1W	03/06/02	110	U	110	U	270	U
S-1W	04/07/05	100	U	340	H	880	0
S-2W	12/20/00	100	U	100	U	250	U
S-2W	03/06/02	130	Z	110	U	260	U
S-2W	04/07/05	100	U	310	Y	430	0
S-3W	02/15/01	1,300	Z	510	Z	250	U
S-3W	03/06/02	110	U	110	Z	260	U
S-3W	04/07/05	120	Z	550	Y	1,000	0
Oil/Water Separat	or - Storm Water	,					
S-4W	02/15/01	270	Z	280	Z	250	Ū
S-4W Duplicate	02/15/01	260	Z	300	Z	250	U
S-4W	04/09/02	220	H	1,300	F	550	0
S-4W	04/07/05	100	U	440	Y	340	L

Notes: U = Not detected at method reporting limit. F = The fingerprint of the sample matches the elution pattern of calibration standard

L = The fingerprint resembles a petroleum product, but the elution pattern indicates the presence of lighter weight constituents.

H = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of heavier weight constituents.

O = The fingerprint resembles oil, but does not match the calibration standard.

Y = The fingerprint resembles a petroleum product in the correct carbon range, but the elution pattern does not match the calibration standard.

Z = The fingerprint does not resemble a petroleum product.

DET= Detected above method reporting limit (method reporting limit shown)

D = The reported result is from a dilution.

TABLE 7
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

							**************************************				Ground	lwater									
Sample Designation	EX-1	EX-1	EX-1	EX-2	EX-2	EX-2	EX-2	EX	C-2	EX-3	EX-3	EX-3	EX-3	EX-3	EX-4/MW-2	EX-4/MW-2	EX-4/MW-2	EX-5	EX-5	EX-5	;
Matrix	Water	Water	Water	Water	Water	Water	Water	· Wa	iter	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	r
Date Sampled	12/20/00	03/07/02	10/03/02	12/20/00	03/07/02	10/04/02	02/12/04	10/2	1/04	12/20/00	03/07/02	10/04/02	02/12/04	10/21/04	12/20/00	03/07/02	10/03/02	12/20/00	03/07/02	10/04/0)2
																					
											LPA										
Naphthalene	0.008	U 0.013	U 0.028	J 0.01	J 0.013	U 0.022 J	0.023	J 0.0		0.02	J 0.013	U 0.038	J 0.012	U 0.012	0.000	0.014	0 0.012	U 0.009	J 0.028	J 0.022	J
Acenaphthylene	0.006	U 0.011	U 0.011	U 0.01	U 0.011	U 0.011 U	0.011	U 0.0		0.01	U 0.011	U 0.011	U 0.011	U 0.011	0.000	0.012	U 0.011	U 0.006	U 0.011	U 0.011	U
Acenaphthene	0.007	U 0.009	U 0.009	U 0.02	J 0.041	J 0.110 J	0.025	J 0.0	37 J	0.01	J 0.009	U 0.023	J 0.009	U 0.009	U 0.140	0.300	0.190	J 0.009	J 0.024	J 0.015	J
Fluorene	0.006	U 0.013	U 0.012	U 0.01	U 0.013	U 0.012 U	0.012	U 0.0	12 U	0.01	U 0.013	U 0.012	U 0.012	U 0.012	U 0.006	U 0.014	U 1 0.012	U 0.006	U 0.013	U 0.012	. U
Phenanthrene	0.010	J 0.038	J 0.028	J 0.04	J 0.047	J 0.057 J	0.039	J 0.0	21 J	0.04	J 0.060	J 0.057	J 0.028	J 0.016	J 0.100	0.520	0.160	J 0.020	J 0.034	J 0.039	· J
Anthracene	0.008	J 0.063	J 0.110	J 0.01	U 0.016	U 0.015 U	0.015	U 0.0	15 U	0.01	U 0.019	J 0.016	J 0.015.	U 0.015	U 0.006	U 0.071	J 0.060	J 0.006	U 0.016	U 0.017	J
2-Methylnaphthalene	0.008	U 0.013	U 0.012	U 0.01	J 0.012	J 0.017 · J	0.013	J 0.0		0.01	U 0.012	U 0.015	J 0.012	U 0.012	0.000	0.015	U · 0.012	U 0.008	U 0.012	U 0.012	
Total LPAH	0.018	0.101	0.166	0.078	0.100	0.206	0.100	0.0	58	0.07	0.08	0.15	0.028	0.016	0.24	0.89	0.41	0.038	0.086	0.093	_
				_							HPA		· 								
Fluoranthene	0.02	J 0.014	U 0.053	J 0.009	J 0.017	J 0.013 U	0.013	U 0.0		0.01	J 0.038	J 0.034	J 0.013	U 0.013	U 0.01	J 0.048	J 0.028	J 0.009	J 0.013	U 0.013	
Pyrene	0.03	J 0.039	J 0.068	J 0.03	J 0.039	J 0.074 J	0.036	J 0.0		0.03	J 0.064	J 0.061	J 0.028	J 0.030	J 0.02	J 0.13	J 0.049	J 0.040	J 0.046	J 0.067	
Benz(a)anthracene	0.01	J 0.013	U 0.024	J 0.007	J 0.013	U 0.012 U	0.012	U 0.0		0.008	J 0.013	U 0.012	U 0.012	U 0.012	0.007	J 0.013	U 0.012	U 0.006	J 0.013	U 0.012	
Chrysene	0.02	J 0.015	U 0.033	J 0.007	•	U 0.014 U	0.014	U 0.0		0.01	J 0.015	U 0.014	U 0.014	U 0.014		J 0.016	U 0.014	U 0.008	J 0.015	U 0.014	
Benzo(b)fluoranthene	0.01	J 0.021	U 0.033	J 0.006	•	U 0.020 U	0.020	U 0.0		0.006	J 0.021	U 0.020	U 0.020	U 0.020	U 0.006	J 0.021	0.020	U 0.005	U 0.021	U 0.020	
Benzo(k)fluoranthene	0.01	J 0.021	U 0.020	U 0.006	J 0.021	U 0.020 U	0.020	U 0.0		0.006	J 0.021	U 0.020	U 0.020	U 0.020	U 0.006	J 0.021	U 0.020	U 0.003	J 0.021	U 0.020	
Benzo(a)pyrene	0.02	J 0.018	U 0.051	J 0.007	J 0.017	U 0.016 U	0.016	U 0.0		0.007	J 0.017	U 0.016	U 0.016	U 0.016	U 0.007	J 0.018	U 0.016	U 0,006	U 0.017	U 0.016	
Indeno(1,2,3-cd)pyrene	0.02	J 0.026	U 0.050	J 0.009	J 0.026	U 0.024 U	0.024	U 0.0		0.009	J 0.026	U 0.024	U 0.024	U 0.024	U 0.007 -	J 0.027	U 0.024	U 0.007	J 0.026	U 0.024	
Dibenz(a,h)anthracene	0.004	U 0.03	U 0.031	U 0.005	J 0.033	U 0.031 U	0.031	U 0.0	31 U	0.004	U 0.033	U 0.031	U 0.031	U 0.031	U 0.004	U 0.034	U 0.031	U 0.004	U 0.03,3	U 0.031	U
Benzo(g,h,i)perylene	0.02	J 0.039	J 0.061	J 0.01		U 0.017 U	J 0.017	U 0.0		0.02	J .0.034	J 0.025	J 0.017	U 0.017		0.015	•	U 0.03	J 0.054	J 0.031	
Total HPAHs	0.16	0.08	0.37	0.10	0.06	0.07	0.04	0.)3	0.106	0.136	0.120	0.028	0.030	0.080	0.178	0.077	0.103	0.100	0.098	
2 1434 1 1 1	<u> </u>										SVC	OCs									:
3- and 4-Methylphenol Coelution	0.003	U 0.055	U 0.051	U 0.02	1 0.055	U 0.051 U	0.051	U 0.0	51 U	0.05	J 0.087	J 0.090	J 0.051	U 0.051	U 0.003	U 0.056	U 0.051	U 0.007	J 0.055	U 0.051	į į
Dibenzofuran	0.003	U 0.015	U 0.014	U 0.007	•	U 0.014 U	J 0.014	U 0.0		0.007		U 0.014	U 0.014	U 0.014		U 0.015		U 0.007	U 0.014	U 0.014	
Butyl Benzyl Phthalate	0.02	U 0.028	U 0.026	U 0.02	U 0.028	U 0.026 U	0.026	U 0.0	26 U	0.02		U 0.026	U 0.026	U 0.026	U 0.02	U 0.028	U 0.026	U 0.02	U 0.028	U 0.026	Ü
Di-n-octvl Phthalate		U 0.035				U 0.032 U	0.032	U 0.0					U 0.032		-			U 0.003	U 0.035	U 0.032	
Di-11-Octy i i illiarate		0 , 0,033	0.002			2 0.002	******		<u> </u>				- 0.002	- 0.002	0.003						

NOTE: µg/L = micrograms per liter or parts per billion. U = not detected at or above the indicated method reporting limit. J = estimated concentration. D = reported result is from a dilution

TABLE 7
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

				•				-											Ground	vate	r					**************************************												====
Sample Designation Matrix Date Sampled	EX-7 Water 12/20/00		EX-7 Water 03/06/02		EX-7 Water 10/03/02		MW-1 Water 12/20/00		MW-1 Water 03/07/02		MW-1 Water 10/03/02		MW-3 Water 12/20/00		MW-3 Water 03/07/02		/W-3 Du Water 03/07/02	-	MW-3 Water 10/03/02		MW-4 Water 12/20/00		MW-4 Water 03/07/02	2	MW-4 Water 10/03/0		MW-5 Water 12/20/00		MW-5 Water 03/07/02		MW-5 Water 10/03/02		MW-5 Dup Water 10/03/02		MW-5 Water 2/11/04	ļ	MW- Wate 10/22/	er
				,															LPA	Is																		
Naphthalene	0.008	Ų	0.14	J	0.022	J	0.008	U	0.012	U	0.012	U	0.008	U	0.012	U	0.012	U	0.012	U	0.008	U	0.014	U,	0.012	U	0.008	U	0.034	J	0.012	U	0.023		0.025	J	0.012	2
Acenaphthylene	0.006	U	0.01	U	0.011	U	0.006	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.006	U	0.012	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	1
Acenaphthene	0.007	. U	0.01	U	0.009	U	0.007	U	0.009	U	0.009	U	0.170		0.210		0.230		0.330		0.030	J	0.064	J	0.130	J	0.007	U	0.009	U	0.009	U	0.009	U	0.009	U	0.009	9
Fluorene	0.006	U	0.01	U	0.012	U	0.006	U	0.012	U	0.014	U	0.006	U	0.012	U	0.012	U	0.012	Ų	0.006	U	0.014	U	0.012	U	0.006	U	0.013	U	0.012	U	0.012	U	0.012	U	0.012	2
Phenanthrene	0.007	U	0.02	J	0.015	J	0.007	U	0.011	U	0.012	U	0.130	•	0.180	J	0.170	J	0.270		0.060	J	0.082	J	0.086	J	0.007	U	0.011	U	0.021	J	0.021	J	0.011	U	0.011	1
Anthracene	0.006	U	0.02	J	0.038	J	0.006	U	0.015	U	0.028	J	0.020	J	0.049	J	0.055	J	0.092	J	0.010	J	0.035	J	0.046	J	0.006	U	0.016	U	0.025	J	0.022	J	0.015	Ū		-
2-Methylnaphthalene	. 0.008	U	0.01	U	0.012	U	0.008	U	0.012	U	0.012	U	0.008	U	0.012	U	0.012	U	0.012	U	0.008	U	0.013	U	0.012	U	0.008	U	0.013	U	0.012	U	0.012		0.012	U	0.012	2 1
Total LPAH	0.008		0.18		0.08		0.008		0.015		0.03		0.32		0.44		0.46		0.69		0.10		0.18		0.26	_	0.008		0.03		0.05		0.07		0.025	_	0.015	
																			HPA:	Is																		
Fluoranthene	0.007	U	0.018	J	0.024	J	0.007	U	0.013	U	0.013	U	0.01	J	0.065	J	0.071	J	0.087	J	0.02	J	0.04	J	0.013	U	0.007	U	0.014	Ù	0.031	J	0.026	J	0.013	U	0.013	3 [
Pyrène	0.007	U	0.022	J	0.028	J	0.007	U	0.015	U	0.015	U	0.05	J	0.13	J	0.11	J	0.19	J	0.05	J	0.11	J	0.15	J	0.007	U	0.024	J	0.037	J	0.034	J	0.015	U	0.015	5 I
Benz(a)anthracene	0.005	U	0.012	U	0.012	U	0.005	U	0.012	U	0.012	U	0.008	J	0.012	U	0.024	J	0.048	J	0.01	J	0.053	J	0.038	J	0.005	U	0.013	U	0.030	J	0.012	U	0.012	U	0.012	2 (
Chrysene	0.006	U	0.015	U	0.014	U	0.006	U	0.014	U	0.014	U	0.009	J	0.033 .	J	0.030	J	0.062	J	0.02	J	0.048	J	0.054	J	0.006	U	0.015	U	0.022	J	0.014	U	0.014	U	0.014	4 T
Benzo(b)fluoranthene	0.005	U	0.020	U	0.020	U	0.005	U	0.020	U	0.020	U	0.006	J	0.020	U	0.020	U	0.055	J	0.01	J	0.021	U	0.044	J	0.005	U	0.021	U	0.020	U	0.020	U	0.020	U	0.020	0 1
Benzo(k)fluoranthene	0.004	J	0.020	U	0.020	U,	0.003	U	0.020	U	0.020	U	0.006	J	0.020	U	0.020	U	0.020	U	0.01	J	0.021	U	0.020	U	0.003	U	0.021	U	0.020	U	0.020	U	0.020	U	0.020) [
Benzo(a)pyrene	0.006	U	0.017	U	0.019	J.	0.006	U	0.016	U	0.016	U	0.007	J	0.016	U	0.016	U	0.077	J	0.01	J	0.018	U	0.043	J	0.006	Ü	0.018	U	0.016	U	0.016	U	0.016	U	0.016	5 T
Indeno(1,2,3-cd)pyrene	0.005	J	0.025	U	0.024	U	0.004	U	0.024	U.	0.024	U	0.008	J	0.024	U	0.024	U	0.053	J	0.01	J	0.026	U	0.032	J	0.004	U	0.026	U	0.024	U	0.024	U	0.024	U	0.024	4 T
Dibenz(a,h)anthracene	0.004	U	0.031	U	0.031	U	0.004	U	0.031	U	0.031	U	0.004	U	0.031	U	0.031	U	0.031	U	0.004	U	0.033	U	0.031	U	0.004	U	0.033	U	0.031	U	0.031	U	0.031	U	0.031	1 τ
Benzo(g,h,i)perylene	0.007	J	0,017	U	0.021	J	0.005	U	0.017	U	0.017	U	0.009	J	0.039	J	0.017	U	0.066	J	0.02	J	0.018	U	0.048	J	0.005	U-	0.018	U	0.017	U	0.017	Ü :	0.017	U		
Total HPAHs	0.016		0.040		0.092		0.007		-0.031		0.031		0.113		0.267		0.235		0.638		0.160		0.251		0.409		0.007		0.02	-	0.12	_	0.09	-	0.031	Ū	0.031	
																			svo	Çs																		
3- and 4-Methylphenol					0.051				0.051		0.051		0.000		0.051		0.051		0.051																			
Coelution Dibenzofuran	0.003 0.007	U	0.052 0.014	U	0.051 0.014	_	0.003		0.051 0.014		0.051 0.014	U U	0.003 0.007	U		U U	0.051 0.014	U U	0.051 0.014	U U	0.003	U	0.056	U	0.051	U	0.003 0.007	U	0.055	U	0.051	U			0.051	U	0.051	-
Butyl Benzyl Phthalate		U	0.014	Ţ		IJ		_		ī	-	U		_		-		_		-		-	0.015	_	0.014	U		U	0.015		0.200	U		-	0.014	U	0.014	
, , , l	0.02	-		J T 7	0.026	•	0.02		0.052	J	0.026	_	0.02	U			0.026		0.026	U	0.02	U		U	0.026	-	0.02	U	0.028	U	0.048	J 			0.026	U	0.026	
Di-n-octyl Phthalate.	0.003	U	0.033	U	0.032	U	0.003	U	0.032	υ	0.032	U	0.003		0.032	U	0.032		0.032	U	0.003	U	0.035	U	0.032	U	0.003	U	0.035	U.	0.014	U	0.014	<u>U</u>	0.032	U	0.032	<u>. </u>
																			•																•			
	NOTE: ug/L =	microen	ams per liter	or parts r	er billion. U	= not de	etected at o	r above	the indicat	ed met	thod repor	ting lir	nit. J=esti	mated	concentration	n. D) = reported	result	is from a d	ilution	1.																	
																		_									<u> </u>											_

TABLE 7
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

																			G	rounc	lwater																		
Sample Designation Matrix Date Sampled	MW-6 Water 10/25/01		/W-6 D Water 10/25/0		MW Wa 03/08	ter	W	W-6 ater 03/02	MW-6 Du Water 10/03/02		MW-7 Water 10/25/01	V	fW-7 Vater /08/02	v	1W-7 Vater /04/02	•	MW-7 Water 2/12/04		W-7 Du Water 02/12/04		MW-7 Water 10/21/04	ļ	MW-8 Water 10/25/0		MW-8 Water 03/07/02		MW-8 Water 10/04/02		MW-8 Water 02/12/04		MW-8 Water 10/21/04		MW-9 Water 01/22/02		MW-9 Water 03/06/02		MW-9 Du Water 03/06/02	•	MW-9 Water 10/03/0
•	-										•				-		,			ĽPA	Hs								-			-							
Naphthalene	5.00	U	5.00	U	0.1	2	J 0.0	048	J 0.066	J	5.00	U 0	.086	J 0	0.020	J (0.012	U	0.012		0.012	U	5.00	U	0.16	J	0.38		0.031	J	0.012	U	0.17	J	0.013	U	0.012	U	0.012
Acenaphthylene	5.00	U	5.00	U	0.0)4	J 0.0	011	U 0.011	U	5.00	U 0	.025	J 0	0.011	U (0.011	U	0.011	U	0.011	U	5.00	U	0.01	U	0.21		0.011	Ü		U	0.05	J	0.110	J	0.069	J	0.011
Acenaphthene	5.00	U	5.00	U	0.0)1	U 0.0	009	U 0.020	J	5.00	U 0	.009	U 0	.009	U (0.009	U	0.045	J	0.032	J	5.00	U	0.58		0.78		0.340		0.210		0.12	J	0.120	J	0.150	J	0.250
Fluorene	5.00	U	5.00	U	0.0)2	J 0.	012	U 0.012	U	5.00	U 0	.013	U 0	0.012	U (0.012	U	0.012	U	0.012	U	5.00	U			0.91	-	0.360		0.220		0.01	U	0.013	U	0.012	U	
Phenanthrene	5.00	U	5.00	U	0.1	3	J 0.6	039	J 0.059	J	5.00	U 0	.077	J 0	.034	J (0.024	J	0.036	J	0.011	U	5.00	U	1.20		1.70		0.220		0.220		0.26		0.220		0.160	J	0.200
Anthracene	5.00	U	5.00	U	0.0)5	J 0.6	045	J 0.049	J	5.00	U 0	.039	J 0	.031		0.019		0.029	J	0.015	U	5,00	_	0.10	J	0.38		0.028	J	0.015	U	0.09	J	0.098	J	0.067	J	0.07
2-Methylnaphthalene	5.00	U	5.00	U	0.0)3	J 0.6	012	U 0.012	. U	5.00	U 0	.034						0.012	U	0.012	U		. U	0.08	J	0.16		0.012		0.002	J	0.02	J	0.012	U	0.012	U	0.01
Total LPAH					0.3	18	0.	.13	0.19			(0.26	. (0.09	(0.043		0.11		0.03				2.68		4.52		0.98		0.65		0.71		0.55		0.45		0.53
	<u> </u>																			HPA	Hs																		
Fluoranthene	5.00	U	5.00	U	0.1	8	J 0.	.08	J 0.12	J	5.00	U 0	.061	J 0	0.013	U (0.013	U	0.013	U	0.013	U	5.00	U	0.22		0.73		0.035	J	0.048	J	0.25		0.33		0.13	J	0.1
Pyrene	5.00	U	5.00	U	0.2	25	. 0	.12	J 0.20		5.00	U 0	.089	J 0	.025	J (0.015	U	0.015	U	0.015	U	5.00	U	0.34		1.10		0.066	J	0.079	J	0.41		0.48		0.26		0.24
Benz(a)anthracene	5.00	U	5.00	U	0.0	77	J 0.0	033	J 0.042	J.	5.00	U 0	.044	J 0	.012	U	0.012	U	0.012	U	0.012	U	5.00	U	0.071	J	0.390		0.012	U	0.012	U	0.18	J	0.23		0.096	J	0.07
Chrysene	5.00	U	5.00	U		-		038	J 0.052	J	5.00		.045		.014		0.014	-	0.014	U	0.014	U	5.00	U	0.16	J	0.56		0.014	-	0.014	U	0.18	J	0.24		0.10	J	0.07
Benzo(b)fluoranthene	5.00	U	5.00	U				037	J 0.057	J									0.020	U	0.020	U	5.00	U	0.064	J	0.350			U		Ū	0.18	J	0.28		0.098	J	0.07
Benzo(k)fluoranthene	5.00	U	5.00	U	,				U 0.020	U	5.00		.021	•	0.020				0.020	U	0.020	U	5.00	U	0.02	U	0.13		0.020	U		_	0.078	J	0.096	J	0.027	J	0.03
Benzo(a)pyrene	5.00	U	5.00	U				028	J 0.057	J.	5.00					_		_	0.016	U	0.016	U	5.00	U	0.089	J	0.360			U	0.016	U	0.19	J	0.26		0.094	J	0.07
Indeno(1,2,3-cd)pyrene	5.00	U	5.00	U	0.0			037	J 0.057	J	5.00			•	.024	_	0.024	-	0.024	U	0.024	U	5.00	U	0.04	J	0.25		0.024	U	0.024	Ū.	0.12	J	0.15	J	0.062	J	0.053
Dibenz(a,h)anthracene	5.00	U	5.00	U					U 0.031	U	5.00			_			0.031	U	0.031	U	0.031	U	5.00	U	0.031	U	0.031	U	0.031	U	0.031	U		U	0.031	U	0.031	U	0.031
Benzo(g,h,i)perylene	5.00	U	5.00	U	•	-		048	J 0.071	1.	5.00		.099					_	0.017	U	0.017	U	5.00	U		J	0.310		0.017	U	0.017	U	0.130	J	0.16	J	0.065	J	0.071
Total HPAHs	-				1.0	10	0	.42	0.66				0.34		0.03		0.03		0.03	SVC	0.03				1.04		4.18		0.101		0.127		1.72		2.23		0.93		0.81
3- and 4-Methylphenol					-															310	CS	-																	
Coelution	5.00	U	5.00	U	0.0	73	J 0.	051	U 0.051	U	5.00	U	1.1		0.05	U (0.051	U	0.051	U	0.051	U	5.00	U	0.22	J	1.60		0.051	U	0.051	U	0.051	U	0.052	U	0.051	U	0.05
Dibenzofuran	5.00	U	5.00	U	0.0	15	U · 0.	014	U 0.014	U	5.00	U 0	.014	U 0	0.014	U	0.014	U	0.014	U	0.014	U	5.00	U	0.18	J	0.014	U	0.092	J	0.014	U	0.014	U	0.014	U	0.014	U	0.014
Butyl Benzyl Phthalate	5.00	U	5.00	U	0.0	28	U 0.	026	U 0.026	U	5.00	U 0	.027	U 0	0.026	U	0.026	U	0.026	U	0.026	U	5.00	U	0.13	J	0.026	U	0.026	Ū	0.026	U	0.026	U	0.050	J	0.074	J	0.026
Di-n-octyl Phthalate	5.00	U	5.00	U	0.0	35	U 0.	032	U 0.032	U	5.00	U 0	.034	U 0	.032	U (0.032	U	0.032	U	0.032	U	5.00	U	0.032	U	0.032	U	0.032	U	0.032	U	0.032	U	0.033	U	0.032	U	0.032
																						-											-		-				
	NOTE: Ual	L = m	icrograms	s per lit	ter or na	irts ner	billion 1	U = not 4	detected at or al	nove the	e indicated n	nethod re	norting 1	imit [=	= ectimate	d conce	ntestion	D r		ente ie 4	a dilu	tián.									•								

TABLE 7
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

															G	round	lwater	-														
Sample Designation Matrix Date Sampled	MW-10 Water 01/22/02		MW-10 Water 03/06/02		MW-10 Water 10/03/02		MW-11 Water 01/22/02		MW-11 Water 03/08/02		MW-12 Water 01/22/02		MW-12 Water 03/06/02		MW-12 Water 10/04/02		MW-13 Water 01/22/02		/W-13 Du Water 01/22/02	•	MW-13 Water 03/06/02		MW-13 Water 10/04/02		MW-14 Water 02/11/04		MW-14 Water 10/21/04		MW-15 Water 02/12/04		MW-15 Water 10/22/04	
																LPA	Hs															
Naphthalene	0.058	J	0.24		0.012	U	0.012	U	0.12	U	0.11	J	0.12	J	0.012	U	0.190	J	0.25		0.24		0.10	J	0.023	J	0.012	U	0.016	J	0.012	U
Acenaphthylene	0.019	J	0.02	J	0.011	U	0.011	U	0.11	U	0.02	J	0.03	J	0.011	U	0.031	J	0.04	J	0.05	J	0.02	J	0.011	U	0.011	U	0.011	U	0.011	Ţ
Acenaphthene	0.120	J	0.01	U	0.009	U	0.430		1.60	ΊD	0.19	J	0.15	J	0.250		0.087	J	0.09	J	0.18	J	0.25		0.031	J	0.009	U	0.009	U	0.009	ι
Fluorene	0.012	U	0.01	U	0.012	U	0.860		2.00	D	0.01	U	0.01	U	0.012	U	0.041	J	0.03	J	0.04	J	0.01	U	0.012	U	0.012	U	0.012	U	0.012	U
Phenanthrene	0.073	J	0.08	J	0.012	J	1.800		3.00	D	0.11	J	0.11	J	0.150	J	0.110	J	0.13	J	0.19	J	0.14	J	0.011	U	0.011	Ú	0.011	U	0.011	τ
Anthracene	0.032	J	0.03	J	0.029	J	0.410		0.66	JD	0.02	J	0.02	U	0.054	J	0.025	J	0.03	J	0.04	J	0.02	J	0.015	U	0.015	U	0.070	J	0.055	J
2-Methylnaphthalene	0.012	U	0.02	J	0.012	U	20.000	D	24.00	D	0.04	J	0.03	J	0.012	U	0.058	J	0.07	J	0.06	J	0.03	J	0.012	U	0.012	U	0.012	U	0.012	υ
Total LPAH	0.30		0.39		0.04		23.50		31.26		0.48		0.44		0.45		0.54		0.65		0.80		0.56		0.054		0.015		0.086		0.055	
	•					•			-						_	HPA	Hs															
Fluoranthene	0.081	J	0.10	J	0.016	J	0.43		0.38	Ъ	0.036	J	0.058	J	0.013	U	0.10	J	0.12	J	0.14	J	0.058	J	0.013	U	0.013	U	0.013	U	0.013	U
Pyrene	0.130	J	0.15	J	0.059	J	0.61		0.89	ΊD	0.076	J	0.11	J	0.10	J	0.14	J	0.19	J	0.19	J	0.11	J	0.015	U	0.015	U	0.021	J	0.024	J
Benz(a)anthracene	0.078	J	0.081	. J	0.026	J	0.012	U	0.23	JD	0.012	U	0.052	J	0.012	U	0.038	, J	0.053	J	0.063	J	0.012	U								
Chrysene	0.084	J	0.094	J	0.017	J	0.13	J	0.50	. JD	0.047	J	0.046	J	0.014	·U	0.052	J	0.056	J	0.075	J	0.014	U	0.014	U	0.014	Ú	0.014	U	0.014	U
Benzo(b)fluoranthene	0.056	J	0.070	J	0.020	U	0.02	U	0.20	U	0.020	U	0.021	U,	0.020	U	0.020	U	0.072	J	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U
Benzo(k)fluoranthene	0.020	U	0.037	J	0.020	U	0.02	U	0.20	U	0.020	U	0.021	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	Ų	0.020	U	0.020	U
Benzo(a)pyrene	0.071	J	0.090	J	0.016	U	0.016	U	0.16	U	0.016	U	0.018	U	0.016	U	0.044	J	0.072	J	0.098	J	0.016	U	0.016	U	0.016	U	0.016	U	0.016	ľ
Indeno(1,2,3-cd)pyrene	0.024	U	0.052	J	0.024	U	0.024	U	0.24	U	0.024	U	0.026	U	0.024	U	0.024	U	0.053	J	0.082	J	0.024	U								
Dibenz(a,h)anthracene	0.031	U	0.031	U	0.031	U	0.031	U	0.31	U	0.031	U	0.033	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U
Benzo(g,h,i)perylene	0.047	J	0.061	J _.	0.017	U	0.017	U	0.17	U	0.017	U	0.047	J	0.017	U	0.017	U	0.072	J	0.110	J	0.021	J	0.017	U	0.017	U	0.017	U	0.017	L
Total HPAHs	0.55		0.74		0.12		1.17		2.00		0.16		0.31		0.10	CTIC	0.37		0.69		0,76		0.26		0.031		0.031		0.021		0.024	
3- and 4-Methylphenol				•												SVC	CS					-					••••					<u></u>
Coelution	0.051	U	0.053	U	0.051	U	0.051	U	0.510	U	1.9		0.41	J	0.07	J	28	D	31	D	1.5		0.4	j	0.051	U	0.051	Ú	0.051	U	0.051	υ
Dibenzofuran	0.014	U	0.014	Ū	0.014	Ŭ	0.014	Ū	0.81	JD	0.20	U	0.015	Ū	0.014	Ū	0.018	J	0.021	J	0.021	J	0.014	U	0.014	Ū	0.014	Ū	0.014	U	0.014	τ
Butyl Benzyl Phthalate	0.045	J.	0.040	J	0.026	U	0.026	U	0.26	U	0.20	U	0.028	U	0.026	U	0.026	U	0.026	U	0.027	U	0.026	U	0.026	U	0.026	U	0.026	U	0.026	Į
Di-n-octyl Phthalate	0.032	U	0.033	U	0.032	U	0.032	U	0.32	U	0.20	U	0.035	U	0.032	Ü	0.032	U	0.032	U	0.034	U	0.032	U	0.032	U	0.032	U	0.032	U	0.032	τ
	·			_																												
	NOTE: μg/	L = m	nicrograms	per lite	er or parts pe	er bill	ion. U = no	t dete	cted at or al	oove th	ne indicated	meth	od reporting	limit.	J = estimate	ed con	centration. I) = rep	oorted result	is fro	m a dilution	ı.										

TABLE 7
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

											Sto	mwater												
Sample Designation Matrix Date Sampled	S-1 Water 12/20/00		S-1 Water 03/06/02		S-1 Water 04/07/05	W	i-2 ater 20/00		S-2 Water 03/06/02		S-2 Water 04/07/05	S-3 Water 12/20/0	0	S-3 Water 03/06/02		S-3 Water 04/07/05	S-4 Water 12/20/00		4 Duplica Water 12/20/00		S-4 Water 04/09/02	<u>.</u>	S-4 Water 04/07/05	5
											Ļ	PAHs								-		•	· <u>—</u>	
Naphthalene	0.03	J	0.03	J	0.031	J 0.	.07	J	0.025	J	.0.012 U	. 0.07	J	0.025	J	0.012 U	0.04	J	0.04	J	0.012	U	0.012	U
Acenaphthylene	0.01	J	0.01	U	0.037	J 0.	02	J	0.011	U	0.026 J	0.10	U	0.011	U	0.011 U	0.10	U	0.10	U	0.011	U	0.011	U
Acenaphthene	0.02	J	0.01	U	0.009 L	J 0.	02	J	0.009	U	0.009 U	0.10	U	0.009	U	0.009 U	0.14		0.12		0.085	J	0.009	U
Fluorene	0.02	J	0.01	U	0.026	J 0.	04	J	0.013	U	0.012 U	0.02	J	0.013	U	0.012 U	0.36		0.34		0.170	J	0.012	U
Phenanthrene	0.07	J	0.03	J	0.190	J 0.	.25		0.043	J	0.045 J	0.20		0.054	J	0.057 J	0.46		0.35		0.073	J	0.032	J.
Anthracene	0.01	U	0.02	U	0.039	J 0.	.02	J	0.016	U	0.015 U	0.10	U	0.015	U	0.015 U	0.02	J	0.01	J .	0.015	U	0.015	U
2-Methylnaphthalene Total LPAH	0.03 0.176	J	0.02 0.078	J	0.012 U 0.323		.05 470	J	0.014 0.082	J	0.012 U 0.071	0.10 0.386		0.012 0.079	U	0.012 U 0.057	0.09 1.110	J	0.10 0.960		0.012 0.328	U	0.012 0.032	U
Total El All	0.170		0.070				.,,		0.002			PAHs		0.077		0.037	1.110		0.500		0.528		0.052	
Fluoranthene	0.02	J	0.013	U	0.230	0.1	099		0.022	J	0.059 J	0.06	J	0.023	J	0.040 J	0.06	- J	0.05	J	0.01	U	0.01	U
Pyrene	0.02	J	0.015	U·	0.280	0.	.12		0.025	J	0.059 J	0.03	J	0.022	J	0.037 J	0.19		0.16		0.10	J	0.10	J
Benz(a)anthracene	0.005	U	0.012	U	0.081 J	0.	.03	J	0.013	U	0.012 U	0.007	J	0.012	U	0.012 U	0.03	J	0.02	J	0.012	U	0.012	U
Chrysene	0.008	J	0.014	U	0.140. J	0.	.06	J	0.015	U	0.014 U	0.03	J	0.015	U	0.014 U	0.12		0.09	J	0.014	U	0.014	U
Benzo(b)fluoranthene	0.006	J	0.020	U	0.150 J	-0.	.04	J	0.021	U	0.021 J	0.01	J	0.020	U	0.020 U	0.03	J	0.03	J	0.020	U	0.020	U
Benzo(k)fluoranthene	0.004	· J	0.020	U	0.049 J	0.	.03	J	0.021	U	, 0.020 U	0.008	J	0.020	U	0.020 U	0.02	J	0.01	J	0.020	U.	0.020	Ū
Benzo(a)pyrene	0.006	U	0.016	U	0.100 J	0.	.03	J	0.017	U.	0.020 U	0.095	U	0.017	U	0.016 U	0.03	J	0.02	J	0.016	U	0.016	U
Indeno(1,2,3-cd)pyrene	0.006	J	0.024	U	0.089 J	0.	.04	J	0.026	U	0.020 U	0.01	J	0.025	U	0.024 U	0.02	J	0.02	J	0.024	U	0.024	U
Dibenz(a,h)anthracene	0.004	U	0.031	U	0.031 U	J 0.	009	J	0.032	U	0.020 U	0.19	U	0.031	U	0.031 U	0.009	J	0.008	J	0.031	U	0.031	U
Benzo(g,h,i)perylene Total HPAHs	0.007 0.071	J	0.017	U	0.140 J 1.26		.06 .52	J	0.018 0.047	U	0.020 U 0.139	0.01 0.17	J	0.017 0.045	U	0.017 U 0.077	0.04 0.55	J .	0.03 0.44	J	0.017 0.10	U	0.017 0.10	U
											S	VOCs												
3- and 4-Methylphenol Coelution Dibenzofuran	0.3 0.01	J J	0.23 0.014	J U	0.051 U 0.014 U		.49 .02	J	0.089 0.014	J U	0.051 U 0.014 U	0.48 0.01	U U	0.220 0.019]	0.120 J 0.014 U	0.2 0.13	J	0.2 0.11	J	0.051 0.11	U	0.051 0.01	U U
Butyl Benzyl Phthalate	0.1	J	0.19	J	0.20	(0.1	J	0.05	J	0.076 J	0.08	J	0.092	J	0.089 J	0.05	J	0.04	J	0.14	J	0.10	. ј
	0.003	U	0.032	U	0.032 L		003	U	0.032	U	0.11· J	0.95	U	0.033	U	0.032 U	0.95	U	0.96	·U	0.032	U	0.032	U

												····												
Sample Designation	Matrix	Date Sampled	Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans-1, 2-dichloroethene	1,1-Dichloroethane	cis -1, 2-dichloroethene	Chloroform	I, I, I-Trichloroethane	Benzene	Trichloroethene	Toluene	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene	Naphthalene
EX-1	Water	05/02/97	0.5 ป	0,5 U	1.8	0.5 U	. 0.5 U	4.4	9.9	5.9	240	0.5 U	410	0.5 U	3300	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1 Duplicate	Water	05/02/97	0.5 U	0.5 U	1.7	0.5 U	0.5 U	3.9	8.3	5.2	270	0.5 U	470	0.5 U	3600	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	Water	02/04/99	· 50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	120	50 U	220	50 U	2600	50 U	50 U	50 U	50 U	200 U	200 U	200 U	200 U	200 U
EX-1 Duplicate	Water	02/04/99	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	130	50 U	250	50 U	3000	50 U	50 U	50 U	50 U	200 U	200 U	200 U	200 U	200 U
EX-1	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	9.1	0.5 U	20	0.5 U	400 D	0.5 U	0.5 U	0.5 Ü	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	Water	03/07/02	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	3.2 D	2.5 U	2.5 U	13 D	2.5 U	32 D	2.5 U	480 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	Water	10/03/02	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.5 U	2.5 U	2.5 U	11	2.5 U	25	2.5 U	340 D	2.5 U	2.5 U	2.5 U	2.5 U	10,0 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	Water	02/11/04	2.5 Ü	2.5 U	2.5 U	2.5 U	2.5 U	0.5 U	2.5 U	2.5 U	22 D	2.5 U	82 D	2.5 U	1700 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 Ü	10.0 U	10.0 U	10.0 U	10.0 U
EX-1 Duplicate	Water	02/11/04	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.5 U	2.5 U	2.5 U	24 D	2.5 U	89 D	2.5 U	1700 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U_	10.0 U	10.0 U
EX-1	Water	10/22/04	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	4.1 D	1.3 U.	19 D	1.3 U	740 D	1.3 U	1.3 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U ·	5.0 Ü
																							-	
EX-2	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	2.0 U	2.0 U	2.0 Ü	2.0 U	2.0 U
EX-2	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 ป	0.5 U_	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	2.0 U	2.0 U	2.0 U	2.0 Ù	2.0 U
EX-2	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 บั	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	· 2.0 Ư
EX-2	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 ป	2.0 U
				-															•			•		
EX-3	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ปั	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	Water	02/04/99	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ปั	0.5 U	0.5 U	0.5 Ü	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 Ŭ
EX-3	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 ป	0.5 U	0.5 ปั	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
																				_				
EX-4/MW-2	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 บี	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	02/03/99	0.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	12/20/00	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.65	0.5 U	0.5 ปั	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ปั	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.8	0.5· U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2:0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	02/13/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2,0 U
EX-5	Water	. 05/01/97	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	05/01/97	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· 0.5 U	0.5 U	0.5 U	0.5 U	0.5 Li	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	2:0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	· 0.5 U	0.5 U,	2.0 U	2.0 U	2.0 U	2.0 U	2.0 Ü
EX-5	Water	03/07/02	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	- 0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 Ü	2.0 U	2.0 U	2.0 U
EX-5	Water	10/04/02	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5. U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
							:			· ·										· ·				
EX-6	Water	05/02/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0	2.9	0.5 U	0.5 U	0.5 U	2.6	0.5 U	0.7	0.5 ป	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-6	Water	02/04/99	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.8	3.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

			T T		<u> </u>		1				·	. 1	 			T	T	1 1					 -	
Sample Designation	Matrix	Date Sampled	Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans-1, 2-dichloroethene	1,1-Dichloroethane	cis-1, 2-dichloroethene	Chloroform	1,1,1-Trichloroethane	Benzene	Trichloroethene ·	Toluene	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene	Naphthalene
EX-7	Water	05/02/97	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	02/03/99	0.5 U	0.5 U	0.5 Ŭ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	12/20/00	0:5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 Ü	2.0 U	2.0 U
											·									 				
MW-1	Water	05/01/97	0.5 U	0.5 U	0.9	0.5 U	0.5 U	7.4	0.7	12.0	8.0	0.5 U	28.0	0.5 U	110	0.5 U	0,5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	02/03/99	0:5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.8	0.5 U	0.5 U	0.5 U	0.5 U	1.7	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	12/20/00	0.5 U	0.5 .U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	0.56	0.5 U	3.5	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 ป
MW-1	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.7	0.5 U	0.5 U	0.5 U	0.5 U	3.2	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.6	0.5 U	0.5 U	0.5 U	0.9	1.4	0.5 U	0.5 U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.58	2.2	0.5 U	0,5 U	. 0,5 U	5.2	0.5 U	2.3	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1 .	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.87	0.5 U	0.5 U	0.67	0.5 U	2.8	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1 Duplicate	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 ปั	0.5 U	0.5 U	0.5 U	0.88	0.5 U	. 0.5 U	0.65	0.5 U	2.9	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2,0 U	2.0 U	2.0 U
MW-3	Water	05/01/97	5.9	0.5	0.5 U	0.5 U	0.5 U	0.6	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.7 Total	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	02/04/99	2.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	12/20/00	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U ·	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	.03/07/02 .	2.6	0.5 U	0.5 ป	0.5 U· *·	- 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3 Duplicate	Water	03/07/02	2:1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 ปั
MW-3	Water	10/03/02	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ų	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 บ	0.5 U	0.5 U	0.5 U	0.5 U -	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U.	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 Ư
MW-4	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.Ŝ U	0.5 U	3.5	4.9	0.5 U	0,5 U	0.5 U	8.1	0.5 U	11.0	0.5 U	· 0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	Water	02/03/99	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.8	4.4	0.5 ปั	0.5 U	0.5 U	2.0	0.Š U	2.5	1.9	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	Water	12/20/00	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	Water	03/07/02	2.6	· 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 Ù	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป -	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	Water	10/03/02	0.69	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.59	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	05/01/97	0.5 U	0.5 ปั	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 <u>U</u>	0.5 U	0,5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ù	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5°U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5. U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2,0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	03/07/02	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5 Duplicate	Water	10/03/02	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	2.0 U	2,0 U	2.0 U	2.0 U	2.0 U

2 of 4

													·											
Sample Designation	Matrix	Date Sampled	Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans-1, 2-dichloroethene	I, I-Dichloroethane	cis -1, 2-dichloroethene	Chloroform	1,1,1-Trichloroethane	Benzene	Trichloroethene	Toluene	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene	Napluthalene
MW-6	Water	10/25/01	5 U	2.5 U	2.5 U	50 U	2.8	6.4	422	2.5 U	7.45	5 U	20.5	5 U	23	2.5 U	5 U	10 U	5 U	10.0 U	5.0 U	2,5 U	25 U	10 U
MW-6 Duplicate	Water	10/25/01	5 U	2.5 U	2.5 U	50 U	2.6	6.9	411	2.5 U	7.65	5 U	20.6	5 U	21.2	2.5 U	5 U	10 U	5 U	10.0 Ü	5.0 U	2.5 U	25 U	10 U
MW-6	Water	03/08/02	5.6 D	2.5 U	3.8 D	2.5 U	4.0 D	11.0 D	700 D	2.5 U	22 D	2.5 U	200 D	2.5 U	360 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
MW-6	Water	10/03/02	11.0 D	1.3 U	2.9 D	1.3 U	3.8 D	7.5 D	770 D	1.3 U	7.7 D	1.3 U	33 D	1.3 U	40 D	1.3 U	1.3 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
MW-6 Duplicate	Water	10/03/02	12.0 D	1,3 U	3.0 D	1,3 U	3.9 D	7.8 D	740 D	1.3 U	8.0 D	1.3 U	36 D	1.3 U	43 D	1.3 U	1.3 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
MW-6	Water	02/12/04	11.0 D	1.3 U	2.5 D	1.3 U	3.6 D	4.5 D	630 D	1.3 U	7.6 D	1.3 U	71 D	1.3 U	70 D	1.3 U	1.3 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 Ü
MW-6	Water	10/21/04	14.0 D	2.5 U	3.4 D	2.5 U	4.4 D	3.8 D	780 D	2.5 U	6.4 D	2.5 U	55 D	2.5 U	62 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
MW-7	Water	10/25/01	1.0 Ü	0.5 ป	0,5 U	10.0 U	0.5 U	0.5 U_	2.9	0.5 U	0.5 U	1.0 U	0.5 ป	1.0 U	0,5 U	0.5 U	1.0 U	2.0 U	1.0 U .	2.0 U	1,0 U	0.5 U	5.0 U	2.0 U
MW-7	Water	03/08/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.1	0.5 U	0.5 U	0.5 U	0.5 U	3.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.5	0.5 U	0,5 U	0.5 U	0.5 U	2.4	0.5 U	0.5 U	0.5 U	0.5 <u>U</u>	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7	Water	02/12/04	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.2	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7 Duplicate	Water	02/12/04	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.3	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7	Water	10/21/04	0.78	0.5 U	0.5 U -	0.5 U	0.5 U	0.5 U	3.2	0.5 U	0.5 <u>U</u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8	Water	10/25/01	1.0 Ü	0.5 U	0.5 U	10.0 U	0.5 U	0.5 U	1.21	0.5 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	0.5 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	0.5 U	5.0 U	2.0 U
MW-8	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8	Water	02/12/04	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8	Water	10/21/04	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0:5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
					\$	-							-											
MW-9	Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9 Duplicate	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2,0 U	2.0 U
MW-10	Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.69	0.5 U	0.5 U	0.5 U	1.7	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	Water	02/13/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 <u>U</u>	0.5 U	0.66	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	Water	10/21/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.69	0.5 U	0.5 <u>U</u>	0.5 U	1.7	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 Ü
MW-11	Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 บ	0.5 U	0.5 <u>U</u>	2.0	0.5 U	1.6	0.5 U	0.5 U	4.7	3.1	8.2	4.2	6.1	4.5	2.4	2.0 U
MW-11	Water	03/08/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	1.1	0.5 U	0.5 U	2.9	2.3	5.2	3.6	5.2	3.3	2.3	2.0 U
MW-12	Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-12	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.52	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2,0 U
MW-12	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-13	Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	4.8
MW-13	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U .
MW-13 Duplicate	Water	03/06/02	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2,0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-13	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
V																								

Sample Designation	Matrix	Date Sampled	Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	Irans-1, 2-dichloroethene	l, l-Dichloroethane	cts-1, 2-dichloroethene	Chloroform	I.I.I-Trichloroethane	Benzene	Trichloroethene	Toluene	Tetrachloroethene) Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene	Naphthalene
MW-14	Water	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0:5 U	0.5 U	2.0 U	2.0 U	2,0 U	2.0 U	2.0 U
MW-14	Water	10/21/04	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-15	Water	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 ปั	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-15	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
NOTE: µg/L = microgram	F							D. D	ni e ni e		· · · · · · · · · · · · · · · · · · ·		· •	-								· ·		

Table 9
Metals
Groundwater and Stormwater
McCall Oil and Chemical

					1		1
			Date				
Location		Matrix	Sampled	Arsenic	Cadmium	Chromium	Copper
Monitoring Wells - C	Froundwater µ						
EX-1	Total	Water	02/11/04	3.0			
EX-1 Duplicate	Total	Water	02/11/04	2.6			
EX-1	Dissolved	Water	02/11/04	1.6			
EX-1 Duplicate	Dissolved	Water	02/11/04	1.4			
EX-1	Total	Water	10/22/04	2.6			
EX-1	Dissolved	Water	10/22/04	1.9			
EX-2	Total	Water	02/11/04	57.1			
EX-2	Dissolved	Water	02/11/04	65.8			1
EX-2	Total	Water	10/21/04	64.6			!
EX-2	Dissolved	Water	10/21/04	72.4			
EX-3	Total	Water	02/12/04	87.2			
EX-3	Dissolved	Water	02/12/04	86.1			ŀ
EX-3	Total	Water	10/21/04	90.0			
EX-3	Dissolved	Water .	10/21/04	90.2			
				,			1
EX-4/MW-2	Dissolved	Water	12/20/00	8.8		8.1	2.0
EX-4/MW-2	Total	Water	03/07/02	56.8		5.8	7.7
EX-4/MW-2	Dissolved	Water	03/07/02	47.5		2.4	0.6
EX-4/MW-2	Dissolved	Water	10/03/02	14.9		0.4	2.5
EX-4/MW-2	Total	Water	02/13/04	53.1			
EX-4/MW-2	Dissolved	Water	02/13/04	55.2]		1
EX-4/MW-2	Total	Water	10/22/04	63.9			ļ
EX-4/MW-2	Dissolved	Water	10/22/04	48.3		•	
EX-7	Total	Water	02/12/04	0.5			
EX-7	Dissolved	Water	02/12/04	0.5 U			
EX-7	Total	Water	10/21/04	0.6			
EX-7 Duplicate	Total	Water	10/21/04	0.5 U			
EX-7	Dissolved	Water	10/21/04	0.5 U			
EX-7 Duplicate	Dissolved	Water	10/21/04	0.5 U			
MW-1	Dissolved	Water	12/20/00	2.50 U		9.5	514
MW-1	Total	Water	03/07/02	0.80		1.9	139
MW-1	Dissolved	Water	03/07/02	1.00 U		2.0	130
MW-1	Dissolved	Water	10/03/02	0.8		0.3	196
MW-1	Total	Water	02/11/04	0.6		1.2	82.8
MW-1	Dissolved	Water	02/11/04	0.6		0.7	70.8
MW-1	Total	Water	10/22/04	0.9		0.2 U	242
MW-1 Duplicate	Total	Water	10/22/04	1.0		0.2 U	245
MW-1	Dissolved	Water	10/22/04	1.0		0.2 U	250
MW-1 Duplicate	Dissolved	Water	10/22/04	0.9		0.2 U	246
		l					<u> </u>

Table 9
Metals
Groundwater and Stormwater
McCall Oil and Chemical

· ·			Date				
Location		Matrix	Sampled	Arsenic	Cadmium	Chromium	Copper
MW-3	Dissolved	Water	12/20/00	39.7	0.10 U	0.4 U	0.5
MW-3	Total	Water	03/07/02	42.8	0.10	6.4	11.0
MW-3 Duplicate	Total	Water	03/07/02	41.6		6.7	7.8
MW-3	Dissolved	Water	03/07/02	43.4	i i	5.7	1.3
MW-3 Duplicate	Dissolved	Water	03/07/02	43.4	1	2.5	0.7
MW-3	Dissolved	Water	10/03/02	49		0.7	0.9
MW-3	Total	Water	02/11/04	46.9		2.5	1.8
MW-3	Dissolved	Water	02/11/04	46.1	ļ	2.3 2.4	0.4
MW-3	Total	Water	10/22/04	48.8	1	0.5	0.4
	Dissolved	Water	10/22/04	46.6 49.1		0.3	0.6
MW-3	Dissolved	water	10/22/04	49.1		0.2	0.4
MW-4	Dissolved	Water	12/20/00	12.7		1. 00 U	1.00 U
MW-4	Total	Water	03/07/02	9.2		8.70	29.90
MW-4	Dissolved	Water	03/07/02	10.0		3.30	1.20
MW-4	Dissolved	Water	10/03/02	16.5		0.20 U	0.70
MW-5	Total	Water	02/11/04	15.7			
MW-5	Dissolved	Water	02/11/04	15.4			
MW-5	Total	Water	10/22/04	24.6	<u> </u>		1
MW-5	Dissolved	Water	10/22/04	19.5	i		ł
141 44 -2	Dissolved	Water	10/22/04	19.5			
MW-6	Total	Water	10/25/01	29.8		67.8	98.8
MW-6 Duplicate	Total	Water	10/25/01	27.3		35.0	48.6
MW-6	Dissolved	Water	10/25/01	18.2]	1.00 U	2.00 U
MW-6 Duplicate	Dissolved	Water	10/25/01	19.0	i	1.00 U	2.00 U
MW-6	Total	Water	03/08/02	6.8		9.6	18.3
MW-6	Dissolved	Water	03/08/02	20.4		0.80	2.5
MW-6	Dissolved	Water	10/03/02	23.5		0.20	0.6
MW-6 Duplicate	Dissolved	Water	10/03/02	23.3	1	0.30	0.9
MW-6	Total	Water	02/12/04	22.6	1		
MW-6	Dissolved	Water	02/12/04	22.6	i		
MW-6	Total	Water	10/21/04	22.4			
MW-6	Dissolved	Water	10/21/04	23.1			
MW-7	Total	Water	10/25/01	18.1		127	164
MW-7	Dissolved	Water	10/25/01	3.04		1.00 U	2.00 U
MW-7	Total	Water	03/08/02	4.4		9.1	19.1
MW-7	Dissolved	Water	03/08/02	3.5		2.3	1.3
MW-7	Dissolved	Water	10/04/02	9.1		2.1	0.7
MW-7	Total	Water	02/12/04	5		0.7	0.7
MW-7 Duplicate	Total	Water	02/12/04	5		0.8	0.4
MW-7	Dissolved	Water	02/12/04	5.1		2.0	0.3
MW-7 Duplicate	Dissolved	Water	02/12/04	5.1		0.7	0.3
MW-7	Total	Water	10/21/04	5.1		1.1	0.5 0.1 U
MW-7	Dissolved	Water	10/21/04	6.3		1.1	0.1 U
· · · · ·	2,555,700	1		""		•••	"" "

Table 9
Metals
Groundwater and Stormwater
McCall Oil and Chemical

			Date					
Location		Matrix	Sampled	Arsenic	Cadmium	Chromium	Сорг	er
MW-8	Total	Water	10/25/01	43.9		225	394	
MW-8	Dissolved	Water	10/25/01	2.33		1.00 U	2.00	U
MW-8	Total	Water	03/07/02	4.3		14.7	36.1	
MW-8	Dissolved	Water	03/07/02	8.6		2.9	1.3	
MW-8	Dissolved	Water	10/04/02	9.6		1.4	0.3	
MW-8	Total	Water	02/12/04	5.4		1.7	2.0	
MW-8	Dissolved	Water	02/12/04	5.6		0.8	0.2	
MW-8	Total	Water	10/21/04	10.1]	3.1	3.8	
MW-8	Dissolved	Water	10/21/04	10.3		1.0	0.1	U
MW-9	Total	Water	02/13/04	18.3				
MW-9	Dissolved	Water	02/13/04	19.0]	
MW-9	Total	Water	10/22/04	28.5	ļ			
MW-9	Dissolved	Water	10/22/04	30.7				
MW-10	Total	Water	02/13/04	30.9			İ	
MW-10	Dissolved	Water	02/13/04	28.9				
MW-10	Total	Water	10/21/04	32,8				
MW-10	Dissolved	Water	10/21/04	34.2				
MW-12	Total	Water	02/13/04	23.3				
MW-12	Dissolved	Water	02/13/04	23.7				
MW-12	Total	Water	10/21/04	27.4				
MW-12	Dissolved	Water	10/21/04	28.2				
MW-14	Total	Water	02/12/04	1.5		1.3	1.7	
MW-14	Dissolved	Water	02/12/04	1.5		2.6	1.3	
MW-14	Total	Water	10/21/04	2.7		0.6	2.4	
MW-14	Dissolved	Water	10/21/04	1.5		0.5	2.1	
MW-15	Total	Water	02/12/04	3.5			!	
MW-15	Dissolved	Water	02/12/04	3.4				
MW-15	Total	Water	10/22/04	7.6				
MW-15	Dissolved	Water	10/22/04	6.2			1	

Table 10 **Total Petroleum Hydrocarbons Upland Soil and Catch Basin Sediment** McCall/GWCC Portland, Oregon

	Ī			TPH - FIQ	
		Date			
Location	Matrix	Sampled	Gasoline	Diesel	Heavy Fuel Oil
Geoprobe Borings -					
GP-4 10-12	Soil	12/11/00	39 H		
GP-7 2-4	Soil	12/14/00	10 U		
GP-9 10-12	Soil	12/12/00	290 H		
GP-14 0-2	Soil	12/13/00	10 U	1	
GP-14 2-4	Soil	12/13/00	10 U	10 L	J 25 U
GP-14 20-22	Soil	12/13/00	10 U		
GP-15 0-2	Soil	12/13/00	10 U		1
GP-15 2-4	Soil	12/13/00	10 U		
GP-15 20-22	Soil	12/13/00	10 U	1	1
GP-16 0-2	Soil	12/13/00	10 U	1	l .
GP-16 2-4	Soil	12/13/00	10 U	1	
GP-16 16-18	Soil	12/13/00	10 U		3
GP-17 0-2	Soil	12/13/00	10 U		
GP-17 2-4	Soil	12/13/00	10 U	1	i e
GP-17 12-14	Soil	12/13/00	10 ປ	1	
GP-18 0-2	Soil	12/13/00	10 U	1	.
GP-18 2-4	Soil	12/13/00	10 U	1	1
GP-18 16-18	Soil	12/13/00	10 U		
GP-19 0-2	Soil	12/13/00	່. 10 ປ		1 25 U
GP-19 2-4	Soil	12/13/00	10 U		
GP-19 16-18	Soil	12/13/00	10 U	10 T	1 25 U
GP-20 2-4	Soil	12/13/00	10 U	10 0	1 25 U
GP-20 16-18	Soil	12/13/00	10 U	10 U	1 25 U
GP-22 10-12	Soil	02/09/01	17 H	310 F	160 Y
GP-23 16-18	Soil	02/09/01	10 U	80 H	
GP-24 12-14	Soil	02/09/01	10 U	74 H	130 Y
GP-24 16-18	Soil	02/09/01	10 U	65 H	180 Y
GP-25 10-12	Soil	02/09/01	10 U	72 H	250 Y
GP-25 14-16	Soil	02/09/01	10 U	65 H	160 Y
GP-26 14-16	Soil	02/09/01	10 U	68 H	170 Y
GP-26 18-20	Soil	02/09/01	10 U	10 U	1 25 U
GP-27 10-12	Soil	02/12/01	10 U	10 T	48 Y
GP-28 12-14	Soil	02/12/01	10 U	10 U	1 25 U
GP-29 4-6	Soil	02/12/01	710 H	18000 H	36000 F
GP-30 4-6	Soil	02/12/01	500 U	4200 H	1700 F
GP-31 14-16	Soil	02/13/01	6300 DI	I 35000 Di	H 38000 DF
GP-32 10-12	Soil	02/13/01	10 U	10 T	29 F
GP-33 16-18	Soil	02/13/01	10 U	130 H	280 Y
GP-34 12-14	Soil	02/13/01	10 U	48 H	160 Y
GP-35 10-12	Soil	02/13/01	10 U	25 H	55 Y
GP-36 12-14	Soil	02/13/01	18 H	240 H	430 Y
GP-38 10-12	Soil	02/14/01	47 H	930 Y	' 440 Y
GP-48 10-12	Soil	11/14/01	20 U	1420	1300
GP-49 10-12	Soil	11/14/01	_ 20 ປ	128	171
GP-50 10-12	Soil	11/14/01	20 U	265	543
Catch Basins - Sedim					
S-1	Soil	12/15/00	26 Y	400 H	1900 O
S-2	Soil	12/15/00	21 Y	300 H	2200 DO
S-3	Soil	12/15/00	580 Y	2400 H	7600 DO
S-3	Soil	11/04/04	210 U	1600 JF	
S3-01C	Soil	12/15/00	10 U		30 Y

Notes: U = Not detected at method reporting limit. F = Fingerprit of the sample matches the elution pattern of calibration standard

L = The fingerprint resembles a petroleum product, but the elution pattern indicates the presence of lighter weight constituents.

H = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of heavier weight constituents.

O = The fingerprint resembles oil, but does not match the calibration standard.

Y - The fingerprint resembles a petroleum product in the correct carbon range, but the elution pattern does not match the calibration standard.

Z = The fingerprint does not resemble a petroleum product.
D = The reported result is from a dilution.

TABLE 11
PAHs and SVOCs (µg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

Matrix [2	GP-7 2-4		GP-9 10-12		GP-14 0-2		GP-14 2-4	•	GP-14 20-2	Z	GP-15 0-2	:	GP-15 2-4		GP-15 20-22	L	GP-16 0-2	:	GP-16 2-4		GP-16 16-18
Matrix I	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil
Date Sampled	12/11/00		12/14/00		12/12/00		12/13/00		12/13/00		12/13/00		12/13/00		12/13/00		12/13/00		12/13/00		12/13/00		12/13/00
· [LPAI	ls .										
Naphthalene	110	U	40	JD	70	JD	7.5	U	7.4	Ü	25		1	J	7.9	U	150		1	j	7.9	U	27
Acenaphthylene	110	U	83	U	160	U	0.7	J	0.5	j	6	J	0.5	J	7.9	U	40		7.6	U	7.9	υ	5
Acenaphthene	110	U	70	JD	80	JD	7.5	U	7.4	υ	9.4	U	7.6	U	7.9	U	84		7.6	U	7.9	U	7
Fluorene	110	υ	89	D	280	D	7.5	U	0.6	J	3	J	0.8	J	7.9	U	240		7.6	U	7.9	U	4
Phenanthrene	140	D	520	D	1800	D	7.5	U	7.4	U	55		13		7.9	U	1300	D	3	J	7.9	U	36
Anthracene	10	1D	140	D	210	D	0.9	J	0.7	J	8	ı	2	J	7.9	U	65		7.6	υ	7.9	U	8
2-Methylnaphthalene	110	U	380	D	420	D	0.6	J	0.5	J	9.9		1	J	7.9	U	64		1	j	0.8	J	8
Total LPAH	150		1239		2860		2.2		2.3		106.9		18.3				1943		5		0.8		95
												HPA	ls .										
Fluoranthene	70	JD	83	U	310	D	6	J	2	J	94		34		7.9	U	330		8	J	1	J	30
Pyrene	160	D	83	U	1200	D	7	J	2	J	130		29		0.7	J	390		7	J	1	J	89
Benz(a)anthracene	80	JD	240	D	330	D	4	J	E	J	40		17		7.9	U	110		5	J	0.9	J	38
Chrysene	100	JD	740	D	1300	D	7	J	1	J	63		28		0.7	J	130		7	J	1	J	48
Benzo(b)fluoranthene	50	JD	83	υ	160	U	5	J	1	1	56		25		0.7	J	96		6	J	1	J	30
Benzo(k)fluoranthene	40	ъ	83	U	160	U	5	j	1	J	46		22		0.9	j	97		6	j	2	J	33
Benzo(a)pyrene	80	JD	70	JD	210	D	6	J	0.8	J	76		24		0.7	J	160		5	J	1	J	44
Indeno(1,2,3-cd)pyrene	60	JD	30	JD	60	Œ	6	J	1	J	89		24		1	J	130		7	J	2	J	28
Dibenz(a,h)anthracene	20	JD	20	JD	20	JD	1	J	15	U	10	1	5	J	0.7	J	20	J	1	J	16	U	4
Benzo(g,h,i)perylene	70	JD	60	JD	100	ъ	8	J	2	j	100		23		1	J	140		8	J	2	J	33
Total HPAHs	730		1160		3530		55		42		704		231		6		1603		60		12		377
								_				SVO	Cs .										
3- and 4-Methylphenoi																							
Coelution	2200	U	1700	U	3300	υ	150	U	150	U	190	U	150	U		U	60	J	150	U	160	U	180
Dibenzofuran	110	U	20	JD	80	JD	0.6	J	0.7	J	2.0	J	0.8	J	7.9	U	47		7.6	U	7.9	U	2
Butyl Benzyl Phthalate	220	U	170	U	930	D	15	U	15	U	19	U	4	J	16	υ	26	υ	0.7	J	16	U	18
Di-n-octyl Phthalate	2200	U	1700	IJ	3300	U	150	U	150	U	190	U	150	U	160	υ	260	υ	150	U	160	U	180
	NOTE: µg/k	g = mi	crograms per i	kilogn	ım or part per bi	llion, 1	U = not detected	al 00	above the ind	icated	method repor	ting lis	nit. J = estim	aled o	concentration, I) = rc	ported result is f	rom a	dilution.				

TABLE 11
PAHs and SVOCs (µg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

Sample Designation	GP-17 0-2	-	GP-17 2-4		GP-17 12-14	,	GP-18 0-2		GP-18 2-4	•	JP-18 16-1	8	GP-19 0-2		GP-19 2-4		GP-19 16-18	. 1	GP-20 2-4	G	P-20 16-18	3 (GP-22 10-12	G	P-23 16-18	GP-24 1		GP-24 10	
Matrix	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	Soil		Soil	
Date Sampled	12/13/00		12/13/00		12/13/00		12/14/00		12/14/00		12/14/00		12/14/00		12/14/00		12/14/00		12/14/00		12/14/00		02/09/01		02/09/01	02/09/	01	02/09/0	10
															LPAH ₈														
Naphthalene	7.4	U	7.5	U	26		7.6	U	7.6	U	7.3	U	7.3	U	6	J	2	J	2	ı	7.1	U	47		32	36		18	
Acenaphthylene	7.4	υ	0.6	J	7.0	J	7.6	U	7.6	U	0.5	J	7.3	U	0.8	J	0.8	j	0.4	J	7.1	U		J	10	5	J	3	
Acenaphthene	7.4	υ	7.5	U	8.7	U	7.6	U	7.6	U	7.3	U	7.3	U	7.4	υ		U		U	7.1	U	27		9)	8	J	22	
Fluorene	7.4	U	7.5	U	4	J	7.6	U	7.6	U	0.6	J	7.3	U	0.9	J	0.7	J		U	7.1	U	82		8 1	8	J	6	
Phenanthrene	7.4	U	7.5	U	37		7.6	U	7.6	U	4	J	7.3	U	4	J		U	4	J	7.1	U	180		66	47		37	
Anthracene	7.4	υ	0.6	J	6	J	7.6	U	7.6	U	1	J	7.3	U	1	J	0.7	J	1	j	7.1	U	11		16	10		7	
2-Methylnaphthalene	7.4	U	2 _	j	6	J	0.5	J	7.6	U	0.6	1	7.3	υ	1	,	0.7	<u></u>	0.8	J	7.1	U	160		13	19		4	
Total LPAH		•	3.2		86		0.5				6.7				13.7		4.9		8,2				512		154	133		97	
															HPAHs														
Fluoranthene	5	1	7	J	63		6	J	2	J	9.4		2	J	4	J	0.9	j	6	J	2	J	49		120	54		34	
Pyrene	4	ı	8.8		68		6	J	2	J	11		2	J	5	J	2	J	7	J	4	J	63		150	70		54	
Benz(a)anthracene	3	j	4	J	29		3	J	1	J	6	J	2	J	3	j	0.5	j	3	J	2	j	18		30	15		13	
Chrysene	5	J	7	J	36		6	J	2	J	11		2	J	4	j	0.6	J	5	J	3	J	24		39	19		18	
Benzo(b)fluoranthene	4	ı	4	J	28		5	j	1	J	8.4		2	J	4	j	7.1	U	3	J	ı	j	19		28	13		9.5	
Benzo(k)fluoranthene	3	J	5	J	31		4	j	2 .	j	5	J	2	J	4	j	0.7	j	4	J	1	J	15		27	12		11	
Benzo(a)pyrene	4	J	5	J	37		4	J	1	J	6	J	2	j	5	j	0.6	J	4	J	2	J	21		38	. 17		15	
ndeno(1,2,3-cd)pyrene	5	J	5	J	28		5	J	1	J	6	J	2	1	7	J	0.8	J	3	J	1	J	25		27	12		11	
Dibenz(a,h)anthracene	1	J	0.8	J	5	J	1	J	15	υ	2	j	1	J	1	J	0.7	J	0.9	J	14	U	4 .	j	5 .	3	J	2	
Benzo(g,h,i)perylene	6	J	6	J	27		5	J	<u>1</u>	J	7	J	2	J	7	J	0.9	J	4	J	3	J	23		32	14		12	
Total HPAHs	40		53		352		45		13		71.8		19		44		7.7		40		19		261		496	229	į.	180	
-											_				SVOC ₈			_	····										
- and 4-Methylphenol																													
Coclution	150	U	150	U	170	U	150	υ	150	U	150	U	150	U	150	U		U	150	U	140	U		Ŭ	60 .	110	1	90	
Dibenzofuran	7.4	U	7.5	υ	2	J	7.6	υ	7.6	U	0.5	J	7.3	U	1	J	0.9	J	0.5	J	7.1	U	32		6 .	4	J	2	
utyl Benzyl Phthalate	1	J	15	υ	17	U	1	J	15	U	3	J	1	3	15	U	14	U	15	U	14	U		U	10.0 t				
Di-n-octyl Phthalate	150	U	150	IJ	,	Ť	150	IJ	150	11	4	- (0.8		150	U	140	U	150	1.1	140	U	9.6	U	10.0	j 9.9) t	9.0	

M\Data\Projects\Remod\Jobs\meccallG\WC\datahase\Table 11 Upland soil and catch basi sediment SVOCs+PAHs - JSCS.XLS\SVOC+PAH Soil

TABLE 11

PAHs and SVOCs (μg/kg)

Upland Soil and Catch Basin Sediment

McCall/GWCC

	GP-25 10-12	GP-25 14-16	GP-26 14-16) (GP-27 10-12	(3P-28 12-1	4	GP-29 4-6		GP-30 4-6	-	GP-31 14-1	16	GP-32 10-12	2 (JP-33 16-18	_	4 12-14	GP-35 10	-12	GP-36 12-14	4 C	P-38 10	-12
Matrix	Soil	Soil	Soil	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	Soil		Soil		Soil	- 1
Date Sampled	02/09/01	02/09/01	02/09/01	02/09/01		02/12/01		02/12/01		02/12/01		02/12/01		02/13/01		02/13/01		02/13/01	02/	/13/01	02/13/0	<u> </u>	02/13/01		02/14/0	ı
				·								LPAHs														
Naphthalene	67	100	61	15		8		7,2	U	870	D	150	Ü	4300	D	7.1	ับ	12		56	4	J	54		800	D
. Acenaphthylene	17	15	8	J 1	J	0.9	j	7.2	U	380	U	150	U	1500	U	7.1	U	3	J 9	9.8	4	J	9	J	83	ı
Acenaphthene	15	25	17	8.4	U	7.6	U	7.2	U	1000	D	150	U	5500	Đ	7.1	U	8	U :	10 .	7.7	υ	9.4		200	- 1
Fluorene	18	21	14	2	J	1	J	7.2	U	1500	D	10	JD	12000	D	0.5	J	4	J :	13	3	J	10		130	- 1
Phenanthrene	110	150	83	11		7		7.2	U	3900	D	40	JD	37000	D	6	J	22		79	20		67		590	D
Anthracene	28	30	19	2	J	2	J	7.2	U	1100	D	20	JD	6300	D	7.1	υ	5	J :	17	4	J	13		110	
2-Methylnaphthalene	30	38	24	5	J	2	J	7.2	U	13000	D	20	JD	190000	D	2	j	5	J :	21	3	J	19		260	
Total LPAH	285	379	226	36		21				21370		90		255100		9		51	2	206	38		181		2113	$\overline{}$
												HPAH:														
Pluorenthene	160	160	86	12		6	J	7.2	U	1100	D	20	JD	2400	D	4	J	24		93	30		70		540	D
Ругепе	190	190	120	15		10		7.2	U	6800	D	80	JD	16000	D	5	J	34	1	120	38		95		650	D
Benz(a)anthracene	58	57	44	5	J	4	J	7.2	U	1100	D	150	υ	4200	D	2	J	8.5		29	10		29		120	1
Chrysene	71	69	52	7	J	4	J	7.2	U	2600	D	100	JD	14000	D	6	J	13		41	13		37		150	1
Benzo(b)fluoranthene	50	40	33	5	J	4	j	7.2	U	400	D	40	JD	1000	JD	3	J	9	;	31	12		25		94	
Benzo(k)fluoranthene	40	38	31	4	j	4	j	7.2	U	200	JD	10	JD	600	JD	2	J	8.4	:	24	12		25		87	
Benzo(a)pyrene	66	59	46	6	J	5	j	7.2	U	730	D	70	JD	2600	D		J	11		34	19		34		130	l
Indeno(1,2,3-cd)pyrene	72	56	45	7	J	6	j	1	J	200	JD	40	JD	500	JD	2	j	7	J :	23	14		25		78	
Dibenz(a,h)anthracene	9 .	J 9	j 8	J 1	J	1	j	7.2	U	100	JD	30	JD	400	JD	0.7	J	2	j	4	1 2	J	4	j	12	į
Benzo(g,h,i)perylene	61	48	36	6	J	5	j	7.2	υ	400	JD	60	JD	1000	JD	2	j	7	J :	26	15		25		73	,
Total HPAHs	777	726	501	68		49		1		13630		450		42700		29		124	4	425	165		369		1934	\Box
							_					SVOC														\Box
3- and 4-Methylphenoi																										-
Coelution	50 .	J 160	180	84	U	76	υ	72	U	3800	U	1500	U	15000	U	71	U	80	U S	95 (J 77	U	80	J	1000	DΪ
Dibenzofuran	11	11	9	J 2	J		J	7.2	U	380	U	6	ΙD	3000	D		U	2		8		Ĵ	6	j	45	- 1
Butyl Benzyl Phthalate	9,9 t	J 9.B 1	U 9.9	U 8.4	U	2	j	7.2	U	380	U	150	υ	1500	U	7.1	U	8.0	u e	9.5 t	J 0.7	J	9.4	Ü	8.4	u
Di-n-octyl Phthalate	9.9			U 8.4	Ū		Ū	7.2	Ū	380	Ũ	150	ŭ	1500	Ŭ		ŭ			9.5		Ū		ŭ	8.4	ŭ
											-									-,,				-		

TABLE 11
PAHs and SVOCs (µg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

Sample Designation	S-1	S-2	S-3	S-3	S3-01C
Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Date Sampled	12/15/00	12/15/00	12/15/00	11/04/04	12/15/00
			LPAHs		
Naphthalene	200 JD	50 JD	400 JD	64 JD	12 U
Acenaphthylene	40 JD	20 JD	60 JD	37 JU	12 U
Acenaphthene	200 JD	30 JD	720 U	26 JU	12 U
Fluorene	100 JD	20 JD	3600 D	72 JD	12 U
Phenanthrene	1500 D	320 D	3600 D	660 JD	12 U
Anthracene	400 JD	50 JD	2600 D	140 JD	12 U
2-Methylnaphthalene	100 JD	50 JD	400 JD	31 JU	0.6 J
Total LPAH	2540	540	10660	936	0,6
			HPAHs		
Fluoranthene	2600 D	690 D	5800 D	1400 JD	3 J
Pyrene	2600 D	770 D	5500 D	1200 JD	3 J
Benz(a)anthracene	1300 D	440 D	2500 D	400 JD	2 j
Chrysene	2000 D	740 D	5300 D	1100 JD	3 1
Benzo(b)fluoranthene	2000 D	780 D	4100 D	1160 JD	3 J
Benzo(k)fluoranthene	1500 D	540 D	3400 D	270 JD	2 J
Benzo(a)pyrene	1900 D	670 D	3700 D	490 JD	2 J
Indeno(1,2,3-cd)pyrene	1500 D	490 D	3200 D	530 JD	2 J
Dibenz(a,h)anthracene	300 JD	100 JD	800 JD	150 JD	24 U
Benzo(g,h,i)perylene	1600 D	500 D	3600 D	790 JD	3 J
Total HPAHs	17300	5720	37900	7430	23
			SVOCs		
3- and 4-Methylphenol		•			
Coelution	13000 U	1900 U	4000 JD	3000 JD	240 U
Dibenzofuran	100 JD	20 JD	200 JD	69 JD	12 U
Butyl Benzyl Phthalate	1500 D	2500 D	5000 D	930 JD	1 J
	13000 U	1900 U	14000 U	11000 JD	2 J

Table 12 Metals Upland Soil and Catch Basin Sediment McCall/GWCC Portland, Oregon

			T T					1	T T
!			Date					i	
Location		Matrix	Sampled	Arsenic	Cadmium	Chromium	Copper	Lead	Zinc
Geoprobe Borings	s - Soil mg/kg		Junipieu	Littorine	Codiniani	CIII ÇIII GIII	Сорры	- Daily	Zine
GP-4 10-12	Total	Soil	12/11/00	3.3		11.6	15.7	<u> </u>	
GP-7 2-4	Total	Soil	12/14/00	1		13.3	16.8	į	
GP-9 10-12	Total	Soil	12/12/00	2.4		14.2	19.3		
GP-14 0-2	Total	Soil	12/14/00	2.2		13.1	17.4		
GP-14 2-4	Total	Soil	12/14/00			12.3	13.4		
GP-14 20-22	Total	Soil	12/14/00	4.6		14.5	19.0		
GP-15 0-2	Total	Soil	12/14/00	1.7		11.1	18.1		
GP-15 2-4	Total	Soil	12/14/00	1.8		12.7	14.7		
GP-15 20-22	Total	Soil	12/14/00	3.1		22.8	27.1		
GP-16 0-2	Total	Soil	12/14/00	1.6		10.9	15.4		
GP-16 2-4	Total	Soil	12/14/00	1.8		14.0	15.4		
GP-16 16-18	Total	Soil	12/14/00	3.2		12.9	20.7		
GP-17 0-2	Total	Soil	12/14/00	1.5		9.96	13.4		
GP-17 2-4	Total	Soil	12/14/00	1.8		11.9	14.6		
GP-17 12-14	Total	Soil	12/13/00	2.2		16.6	18.7		
GP-18 0-2	Total	Soil	12/14/00	1.3		8.88	13.7		
GP-18 2-4	Total	Soil	12/14/00	1.6		11.1	13.5		
GP-18 16-18	Total	Soil	12/14/00	2.5		12.6	16.9		
GP-19 0-2	Total	Soil	12/14/00	1.6		10.1	12.3		
GP-19 2-4	Total	Soil	12/14/00	1.9		12.9	15.0		
GP-19 16-18	Total	Soil	12/14/00	1.6		10.6	13.2		
GP-20 2-4	Total	Soil	12/14/00	1.6		11.1	14.2		
GP-20 16-18	Total	Soil	12/13/00	1.6		9.11	11.6		
Catch Basins - Sec									
S-1	Total	Sediment	12/15/00	5.2	2	48.9	137	145	638
S-2	Total	Sediment	12/15/00	7.5	1.42	63.7	316	211	584
	m 1	0.1	10/15/00	25.0		.,,	10.50		
S-3	Total	Sediment	12/15/00	37.9	2.86	144	1050	454	985
S-3	Total	Sediment	11/04/04	25.6	1.9	189	1360	600	752
S3-01C	Total	Sediment	12/15/00	4.4	0.12	11.9	27.4	8.58	82.7
Note: U = not detected a	at method reporting	limit. μg/kg = mi	crograms per	kilogram. pp	b = parts per	billion.			

TABLE 13
Shoreline Groundwater Comparison with Surface Water Screening Criteria (μg/L)
McCall Oil and Chemical

	6-			· · · · · ·																		-		-											
	Screen	_	an																																
	Leve	is T	Mean ion													٠.																			
	Chronic WQC	Reference	Arithmetic Me Concentration	EX-2 12/20/0		EX-2 03/07/02	2	EX-2 10/04/02	(EX-2 02/12/04		EX-2 0/21/04	. 1	EX-3 2/20/00	. (EX-3 03/07/02		EX-3 10/04/02		EX-3 02/12/04		EX-3 10/21/04		EX-5 12/20/00	(EX-5 03/07/02		EX-5 10/04/02		MW-5 12/20/00		MW-5 03/07/02	! [']	MW-5	
Low Molecular Weight PAHs			-														•					,		···········											
Naphthalene	620	a	0.03	0.01	J	0.013	U	0.022	J	0.023	J ·	0.012	U	0.02	J	0.013	U	0.038	J	0.012	U	0.012	U	0.009	J	0.028	J.	0.022	J	0.008	U	0.034	J	0.012	
Acenaphthylene	307	ь	0.01	0.006	U	0.011	U	0.011	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.011	U	0.006	U	0.011	· U	0.011	U	0.006	U	0.011	U	0.011	
Acenaphthene	520	a	0.08	0.02	J	0.041	J	0.110	J	0.025	J	0.037	J	0.01	J	0.0093	U	0.023	J	0.0088	U	0.0088	U	0.009	J	0.024	J	0.015	J	0.007	U	0.0094	U	0.0088	ś
Fluorene	39	b	0.07	0.006	U	0.013	. U	0.012	U	0.012	U	0.012	U	0.006	U	0.013	U	0.012	U	0.012	U	0.012	U	0.006	U	0.013	U	0.012	U	0.006	U	0.013	U	0.012	
Phenanthrene	19	ь	0.14	0.04	J	0.047	J	0.057	J	0.039	J .	0.021	J	0.04	J	0.06	Ĵ	0.06	J	0.028	J	0.016	J	0.02	J	0.034	J	0.039	J	0.007	U	0.011	U	0.021	
Anthracene	21	b	0.03	0.006		0.016	U	*****	U	0.015	U	0.015	U.		U	0.019	J	0.016	J	0.015	U	0.015	U	0.006	U	0.016	U	0.017	J	0.006	U	0.016	U	0.025	
2-Methylnaphthalene	72	b	0.02	0.008	J	- 0.012	J	0.017	J	0.013	J	0.012	U	0.008	U	0.012	U	0.015	J	0.012	U	0.012	U	0.008	U	0.012	U	0.012	U	0.008	U	0.013	U	0.012	
High Molecular Weight PAHs				•																		-					-								
Fluoranthene	7.1	Ь	0.05	0.009	J	0.017	J	0.013	U	0.013	U	0.013	U	0.01	J	0.038	J	0.034	J	0.013	U	0.013	U	0.009	J	0.013	U	0.013	U.	0.007	· U	0.014	U	0.031	
Pyrene	10.1	ь	0.08	0.03	J	0.039	J	0.074	J	0.036	J	0.032	J	0.03	J	0.064	J	0.061	J	0.028	J	0.030	J	0.040	J	0.046	J	0.067	J	0.007	U	0.024	j	0.037	
Benz(a)anthracene	2.2	ь	0.02	0.007	J	0.013	U	0.012	U.	0.012	U	0.012	U	0.008	J	0.013.	U	0.012	U	0.012	U	0.012	U	0.006	J	0.013	· U	0.012	U	0.005	U	0.013	U	0.030	
Chrysene	2.0	ь	0.03	0.007	J	0.015	U	0.014	U	0.014	U	0.014	U	0.01	J	0.015	U	0.014	U	0.014	U	0.014	U	0.008	J	0.015	U	0.014	U	0.006	U	0.015	·U	0.022	
Benzo(b)fluoranthene	0.68	b	0.02	0.006	J	0.021	U	0.020	U	0.020	U	0.020	U	0.006	J	0.021	U	0.020	Ū.	0.020	U	0.020	U	0.005	U	0.021	U	0.020	U	0.005	U	0.021	U	0.020	
Benzo(k)fluoranthene	0.64	b	0.01	0.006	J	0.021	U	0.020	U	0.020	U	0.020	U	0.006	J	0.021	U	0.020	U	0.020	U	0.020	U	0.003	J	0.021	U	0.020	U	0.003	U	0.021	U	0.020	
Benzo(a)pyrene	0.96	ь	0.02.	0.007	J	0.017	U	0.016	U	0.016	U	0.016	U	0.007	J	0.017	U	0.016	U	0.016	U	0.016	U	0.006	U	0.017	U	0.016	U	0.006	U	0.018	U	0.016	
Indeno(1,2,3-cd)pyrene	0.28	b	0.02	0.009		0.026	U	0.024	U	0.024	_	0.024	U	0.009	J	0.026	U	0.024	U	0.024	U	0.024	U	0.007	J	0.026	Ū	0.024	U	0.004	U	0.026	U	0.024	
Dibenz(a,h)anthracene	0.28	b	0.01	0.005		0.033	U ·	0.031	U	0.031	_	0.031	U		U	0.033	U	0.031	U	0.031	U	0.031	U	0.004	U	0.033	U	0.031	U	0.004	U	0.033	U	0.031	
Benzo(g,h,i)perylene	0.44	b	0.03	0.01	J	0.018	U	0.017	U	0.017	U	0.017	U	0.02	J	0.034	J	0.025	J	0.017	· U	0.017	U	0.03	J	0.054	J	0.031	J	0.005	U	0.018	U	0.017	
Total PAHs			0.68																																
Miscellaneous Semivolatiles										•																		-						-	
3- and 4-Methylphenol			0.12	0.02	J	0.055	U	0.051	U	0.051	U .	0.051	U	0.05	J	0.087	J	0.090	J	0.051	U	0.051	U	0.007	J	0.055	U	0.051	U	0.003	U	0.055	U	0.051	
Dibenzofuran	3.7	c	0.02	0.007	U	0.014	U	0.014	U	.0.014	U	0.014	Ú	0.007	U	0.014	U	0.014	U	0.014	U	0.014	U	0.007	U	0.014	U	0.014	U	0.007	U	0.015	U	0.200	
Butyl Benzyl Phthalate	3.0	a	0.02	0.02	U	0.028	U		U	0.026		0.026	U	0.02	U	0.028	U	0.026	U	0.026	U	0.026	U	0.02	U	0.028	U	0.026	U	0.02	U	0.028	U	0.048	
Di-n-octyl Phthalate	3.0	a	0.01	0.003	U	0.035	U	0.032	U	0.032	U	0.032	U	0.003	U	0.035	U	0.032	U	0.032	U	0.032	U	0.003	U	0.035	U	0.032	U	0.003	U	0.035	U	0.014	
Metals						- <u></u> -																													
Arsenic - Total			26							57		65								87		90													
Arsenic - Dissolved	150	d	22							66		72								86		90													
Chromium - Total			35																															、	
Chromium - Dissolved	24	d	1.4																																
Copper - Total			57																																
Copper - Dissolved	2.7	d	0.8																																
Volatile Organic Compounds			·																																
1,2-Dichloroethylene(cis)			1.1	0.5	· U	0.5	U	0.5	U					0.5	U	0.5	U	0.5	U					0.5	U	0.5	U	0.5	U	0.5	U	0.5	·U	0.5	
	21,900	a	0.25	0.5	U	0.5	U	0.5	U					0.5	U	0.5	U	0.5	· U					0:5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	
Tetrachloroethylene	840	a	0.25	. 0.5	U	0.5	U		U			·			U	0.5	U	0.5	U	·				0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	
Vinyl Chloride		i l	0.37	0.5	U	0.5	U	0.5	Ü					0.5	U	0.5	U	0.5	U					0.5	U	0.5	U	0.5	U	0.5	U	- 0.5	U	0.5	

Notes:

- U = Not detected at indicated quantitation limit; J = Estimated concentration; Bold value = detected concentration
- (a) DEQ 2004 AWQC
- (b) EPA 2003 Final Chronic Values
- (c) Oak Ridge National Lab Tier II Secondary Chronic Value
- (d) EPA, 2004; National Recommended Water Quality Criteria
- (e) City of Portland, 2004b, BES database transmittal on 1-30-04
- (f) Fuhrer et al., 1996; DEQ, 2002; 90th percentile value for Lower Columbia Basin

TABLE 13
Shoreline Groundwater Comparison with Surface Water Screening Criteria (μg/L)
McCall Oil and Chemical

	Screen Leve	_	Mean	Ċ										-																				
	Chronic WQC	Reference	Arithmetic Me Concentration	МŴ-5 I 10/03/02	-	MW-5 02/11/04		MW-5 10/22/04		MW-7 10/25/01		MW-7 03/08/02	2	MW-7- 10/04/02		MW-7 02/12/04		MW-7 Di 02/12/04	•	MW-7 10/21/04		MW-8 10/25/01		MW-8 03/07/02		MW-8 10/04/02		MW-8 02/12/04		MW-8 10/21/04		MW-14 02/11/04		MW-14 10/21/04
Low Molecular Weight PAHs																												-						
Naphthalene	620	a	0.03	0.023		0.025	J	0.012	U	5.00	U	0.086	J	0.020	J	0.012	U	0.012	U	0.012	U	5.00	U	0.16	J	0.38		0.031	J	0.012	U	0.023	J	0.012
Acenaphthylene	307	ь	0.01	0.011	U	0.011	U	0.011	U	5.00	U	0.025	J	0.011	U	0.011	U	0.011	U	0.011	U	5.00	U	0.011	U	0.210		0.011	U	0.011	U	0.011	U	0.011
Acenaphthene	520	a	0.08	0:0088	U	0.0088	U	0.0088	U	5.00	U	0.0092	U	0.0088	U	0.0088	U	0.045	J	0.032	J	5.00	U	0.58		0.78		0.34		0.21		0.0310	J	0.0088
Fluorene	39	b	0.07	0.012	U	0.012	U	0.012	U	5.00	U	0.013	U	0.012	U	0.012	U	0.012	U	0.012	U	5.00	U	0.56		0.91		0.36		0.22		0.012	U	0.012
Phenanthrene	19	ь	0.14	0.021	J	0.011	U	0.011	U	5.00	U	0.077	J	0.034	J	0.024	J	0.036	J	0.011	U	5.00	U	1.2		1.7		0.22		0.22		0.011	U	0.011
Anthracene	21	ь	0.03	0.022	J	0.015	U	0.015	U	5.00	U	0.039	J	0.031	J	0.019	J	0.029	J	0.015	U	5.00	U	0.097	J	0.380		0.028	J	0.015	U	0.015	U	0.015
2-Methylnaphthalene	72	ь	0.02	0.012	U	0.012	U	0.012	U	5.00	U	0.034	J	0.012	U	0.012	U	0.012	U	0.012	U	5.00	U.	0.081	J	0.160	J	0.012	U	0.0019	J	0.012	U	0.012
High Molecular Weight PAHs			*							<u> </u>					•												···							
Fluoranthene	7.1	Ь	.0.05	0.026	J	0.013	U	0.013	U	5.00	U	0.061	J	0.013	U	0.013	U	0.013	U	0.013	U	5.00	U.	0.22		0.73		0.035	J	0.048	J	0.013	IJ	0.013
Pyrene	10.1	ь	0.08	0.034	J	0.015	Ū	0.015	Ū	5.00	Ū	0.089	J	0.025	J	0.015	Ū	0.015	Ū	0.015	Ū	5.00	U	0.34		1.10		0.066	1	0.079	Ī	0.015	U	0.015
Benz(a)anthracene	2.2	ь	0.02	0.012	U	0.012	Ū	0.012	Ū	5.00	Ū	0.044	J	0.012	Ū	0.012	Ū	0.012	U	0.012	Ū	5.00	IJ	0.071	ī	0.390		0.012	U	0.012	Ū.	0.012	IJ	0.012
Chrysene	2.0	ь	0.03	0.014	Ū	0.014	Ū	0.014	Ū	5.00	Ū	0.045	J	0.014	Ū	0.014	Ū	0.014	U	0.014	U	5.00	IJ	0.16	Ī	0.56		0.014	U	0.014	U	0.012	II	0.014
Benzo(b)fluoranthene	0.68	ь	0.02	0.020	Ū	0.020	U	0.020	Ü	5.00	U	0.021	U	0.020	U	0.020	Ū	0.020	U	0.020	IJ	5.00	U	0.064	ī	0.350		0.020	U	0.020	U	0.020	IJ	0.020
Benzo(k)fluoranthene	0.64	ь	0.01	0.020	Ü	0.020	IJ	0.020	U	5.00	II	0.021	11	0.020	IJ	0.020	U	0.020	II	0.020	II	5.00	11	0.02	I I	0.330	Ť	0.020	U	0.020	U	0.020	T.I	0.020
Benzo(a)pyrene	0.96	ь	0.02	0.016	U	0.016	IJ	0.016	U	5.00	II	0.017	П	0.016	II.	0.016	U	0.016	U	0.016	11	5.00	ĭ i	0.089	ī	0.360	J	0.016	U	0.02	U	0.020	11	0.020
Indeno(1,2,3-cd)pyrene	0.28	6	0.02	0.024	Ü	0.024	11	0.024	U	5.00	H	0.026	II.	0.024	T I	0.014	U	0.010	U	0.024	T I	5.00	11	0.04	J.	0.25		0.010	U	0.010	U	0.010	11	0.010
Dibenz(a,h)anthracene	0.28		0.01	0.024	U	0.024	11	0.024	U	5.00	U	0.032	11	0.024	11	0.024	U	0.024	U	0.024	H	5.00	11	0.04	IJ	0.031	11	0.02	U	0.02	U	0.024	11	0.024
Benzo(g,h,i)perylene	0.44	h	0.01	0.037	U	0.017	U	0.031	U	5.00	U	0.099	ī	0.017	U	0.031	U	0.031	U	0.037	U	5.00	U	0.051	ī	0.310	U	0.031	U	0.031	U	0.031	U	
Total PAHs	0.44	"	0.68	0.017	U	0.017	O	0.017	U	3.00	U	0.077	J	0.017	U	0.017	U	0.017	U	0.017	U	3.00	U	0.057	J	0.510		0.017	U	0.017	U	0.017	U	0.017
			0.00		<u> </u>																													
Miscellaneous Semivolatiles																														•				
3- and 4-Methylphenol			0.12	0.051	U	0.051	U	0.051	U	5.00	U	1.1		0.05	U	0.051	U	0.051	U	0.051	U	5.00	U	0.22	J	1.60		0.051	Ū	0.051	U	0.051	U	0.051
Dibenzofuran	3.7	C	0.02	0.014	U	0.014	U	0.014	U	5.00	U	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U	5.00	U	0.18	J	0.014	U	0.092	J	0.014	U	0.014	U	0.014
Butyl Benzyl Phthalate	3.0	a	0.02	0.026	U	0.026	U	0.026	U	5.00	U	0.027	U	0.026	U	0.026	U	0.026	U	0.026	U	5.00	U	0.13	J	0.026	U	0.026	U	0.026	U	0.026	U	0.026
Di-n-octyl Phthalate	3.0	a	0.01	0.014	U	0.032	U	0.032	U	5.00	U	0.034	U	0.032	U	0.032	U	0.032	U	0.032	U	5.00	U	0.032	U	0.032	U	0.032	U	0.032	U	0.032	U	0.032
Metals	•																									_								
Arsenic - Total	,		26			16		25		18		4.4				5.0		5.0		5.1		44		4.3				5.4		10.1		1.5		2.7
Arsenic - Dissolved	150	d	22		•	15		20		3.0		3.5		9.1		5.1		5.1		6.3		2.3		8.6		9.6		5.6		10.3		1.5		1.5
Chromium - Total			35	'						127		9.1				0.7		0.8		1.1		225		15				1.7		3.1		1.3		0.6
Chromium - Dissolved	24	d	1.4	<u></u> .						1.0	U	2.3		2.1		2.0		0.7		1.1		1.0	U	2.9		1.4		0.8		1.0		2.6		0.5
Copper - Total	·		· ~ 57							164		19.1				0.5		0.4		0.1	U	394		36				2.0		3.8		1.7		2.4
Copper - Dissolved	2.7	d	0.8	· 						2.0	U	1.3		0.7		0.7		0.3		0.1	U	2.0	U	1.3		0.3		0.2		0.1	U			2.1
Volatile Organic Compounds	-	-			-																													
1,2-Dichloroethylene(cis)			1.1	0.5	U	0.5	П	0.5	11	2.9		2.1		2.5		5.2		5.3		3.2		1.2		0.5	U	1.1		0:5	U	1.2		0.5	1.1	1.0
	21,900	a .	0.25	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U.	0.5	U	0.5	U	0.5	U	0.5	U	0.5
Tetrachloroethylene	840	a	0.25	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	·U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U.	0.5	U	0.5	U	0.5	U	0.5	U	0.5
Vinyl Chloride		"	0.23	0.5	U	0.5	U	0.5	U	1.0	U	0.5	U	0.5	U	1.4	J	1.4	J	0.8	J	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
vinyi Cinoriuc			0.57	U.J	<u> </u>	0.5		0.5	U	1.0		0.5		0.5		1.4		4.4		0.0		1.0		0.5	<u> </u>	0.5		0.5		0.5		0.5	U	0.5

Notes:

- U = Not detected at indicated quantitation limit; J = Estimated concentration; Bold value = detected concentration
- (a) DEQ 2004 AWQC
- (b) EPA 2003 Final Chronic Values
- (c) Oak Ridge National Lab Tier II Secondary Chronic Value
- (d) EPA, 2002; National Recommended Water Quality Criteria
- (e) City of Portland, 2004b, BES database transmittal on 1-30-04
- (f) Fuhrer et al., 1996; DEQ, 2002; 90th percentile value for Lower Columbia Basin

TABLE 14 Comparison of Stormwater Data to Surface Water Criteria (µg/L) McCall Oil and Chemical

		Sc	reening	Levels																		
	Chronic WQC	Reference	COP Municipal Stormwater (e)	Willamette R. Background (f)	NPDES Permit Limits	Arithmetic Mean Concentration	S-1 12/20/00	S-1 03/06/02	S-1 04/07/05	S-2 12/20/00	·.	S-2 03/06/02	S-2 04/07/05	S-3 12/20/00	S-3 03/06/02		S-3 04/07/05	S-4 12/20/00	S-4 Dup 12/20/00		5-4 09/02	S-4 04/07/05
Low Molecular Weight PAHs																						
Naphthalene	620	a	0.08			0.03	0.03 J	0.03	J 0.031	J 0.0	7. J	0.025 J	0.012 U	0.07	J 0.025	J	0.012 U	0.04	J 0.04	J	0.012 U	0.012
Acenaphthylene	307	ь	0.06			0.02	0.006 J	0.011	U 0.037	J 0.0	2 J	0.011 U	0.026	0.095	U 0.011	U	0.011 U	0.095	U 0.096	U	0.011 U	0.011
Acenaphthene	520	a				0.04	0.02 J	0.0088	U 0.0088	U 0.0	2 J	0.0092 U	0.0088 L	0.095	U ' 0.0089	U	0.0088 U	0.14	0.12		0.085 J	0.0088
Fluorene	39	ь				0.08	0.02 J	0.012	U 0.026	J 0.0	4 J	0.013 U	0.012 U	0.02	J 0.013	U	0.012 U	0.36	0.34		0.17 J	0.012
Phenanthrene	19	ь	0.08			0.14	0.07 J	0.032	J 0.190	J 0.2	5	0.043 J	0.045		0.054		0.057 J	0.46	0.35		0.073 J	0.032
Anthracene	21	Ь				0.01	0.006 U	0.015		J 0.0		0.016 U					0.015 U	0.02		J	0.015 U	
2-Methylnaphthalene	72	ь				0.03	0.03 J	0.016				0.014 J	0.012 U		0.012		0.012 U				0.012 U	
High Molecular Weight PAHs	 						 															
Fluoranthene	7.1	ь	0.07			0.05	0.02 Ј	0.013	U 0.23	0.09	9	0.022 J	0.059	0.06	J 0.023	J	0.040 J	0.06	J 0.05	ī	0.01 U	0.013
Pyrene	10.1	ь	0.10			0.09	0.02 J	0.015		0.1		0.025 J	0.059				0.037 J	0.19	0.16		0.10 J	0.097
Benz(a)anthracene	2.2	ь				0.02	0.005 U			J 0.03		0.013 U					0.012 U	0.03	J 0.02	ī	0.012 U	
Chrysene	2.0	_b				0.04	0.008 J	0.014		J 0.0		0.015 U					0.012 U	0.12	0.09	ī	0.012 U	
Benzo(b)fluoranthene	0.68	Ь				0.03	0.006 J	0.020				0.021 U					0.020 U	0.03	J 0.03	ī	0.014 U	
Benzo(k)fluoranthene	0.64	ь				0.03	0.004 J	0.020				0.021 U					0.020 U	0.03			0.020 U.	
Benzo(a)pyrene	0.96	Ь				0.02	0.004 J			J 0.03		0.021 U					0.020 U				0.020 U.	
Indeno(1,2,3-cd)pyrene	0.28	ь				0.02	0.006 J	0.010		J 0.04		0.017 U					0.010 U	0.03			0.010 U 0.024 U	0.010
Dibenz(a,h)anthracene	0.28	L				0.02	0.004 U					0.020 U					0.024 U	0.02	J 0.008	J T	0.024 U	0.024
Benzo(g,h,i)perylene	0.28	ь				0.02	0.004 U	0.031				0.032 U					0.031 U			j.		
Total PAHs		۱۰۱	0.94			0.68	0.00/ 3	0.017	0.14	J 0.00	0 J	0.018 0	0.020	0.01	J 0.017	U	0.017 0	0.04	J 0.03	J .	0.017 U	0.017
			0.94			1 0.08	ļ		 _													<u>-</u>
Miscellaneous Semivolatiles									,													
3- and 4-Methylphenol		1 1				0.17	0.3 J	0.23	J 0.051			0.089 J	0.051 U				0.120 J	0.2		J	0.051 U	
Dibenzofuran	3.7	c				0.03	0.01 J	0.014				0.014 U					0.014 U	0.13	0.11		0.11 J	0.014
Butyl Benzyl Phthalate	3.0	a				0.10	0.1 J	0.19	J 0.20	0.		0.05 J	0.076 J				0.089 J	0.05	J 0.04		0.14 J	0.100
Di-n-octyl Phthalate	3.0	a				0.13	0.003 U	0.032	U 0.032	U 0.003	3 U	0.032 U	0.11 J	0.95	U 0.033	U	0.032 U	0.95	J 0.96 1	U	0.032 U	0.032
Metals*									-													
Arsenic - Total			4.5	2		0.3	0.5 U	. 0.5	U 0.5	U	1. U	0.5 U	0.5 U	-	0.5	U	0.5 U				0.6	0.5
Arsenic - Dissolved	150	d	4.0			0.3	[0.5	U		0.5 U		- 1	U .		0.5 U	0.5 1	J 0.5 T	U		0.5
Chromium - Total			14	1		1.7	0.4	0.4	· 7.0	2.0	0	1.1	0.6		1.2		1.9				0.9	1.1
Chromium - Dissolved	24	đ	3			. 1.1	1		1.3			0.7		2.9			1.3	0.8	0.6			0.2
Copper - Total			25	9	100	8	3.8	3.7	13.5	9.9	9	10.3	6.0		13		8.6				9.0	8.3
Copper - Dissolved	2.7	d	9			10	· ·		7.9			9.4		30			7.1	4.9	4.7			4.4
Cadmium - Total	-		1.1	<1		0.4			0.16			0.07			-		1.05					0.19
Cadmium - Dissolved	0.094	d	0.6			0.3			0.07			0.05					0.96			-		0.09
Lead - Total			38	13	400	10			27.1			2.33					4.14					6.15
Lead - Dissolved	0.54	l a l	3	. =		0.6			0.61		•	0.7			-		1.06	•		•		0.09
Zinc - Total			220	38	600	104		•	86.9			51.1					189		** *		,	89.80

U = Not detected at indicated quantitation limit; J = Estimated concentration

^{*} Metals criteria are dissolved basis; if no dissolved data available, metals are compared to total concentrations

(a) DEQ 2004 AWQC

⁽b) EPA 2003 Final Chronic Values

⁽c) Oak Ridge National Lab Tier II Secondary Chronic Value

⁽d) EPA, 2002; National Recommended Water Quality Criteria (e) City of Portland, 2004b, BES database transmittal on 1-30-04

⁽f) Fuhrer et al., 1996; DEQ, 2002; 90th percentile value for Lower Columbia Basin

Table 15 Comparative Loading Analysis McCall Portland Site

Input Parameters

Portland Annual Rainfall
Portland Metro Impervious Acreage
Portland Metro Impervious Runoff Coef.
McCall Total Acreage
McCall Runoff Coefficient
McCall Mean Groundwater Gradient
McCall Mean Hydraulic Conductivitiy
McCall Length of Shoreline
McCall Saturated Fill Thickness
Mean Annual Willamette River Dischg.

37	inches ⁽¹⁾
 17,600	acres ⁽¹⁾
0.75	unitless
36	acres
0.75	unitless
0.025	ft/ft
 0.013	ft/min
 1,500	feet
10	feet
33,000	cfs ⁽²⁾

Average Water Concentrations (µg/l)

	COP Municipal	Willamette R.	McCall	McCall
	Stormwater ⁽³⁾	Background ⁽⁴⁾	Stormwater ⁽⁵⁾	Groundwater ⁽⁶⁾
Metals				
Arsenic	4.5	2	0.3	22
Chromium	14	. 1	2	1.4
Copper	25	9	8	0.8
Lead	38	13	10	
Zinc	220	38	104	
PAHs				
Naphthalene	0.08		0.03	0.03
Acenaphthylene	0.06		0.02	0.01
Phenanthrene	0.08		0.14	0.14
Fluoranthene	0.07		0.05	0.05
Pyrene	0.10		0.09	0.08
Benzo(a)pyrene	0.05		0.02	0.02
Total PAHs	0.94		0.68	0.68
Average Flow (MGY)	13,261	7,800,000	27	19

Data Sources:

- (1) City of Portland, 2004a, Programmatic Source Control RI Work Plan
- (2) Average annual discharge at Willamette River Portland USGS #14211720
- (3) City of Portland, 2004b, BES database transmittal on 1-30-04
- (4) 90th percentile value, Lower Columbia Basin, per Fuhrer et al, 1996; DEQ, 2002
- (5) Average McCall RI stormwater concentration, Table 14
- (6) Average McCall dissolved metal groundwater concentration in shoreline wells, Table 13

NA = Not available

MGY= million gallons/year

FIGURES

Figure 1 Vicinity Map McCall Oil and Chemical

* Land use based on 1993 assessment records

Figure 2
Land Use Map
McCall Oil and Chemical

Figure 3
McCall Oil & Chemical Conceptual Site Model

Figure 7
LWG Round 2A Sample Locations
Willamette River Impact Assessment
McCall Oil and Chemical

Harbor-wide Median Concentration ...

LWG Sediment Chemistry Data

McCall Oil and Chemical

McCall Oil and Chemical

Harbor-wide Median Concentration

Figure 8.3

LWG Sediment Chemistry Data

McCall Oil and Chemical

Harbor-wide Median Concentration

LWG Sediment Chemistry Data

McCall Oil and Chemical

McCall Oil and Chemical

Harbor-wide Median Concentration .

LWG Sediment Chemistry Data
McCall Oil and Chemical

Analyte Not Detected

McCall Oil and Chemical

Butylbenzyl phthalate (ug/kg)

Analyte Not Detected

Di-n-octyl phthalate (ug/kg)

Harbor-wide Mean Concentration

Harbor-wide Median Concentration

Figure 8.11

LWG Sediment Chemistry Data

McCall Oil and Chemical

Time Series Concentration Plot - Total TPH McCall Oil and Chemical Corporation Portland, Oregon

Time Series Concentration Plot LPAHs McCall Oil and Chemical Corporation

Time Series Concentration Plot
HPAHs
McCall Oil and Chemical Corporation

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

July 14, 2006 030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Second Quarter 2006 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the second quarter 2006, and work planned for the third quarter 2006 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED SECOND QUARTER 2006

- data management and reporting
- project management and meetings

PLANNED THRID QUARTER 2006 RI TASKS

- data management and reporting
- project management and meetings

RESULTS

No samples were collected in second quarter 2006 and no new data was generated.

PROBLEMS ENCOUNTERED

No problems were encountered during second quarter 2006.

P:\Projects\McCall Portland\Reports\QtlyReport-2Q2006.doc

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

FIGURES

ANCHOR

Figure 1 Vicinity Map McCall Oil and Chemical

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

April 14, 2006 030162-01

Mr. Tom Gainer, P.E. Oregon Department of Environmental Quality 2020 SW 4th Avenue, Suite 400 Portland, Oregon 97201-4987

Re: First Quarter 2006 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the first quarter 2006, and work planned for the second quarter 2006 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED FIRST QUARTER 2006

- data management and reporting
- project management and meetings

PLANNED SECOND QUARTER 2006 RI TASKS

- data management and reporting
- project management and meetings

RESULTS

No samples were collected in first quarter 2006 and no new data was generated.

Problems Encountered

No problems were encountered during first quarter 2006.

If you have any questions, please let us know.

Ted McCall; McCall Oil and Chemical

Sincerely,

Cc:

ohn J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G.

Anchor Environmental, L.L.C.

FIGURES

ANCHOR

Figure 1 Vicinity Map McCall Oil and Chemical

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

January 13, 200% (030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Fourth Quarter 2005 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the fourth quarter 2005, and work planned for the first quarter 2005 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED FOURTH QUARTER 2005

- data management and reporting
- project management and meetings
- submitted comments on the Portland Harbor Interim Final Joint Source Control Strategy (ISCS)

PLANNED FIRST QUARTER 2006 RI TASKS

- data management and reporting
- · project management and meetings

RESULTS

No samples were collected in fourth quarter 2005 and no new data was generated.

Problems Encountered

No problems were encountered during fourth-quarter 2005.

P:\Projects\McCall Portland\Reports\QtlyReport-4Q2005.doc

If you have any questions, please let us know.

Ted McCall; McCall Oil and Chemical

Sincerely,

Cc:

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

, ------

FIGURES

& ANCHOR

Figure 1 Vicinity Map McCall Oil and Chemical

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

October 14, 2005 030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Third Quarter 2005 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the third quarter 2005, and work planned for the fourth quarter 2005 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED THIRD QUARTER 2005

- data management and reporting
- retrofitted catch basin S-3 and installed a fabric filter
- project management and meetings
- prepared comments on the Portland Harbor Interim Final Joint Source Control Strategy (JSCS)

PLANNED FOURTH QUARTER 2005 RI TASKS

- data management and reporting
- project management and meetings
- submit comments on JSCS to DEQ (October 10, 2005)

RESULTS

No samples were collected in third quarter 2005 and no new data was generated.

P:\Projects\McCall Portland\Reports\QtlyReport-3Q2005.doc

Problems Encountered

No problems were encountered during third quarter 2005.

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G.

Anchor Environmental, L.L.C.

Figure 1 Vicinity Map McCall Oil and Chemical

FIGURES

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

June 23, 2005 030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Second Quarter 2005 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the second quarter 2005, and work planned for the third quarter 2005 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED SECOND QUARTER 2005

- data management and reporting
- collected storm water samples from the four locations identified in the RI workplan
- responded to DEQ's February 22, 2005 comment letter on April 5, 2005
- project management and meetings

PLANNED THIRD QUARTER 2005 RI TASKS

- data management and reporting
- project management and meetings

RESULTS

On April 7, 2005, storm water samples were collected from the four locations identified in the RI workplan (S-1 through S-4). The locations of the storm water samples are shown in Figure 2. Samples from catch basins S-1 and S-2 were collected in advance of the filter fabric, sample S-3

P:\Projects\McCall Portland\Reports\QtlyReport-2Q2005.doc

was collected from the outfall, and S-4 was collected from the oil-water separator. Samples were test for the analytes outlined in the RI Workplan (Polynuclear Aromatic Hydrocarbons, Semi-volatile Organic Compounds, Total Petroleum Hydrocarbons, and total and dissolved metals). Copies of the field sampling data sheets are in Attachment A. The laboratory report and chain of custody documentation are in Attachment B. Review of the sampling and laboratory records revealed that the data were judged to be acceptable for their intended use.

The field and laboratory data are presented in Tables 1 through 3 as follows.

Table 1 Total Petroleum Hydrocarbons - Stormwater

Table 2 PAHs and SVOCs - Stormwater

Table 3 Metals - Stormwater

Problems Encountered

No problems were encountered during second quarter 2005.

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

TABLES

Table 1 **Total Petroleum Hydrocarbons Stormwater** McCall Oil and Chemical

				TPH - FIQ			
	Date						
Location	Sampled	Gasoline		Diesel		Heavy Fuel Oil	l
Catch Basins - Storm Wate	r μg/L (ppb)						
S-1W	12/20/00	1,100	Z	100	Ū	250	U
S-1W	03/06/02	110	U	110	U	270	U
S-1W	04/07/05	100	U	340	H	880	0
S-2W	12/20/00	100	U	100	U	250	U
S-2W	03/06/02	130	Z	110	U	260	U
S-2W	04/07/05	100	U	310	Y	430	0
s-3W	02/15/01	1,300	Z	510	Z	250	U
S-3W	03/06/02	110	U	110	Z	260	U
S-3W	04/07/05	120	Z	550	Y	1,000	0
Oil/Water Separator - Stor	m Water						
S-4W	02/15/01	270	Z	280	Z	250	U
S-4W Duplicate	02/15/01	260	Z	300	Z	250	U
S-4W	04/09/02	220	H	1,300	F	550	0
S-4W	04/07/05	100	U	440	Y	340	L

Notes: U = Not detected at method reporting limit. F = The fingerprint of the sample matches the elution pattern of calibration standard

L = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of lighter weight constituents.

H = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of heavier weight constituents.

O = The fingerprint resembles oil, but does not match the calibration standard.

Y = The fingerprint resembles a petroleum product in the correct carbon range, but the clution pattern does not match the calibration standard.

Z = The fingerprint does not resemble a petroleum product.

DET= Detected above method reporting limit (method reporting limit shown)
D = The reported result is from a dilution.

Table 3
Metals
Stormwater
McCall Oil and Chemical

Location		Matrix	Date Sampled	Arsei	nic	Cadmi	ium	Chromium	Copper	Lead	Zinc
Catch Basins - Stor	m Water μg/L					-		<u> </u>	СОРРО		
S-1W	Total	Water	12/20/00	0.5	U	0.05	U	0.4	3.8	0.43	200
S-1W	Total	Water	03/06/02	0.5	U	0.20	U	0.4	3.7	0.31	195
S-1W	Total	Water	04/07/05	0.5	U	0.16		7	13.5	27.1	86.9
S-1W	Dissolved	Water	04/07/05	0.5	U	0.07		1.3	7.9	0.61	47.8
S-2W	Total	Water	12/20/00	1	U	0.22		2.0	9.9	5.93	113
S-2W	Total	Water	03/06/02	0.5	U	0.20	U	0.6	10.3	1.13	73.3
S-2W	Total	Water	04/07/05	0.5	บ	0.07		1.1	9.4	2.33	51.1
S-2W	Dissolved	Water	04/07/05	0.5	U	0.05		0.7	6.0	0.7	42.9
S-3W	Dissolved	Water	12/15/00	1	U	0.63		2.9	29.6	1.62	596
S-3W	Total	Water	03/06/02	0.5	U	0.2	U	1.2	13.1	2.30	84.2
S-3W	Total	Water	04/07/05	0.5	U	1.05		1.9	8.6	4.14	189
S-3W	Dissolved	Water	04/07/05	0.5	U	0.96		1.3	7.1	1.06	182
Oil/Water Separate	or - Storm Wate	er μg/L (ppb)									
S-4W	Dissolved	Water	12/15/00	0.5	Ū	0.22		0.8	4.9	0.05	47.1
S-4W Duplicate	Dissolved	Water	12/15/00	0.5	U	0.21		0.6	4.7	0.04	45.0
S-4W	Total	Water	04/09/02	0.6		0.2		0.9	9	3.29	86.6
S-4W	Total	Water	04/07/05	0.5		0.19		1.1	8.3	6.15	89.8
S-4W	Dissolved	Water	04/07/05	0.5	U	0.09		0.2	4.4	0.09	46.8

FIGURES

TABLE 2
PAHs and SVOCs (µg/L)
Stormwater
McCall Oil and Chemical

													Sto	m Water		'					•			
Sample Designation Matrix Date Sampled	S-1 Water 12/20/00	(S-1 Water 03/06/02		S-1 Water 04/07/05		S-2 Water 12/20/00		S-2 Water 03/06/02		S-2 Water 04/07/05	S-3 Wat 12/20	er	S-3 Water 03/06/0	2	S-3 Water 04/07/05	S-4 Water 12/20/00		S-4 Duplicate Water 12/20/00	;	S-4 Water 04/09/02		S-4 Water 04/07/03	
									·				I	PAHs			<u> </u>							
Naphthalene	0.03	J	0.03	J	0.031	J	0.07	J	0.025	J	0.012 U	0.0	7 J	0.025	J	0.012 U	0.04	J	0.04	J	0.012	U	0.012	Ţ
Acenaphthylene	0.006	J	0.011	U	0.037	J	0.02	J	0.011	U	0.026 J	0.09	5. L	0.011	U	0.011 U	0.095	U	0.096	U	0.011	U	0.011	
Acenaphthene	0.02	J	0.0088	U	0.0088	U	0.02	J	0.0092	U	0.0088 U	0.09	5 L	0.0089	U	0.0088 U	0.14		0.12		0.085	J	0.009	
Fluorene	0.02	J	0.012	U	0.026	J	0.04	J	0.013	U	0.012 U	0.0	2 []	0.013	U ·	0.012 U	0.36		0.34	٠.	0.17	J	0.01	1
Phenanthrene	0.07	J	0.032	J	0.190	J	0.25		0.043	J	0.045 J	0.20	0	0.054	J	0.057 J	0.46		0.35		0.073	J	0.032	
Anthracene	0.006	U	0.015	U	0.039	J	0.02	J	0.016	U	0.015 U	0.09	5 L	0.015	U	0.015 U	0.02	J	0.01	J	0.015	U	0.015	1
2-Methylnaphthalene	0.03	J	0.016	J	0.012	U	0.05	J	0.014	J	0.012 U	0.09	6	0.012	U	0.012 U	0.09	J	0.10		0.012	U	0.012	J <u></u> .
Total LPAH	0.176		0.078		0.323		0.470		0.082		0.071	0.38	6	0.079		0.057	1.110		0.960		0.328		0.032	
													H	PAHs										.27-
Fluoranthene	0.02	\mathbf{J}_{\perp}	0.013	U	0.230		0.099		0.022	J	0.059 J	0.0	6 J	0.023	J	0.040 J	0.06	J	0.05	J	0.01	U	0.01	Ī
Pyrene	0.02	J	0.015	U	0.280		0.12		0.025	J	0.059 J	0.03	3 J	0.022	J	0.037 J	0.19		0.16		0.10	J	0.10	•
Benz(a)anthracene	0.005	U	0.012	U	0.081	J	0.03	J	0.013	U	0.012 U	0.00	7 J	0.012	U	0.012 U	0.03	J	0.02	J	0.012	U	0.012	į
Chrysene	0.008	J	0.014	U	0.140	J	0.06	\mathbf{J} .	0.015	U	0.014 U	0.03	3 J	0.015	U	0.014 U	0.12		0.09	J	0.014	U	0.014	1
Benzo(b)fluoranthene	0.006	J	0.020	U	0.150	J	0.04	J	0.021	U	0.021 J	0.0	1 J	0.020	U	0.020 U	0.03	J	0.03	J	0.020	U	0:020	1
Benzo(k)fluoranthene	0.004	J	0.020	U	0.049	J	0.03	J	0.021	U	0.020 U	0.00	8 J	0.020	U	0.020 U	0.02	J	0.01	J	0.020	U	0.020	1
Benzo(a)pyrene	0.006	U	0.016	U	0.100	J	0.03	J	0.017	U	0.020 U	0.09	5 L	0.017	U	0.016 U	0.03	J	0.02	J	0.016	U	0.016	τ
Indeno(1,2,3-cd)pyrene	0.006	J	0.024	U	0.089	J	0.04	J	0.026	U	0.020 U	0.0	1 J	0.025	U	0.024 U	0.02	J	0.02	J	0.024	U	0.024	1
Dibenz(a,h)anthracene	0.004	U	0.031	U	0.031	U	0.009	J	0.032	U	0.020 U	0.19	J	0.031	U	0.031 U	0.009	J	0.008	J	0.031	U	0.031	Ţ
Benzo(g,h,i)perylene	0.007	J	0.017	U	0.140	J	0.06	J	0.018	U	0.020 U	0.0	1 J	0.017	U_	0.017 U	0.04	J	0.03	J	0.017	U	0.017	τ
Total HPAHs	0.071				1.26		0.52		0.047		0.139	0.1	7	0.045		0.077	0.55		0.44		0.10		0.10	
													S	VOCs		· ·								
3- and 4-Methylphenol												•		•										
Coelution	0.3	J	0.23	J	0.051		0.49		0.089	J	0.051 U		3 L		J	0.120 J	0.2	J	0.2	J	0.051	U	0.051	Ţ
Dibenzofuran	0.01	J	0.014	U	0.014	U	0.02	J	0.014	U	0.014 U			*****	J	0.014 U	0.13		0.11		0.11	J	0.01	Ţ
Butyl Benzyl Phthalate	0.1	J	0.19	J	0.20		0.1	J	0.05	J	0.076 J			0.092	J	0.089 J	0.05	J	0.04	J	0.14	J	0.10	Ĵ
Di-n-octyl Phthalate	0.003	TT	0.032	TT	0.032	TT	0.003	U	0.032	U	0.11 J	0.95	5 U	0.033	U	0.032 U	0.95	U	0.96	U	0.032	U	0.032	J

Figure 1 Vicinity Map McCall Oil and Chemical

ATTACHMENT A FIELD SAMPLING DATA SHEETS

Ą .	&	A	NC	H	OR					6650	SW Red Portl		Lane, S		0	
🗸	٠, ١	RVI	RONME	NTAL.	L.L.C	•			Office:	(50	3) 670-1		Fax:		03) 67(0-1128
PROI	ECT N	MAN	E:	McCa	11 Oi1						ELL ID:					
	ADD				nd, OR			,			ND ID:		040	705	-3	
									\sim		UP ID:					()
WI	ND FI	ROM	N	NE	E	SE	s	SW	W	NW	LIG	HT (MEI	(MUIC	H	EAVY
. 1	WEAT	HER	: SU	NNY	(CLC	YQUC	RA	IN)		?	TEM	1PERA	TURE	(F)4	7.	
HVD	ROI (CY/	FVE	MEAS	IJREM	ENTS (Joannet () ()	1.6\		[Product	: Thickness]	[Water	Column]	in		riate resite) Column x Gal/ft)
	ate	_	Cime		ottom		roduct		Vater	T	-DTW	1	DTW	1		ıme (gal)
41-	7 05		:00	1	M -									X1		>
1	1	<u> </u>	:	 '										хз		
Gal/ft=	(dia./2)2	× 0.163	1"-/	A.041	7	0.163	9"	0.367	-42	0:655	6"	1,469	10"-	4.080	12" -	5.875
_				_	Pump (C) D	isposable Ba	iler (D) PVC/I	Ceffon Bailes	(E) Dedica	ted Bailer (F) Dedicated P	ать (G) Оі	her =			
GRO	UNDV	VATI	R SAN	IPLIN	G DAT	A (if proc	luct is dete	cted, do l	NOT sam	ple)		Sampl	e Depth			[√if used]
Bottle	Туре	I	Date	Ti	me	Method 6	Amoun	& Volu	me mL	Pres	ervative	(circle)	Ice	Filter	pН	1
VOA	Glass	7	1		:		3	40	ml		HC		YES	NO		
Ambe	r Glass	41	1105	15	:20	В	a	250(5	00 (00)	None	(HO)	1 ₂ SO ₄) _	YES	NO)	
White	White Poly / / : [250, 500, 1L None YES NO NA															
Yellov	w Poly	1	1		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	n Poly	1	1		:			250, 5	00, 1L		NaOH		YES	NO		
Red To	tal Poly	1	1		:			250, 5	00, 1L		HNO,		YES	NO.	•	V,
Red Di	ss. Poly	1	1		:		6	250,6	00, TL		HNO ₃) (YES	YES		
		1	7					250, 5	00, 1L				YES			
		To	tal Bottle	s (includ	duplicat	e count):	5									
	ВС	TTLE	TYPE	TYPICA	L ANALY	SIS ALLO	WED PER B	OTTLE T	YPE (Circi	e applicab	e or write n	on-stand	ard analysi	s below)		
	VOA-C			(8260B)												
wed ype	AMBER			(TPH-FIQ	(PAH)	-45 VO	3		-							
Alb T al	ARITO				2)									_		
Analysis Allowed per Bottle Type	GREEN															
Per Per	RED TO	TAL-Po	dy /	(As)	(C) (C	u) Cd	PH ZA							_		
	RED DE	SOLVE	- Poly	(As)	(Cr) (Cr)	Cd	PB ZA									
لببيا																
			Y DAT		Purge	Start Tir		<u>:</u> ,	_				Bailer In			
Meas.	Metl	rod [§]	Purge	d (gal)	P	H	E Cond	(سع)	Temp	° ℃		Diss O	(mg/l)	W	ater Qu	ality
4						•	,		-						<u>_</u>	
3	В											•				
2	В . ,								•							
1	В				, ,							•				
0	8		0.0		7	.49	57	7		21		7.	01	Eleon		oiles
[Casing]	[Select	A-G]	(Cumulati	ve Totals]			•		[Circle	units)					Clarity, Col	lor]
							•								*	

SAMPLER: Tim Stone (PRINTED NAME)

4	9	A		\sim					6650	ANCHOR 6650 SW Redwood Lane, Suite 110 Portland, OR 97224											
1		AIN	CH	UK	•						•	R 9722									
-	- P E	NVIRON	MENTAL,	L.L.C	•			Office:	<u>`</u> _	3) 670-1		Fax:	(5	03) 670)-1128						
		IAME:	McC								5-										
SITE	ADDF	RESS:	Portla	and, OR			_					1407	05-	· 4·							
		<u></u>					, 	<u> </u>		UP ID:				, ——	()						
	ND FR		N NE	E	SE	S	SW	(W)NW		HT		MUIC		EAVY						
. 1	WEAT!	HER:	SUNNY	/ CIT	YOUN	(ŔA			?	TEN	APERA	TURE:	CFY.		intermital						
HYD	<u>ROLO</u>	GY/LEV	EL MEAS	UREM	ENTS	Jearest 0.0	1 ft)		[Product T	hickness]	[Water	Columnj		[Water C	chumn x Gal/ft]						
Da	ate	Time		Bottom	DT-P	roduct	DI-	Water	DIP-	DTW	DTB	DTW		Volu	me (gal)						
46/	7 109	13:5	0 /	A_					-				X 1		~						
	1	:		•	<u> </u>	<u> </u>		•	<u> </u>				X 3		•						
Gal/ft =	(dia./2) ² >	0.163	AY GOTT	2"-	0.163	3"=	0.367	-4-	0.653	6"-	1.469	10"=	4:000	12"	5.875						
			mp (B) Peristalti							Dedicated F				_							
		ATER S	AMPLIN		_							e Depth		_	[vif used]						
Bottle		Date		ime	Method b	Amoun			Prese	rvative	(circle)	Iœ	Filter	pH_	 						
VOA		1 1	4200			132) ml		HCI		YES	NO								
Amber		941710	25 14	:40	В	2		500()I	(None)	proj h	H ₂ SO ₄)	(YES)	NO	<u> </u>	1						
White	Poly		<u> </u>	:	Ļ			50(11)		None	2	YES	(ON	NA	~						
Yellov	v Poly			<u>:</u>				500, 1L		H ₂ SO ₄		YES	NO								
Green	Poly			<u>:</u>				00, 1L		NaOH	_	YES	NO								
Red Tot	al Poly			:				000 AL		HNO		TES	NO)		-7						
Red Dis	ss. Poly	1 1		:			250, 5	00, IL		HNO		YES	TES /	/							
		1 1		:			250, 5	00, 1L				YES									
		Total B	ottles (includ	le duplica	te count):																
		TILE TYPE		L ANALY	SIS ALLO	WED PER B	OTTLET	YPE (Circle	e applicable	or write r	on-standa	urd analysi	s below)								
	VOA-G		(8260B)		14 2 1/4				_			·									
8 5	AMBER WHITE		(IPH-FIL	P	45VO	ريي	_														
Analysis Allowed per Bottle Type	YELLOW		1	3																	
\$ 8	GREEN-	Poly																			
₹ 8		TAL - Poly	(As)	(0-) (0	o) Cd	P6 Z1	<u> </u>														
i	RED DIS	SOLVED - Poly	(As)	(Cr) (Crr)	<u></u>	Pb 21	لرك														
WATT	I	ALITY D	ATA	Din	Start Ti	ma:					P /	Bailer In	lat Dani	<u> </u>							
					H	E Conc	1(::0)	Temp	• °C		Diss O ₂			ater Qu	124						
Meas.	Meth	ua- i ru	rged (gal)	⁻	 	E CORK	. (μο)	remu			J155 U	וייקאיין	77	ner Qu	шіу						
3	В	 -	•			•															
2	В		· · · · · · · · · · · · · · · · · · ·	<u> </u>	•			-			•										
	В		•	 			- 	-			<u>·</u>										
0	35		0.00	1	· 12	64	,	13.	41		- 1.	42	BOn-	1/1	0 0						
[Casing]	[Select		mistive Totals)		.ત્ર3	- 04		[Circle			<i>v</i> ·	<i>T</i> ~	CLEA	^/ (∠ Cladity, Col	(ALLENI)						
	•		·					•	•		_		•	• •	•						
										<u>(</u>	A	/									
SAMP	_	l'im Ston						_		1	XIA			<u> </u>	· .						
	(PRINTED N	AME)						SIGNATUR	4 0 /					_						

	Q	A 1		1 1/	<u> </u>					6650	SW Re	dwood	Lane,	Suite 11	10	
1 🎝		AI	NC	H (ノド	•				•		land, O				
-	-7 E	NVIR	ONME	NTAL,	L.L.C				Office:		3) 670-1		Fax	(5	503) 67	0-1128
	ECT N			McCa	11 Oil					W	ELL ID	: 5-	-3			
SITE	ADDI	RESS	:	Portla	nd, OF	₹				BLI	ND ID:	MO-	040	705	· - 2) -
										I	UP ID:	}				()
	ND FF			NE	B	SE	S	sw	(W)	NW		HT		MUIC	H	TEAVY
. 1	WEAT	HER:	SUI	NNY	Q	DUDY) / R/	NN)		?	TEN	IPERA	TURE	*F)/	<u>ي</u> .	
HYD	ROLC	GY/I	LEVEL	MEAS	UREM	ENTS	Nearest 0.0	01 ft)		[Product	Thickness]	[Water	Column)			elate sestal Column x Gal/ft]
$\overline{}$	ate		ime		ottom		roduct		Water	DTP	-DTW	DIB	DTW]	Volu	ıme (gal)
41	7 65	13	: 60	Ī	. 1/1	1	•				-			X 1		
1	1		:		141	7	•		•		•			Хз		_•
Gal/ft-	(dia./2)2	x 0.163	1/1	40.041	2"-	0.163	3"	0.367	4"=	0.653	6"	1.459	10"=	4.080	12"-	> _{5,875}
§ METH	OD& (A) S	obmend			Pump (C) I	isposable Ba	ile (D) PVC/	Teflon Baile	(E) Dedice	ted Bailer (F) Dedicated I	ramp (G) Ot	her - 9	rats		
GRO	UNDV	VATE	R SAN	APLIN	G DAT	A (if proc	duct is det	ected, do	NOT sam	ple)		Sample	e Depth	:		[vifused]
Bottle	Type	E	Date	Ti	me	Method ¹	Amoun	t & Voh	ime mL	Pres	ervative	[circle]	Iœ	Filter	рН	1
VOA	Glass	1	1		:		3	40	ml		на		УES	NO		
Ambe	r Glass	41	7/05	13	:40	(3	2	250, 5	00, L) (None	ZHO)	H ₂ SO ₄)	YES	N6		V
White	Poly	1	1		:		l L	250, 5	00 1D		None)	YES	7,16) NA	1/
Yellov	v Poly	1	7		:			250, 5	00, 1L		H ₃ SO ₄		YES	NO	_	<u> </u>
Green	Poly	1	1		:			250, 5	00, 1L		NaQH		YES	NO		
Red To		1	1		:			250/5	00, lL		HINO		(YES	NO		V
Red Di		7	7		:		i		00)1L		HNO		(YES)	778	_	1
		- 						 	00, 1L				YES			\vdash
<u></u> _		To	tal Bottle	s (include	duplicat	te count):	ñ							<u></u>		L
	ВС	TILET				SIS ALLO		BOTTLE T	YPE (Circ	e applicabl	e or write r	ion-stands	rd analys	is below)		
	VOA-G	lass		,(92 400)						- 15			<u>_</u>	·		
Analysis Allowed per Bottle Type	AMBER	- Class		(TPH-FIQ)	(PAH)	-V5V	10Cs				-					
를 È	WHITE	<u> </u>		₹	3											
돯	ABITOA	<u>_</u>														
夏夏	GREEN	- Poly TAL - Po		(4.4)	- C	w Ph.c.	171									
 ~ -		SOLVED		(As)	(0) (0)											
						AW C	<u> N</u>	} -								
WATI	R QU	ALIT	Y DAT	ſΑ	Purge	Start Ti	me:	:				Pump/l	Bailer Ir	let Dept	th:	
Meas.			Purge		P	H	E Con	d (µS)	Tem	, °C		Diss O ₂			ater Qu	ality
4							=======================================									
3	В	\neg										<u> </u>				
2	В													•		
1	В											<u>`</u>			1	
0	ح	_	0.0	DO 1	7	36	4	7	13.	64		7.	99	(Con	/CA	Coiless
[Custrg]	[Select			ve Totals)		ا يهرو-			[Circle						Charles Co	ior)
												•				

SAMPLER: Tim Stone

(PRINTED NAME) (SI

(SIGNATURE)

<u> </u>	^	•							6650	SW Re	dwood	Lane.	Suite 11	0	
4	\varkappa	14	V	H	DR			•	2000		land, O				
🗸	-7	NVIR	ONME	NTAL,	L.L.C.	•		Office:	(50:	3) 670-1	•	Fax		503) 670	0-1128
PROJ	ECT N	IAM	E:	McCa	l Oil	· · · · · · · · · · · · · · · · · · ·					5-	475	EPER		
SITE				Portla							MO-				'J .
					,					UP ID:		<u> </u>			(
WI	ND FE	ROM:	N	NE	E	SE	s	sw w	NW	ЦС	HT	MEI	DIUM	H	EAVY
	VEAT	HER:	SUI	VNY	de	DUDÝ	KA	N)	?	TEN	APERA	TURE	· FY	4.	
HAD	ROIC	CY/I	EVEL	MFASI	IRFM	ENTSA	Jearest 0.0	1.6)	(Product	Thickness)	(Water	Column]	iOi	(Water C	riste mitel Column x Gel/ft1
Da			ime	DT-B			roduct	DT-Water	DTP	DTW		DTW	7		me (gal)
	7 /05		2:00		/A			UA					X1		J.A
/	/ /U.)	 	:		· · · ·		-		-				X 3		
Gal/ft =	(dia./2) ²	x 0.163	101	0.041	20	0.163	3"=	0.367 4"	0.653	6"-	1.469	10"=	4.080	12"=	5675
					Pump (C) D	isposable Bei	ller (D) PVC/	Teflon Bailer (E) Dedica	ted Bailer (F)	Dedicated I	Pump (G) Ot	- 91			
GROU	JNDV	VATE	R SAN	PLIN(G DAT	A (if prod	luct is dete	ected, do NOT san	ple)		Sampl	e Depth	:		[Vifused]
Bottle			ate		me			& Volume mL		ervative	[circle]	Ice	Filter	pН	1
VOA	Glass	1	7				3	40 ml		HCI		YES	NO		
Ambe	Glass	13./	7/05	12	:30	G	2	250/500/1L	(None	(HCI)	H ₂ SO ₄) (YES	NO	<u> </u>	V
White	Poly	1	/				1	250, 500, 1L	7	None		YES	NO) NA	1/
Yellov	v Poly	7	/		:			250, 500, 1L		H ₂ SO ₄		YES	XO		
Green	Poly	7	/		:			250, 500, 1L		NaOH		YES	ŊQ		
Red To	al Poly	7	/		:		250, 500, JL		HNO.		YES	NO.	,		
Red Dis	ss. Poly	 	1		:			250/500 L		ANO.)	Ans)	YES)	
		7	1				(250, 500, 1L				YES			
		To	tal Bottle	s (include	duplicat	e count):	(5)								
	BC	TTLE T					WED PER B	OTTLE TYPE (Circ	le applicable	e or write :	non-stand	ard analys	is below)		
1	VOA-C	Zlass		(82603)			Z		5						
B B	AMBER			(TPH-FIQ)	$\overline{}$	TAN OC	َـــــ(ــة		>						
A S	WHITE			\Box	155	\rightarrow		.•							
Analysis Allowed per Bottle Type	GREEN	W - Poly - Poly			=				···						
2 B		TAL - Pol	by ((As)	(0) (0	i) (L	PLZ	7							_
]		SSOLVED		(4)	(Cr) (Cu)	M	DbZ	N)							
															
WATE	_		Y DAT			Start Ti	me:	N:A			_		ılet Dep		
Meas.	Meti	nod f	Purge	d (gal)	P	H	E Cond	i (μS) Tem	p ℃		Diss O	(mg/l)	W	ater Qu	ality
4															
3	В					•									
2	В]				•									
1	В					•									
0		15	0.0			.37	4		41		7.	05	Sligh		relitan
[Casing]	[Select	A-G]	[Cumulati	ve Totals]				[Circle	units)				7	(Clarity, Co	lorj 7

SAMPLER: Tim Stone (PRINTED NAME)

						٠.
		Co	lun	nhi	.	
						, '
1	44		nal			
Œ	, ; , ·	9	Sen	Vici	BS "	•
	_					•

umbla chain of custody sp#:_____

Services NC	13	17 South 13t	h Ave. • Ke	lso, WA (98626 ·	• (360)	577-72	22 • :	(800) 6	95-722	22x07	• FAX	(360)	636-10	68	P	AGE	· · · ·	\int_{-}	OF			CO	C#	
PROJECT NAME // C COLL						7			7	10	7	7	7	T^{-}		7	7	<u> </u>	$T^{-\frac{n}{2}}$	/	7	7	10	X* /	1 1 1
PROJECT NUMBER			, N.			\Box			. /	ן אַ	<i>'</i>	1884	0	/ /	8151AC	/ · /	′ . /		' <i>!</i>	~ /	. /	8		19	//
PROJECT MANAGER JOHN	SEND	ት		. 131		Ι.				5		/8	§ /		6	- /	\(\frac{1}{2}\)		_ /:		<i>[</i>	8/6	\mathcal{A}_{i}	8/	/ /
COMPANY/ADDRESS HOR	ENVI	SONWE	MTAL /	LLC	4			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$] /	口膏		\ <u>\$</u>	`/ '		DI WISING	2/_	8	V/I	2 / W	હીંફ્રે	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3/2	Y/3		/ /
6650 SW	REDI	1000	W.,#	110	• •	Ĭ ₹	/	88	/ §	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	JE.		/ . &		1.0151M	ध हैं।	8	// Š	/KE	3/4.€	78	74	1	7	/ /
CITY/STATE/ZIP PORTLA	ND, C	ok 9	722	4	/	δ			8~	18 3 L			() \$			2	å //	١١		\$ \$	/ ₫ /	/U,		/ /	' /
E-MAIL ADDRESS JRENDA					/	8				\$ 3 !	\$ 0 S	\$\$[\ \{\alpha}	56		2370 7			36.6	ंक्रे	σI	\(\frac{1}{2}\)	5/	/	/
PHONE 503-670-	TOBA	(21750)	3-670-	<u>:112</u>	<u>3 / [</u>		a a				\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$		18/ <u>\$</u>		8 F		3 8	8/0	ર્હે/ ફે	P /S	t /S	Y		
SAMPLER'S SIGNATURE	lone] 🕺	CH OF CONTAINERS	F]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		78			Change of Dissolved	1 8 5 5 E			K	16	:/	/	/
/SAMPLE I.D.	DATE	TIME	LAB I.D.		7 ₹		100	728	T.G.	140	<u>/°</u>	\Q.\{\alpha}	16.8	10.8	<u> </u>	/₹%		(Q)		/ <u>~</u>	<u> </u>	(,)	Щ		REMARKS
MO-040705-1	4/7/05	1230		$\mu,0$	5											Λ		Х			X	X.			
- -2		1340			{ {											X		X			X	X		4	
3		1520					Α.									X		X			X	X			
- 1-4		1440			1	7			 							Χ̈́		X			7	Ý			
<u> </u>	-	1990		*	▼						-					~				-		┝			
					<u> </u>				<u> </u>		-								_		<u> </u>				_
					 									Щ								<u> </u>	L_		
																									_
•																									ų.
	•																								
·				₹\$0																					
		INVO	ICE INFO	MATIO	N .	Circle	which	metak	are to	be an	alvzed:					<u> </u>						L		·	
REPORT REQUIREM		P.O. # _	 									B C	Car) ($\mathcal{N}_{\mathbf{G}}$)==(۵,	4~ N	n Ma	. NIL I	k Aa	No	9a 9	r Ti	sn vzn Hg
I. Routine Report: M Blank, Surrogate,		Bili To:		:																					Sn V Zn Hg
required																									
X II. Report Dup., MS,	MSD as	TURNAR	OUND RE	QUIREM	ENTS		ICATE																		CLE ONE)
TURNAROUND REQUIREMENT required24 hr48 hr.						دادا		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				4.	- 6.0	+	On	len.	. 0.	. Alea	Ru	tall	: Com en e	. P. 67	15-0	+.	alate,
III. Data Validation Report5 Day						1	F . 1	- (,,,		, ,	Δ	nue	Soll	7	4	~/ ~~	رېدو ر ام				- m	-75. 4	201	o de tax
Standard (10-15 working days												BR	ry	OPE	nny	190			Blys.	200	-1		1	pinin	,
	нероп	Pro	vide FAX Re	suits ·											· ·.		-			U	D.E.	Ty o	Ju	ver	
V. EDD	Requested Report Date														. :		· :								
A REI INGI II SI							nv:			—т			-						_	· · · ·					
/ with	RELINQUISHED BY: REC			MEC	EIVED	DY:						REI	unqt	ISHE	D BY:			-			RE	:CEIV	ED BY	:	
Signature I m HONE	Date/Time	INR-POX	Sign	ature		— b	ate/Tir	ne		-	Sig	nature	, .		- De	te/Tin	10			Signa	ture			Date	Time
Printed Name	A TIM YOR MINICION-1014 SIGNATURE				F	lm			-	Prir	ted N	ame		- FI	rm				Printe	d Na	me		Firm		

ATTACHMENT B

LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION

May 10, 2005

Service Request No: K2502588

John Renda Anchor Environmental 6650 SW Redwood Lane Suite 110 Portland, OR 97224

McCall Oil Portland (PDX)/021062-02 RE:

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on April 8, 2005. For your reference, these analyses have been assigned our service request number K2502588.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281.

Respectfully submitted,

Columbia Analytical Services, Inc.

Project Chemist

AS/dj

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case parrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product cluting in approximately the correct carbon range, but the clution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

Client:

Anchor Environmental

Service Request No.:

K2502588

Project:

McCall Oil

Date Received:

4/8/05

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Four water samples were received for analysis at Columbia Analytical Services on 4/8/05. No discrepancies were noted upon initial sample inspection. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Total and Dissolved Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Zinc for sample MO-040705-1 is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

Fuel Identification and Quantification by EPA Method 8015B

Sample Notes and Discussion:

The Gasoline results are semi-quantitative. Results are expected to exhibit a low bias due to a potential loss of volatile compounds during the extraction process.

No anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL4416: Benzoic Acid, 2-Methyl-4, 6-dinitrophenol, Pentachlorophenol. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 7.7%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No anomalies associated with the analysis of these samples were observed.

Approved by a Me Aprelia

Date

00005

Chain of Custody Documentation

CHAIN OF CUSTODY

	SR#:	K280 2588
_	\ _	000 #

An Employee - Owned Company 1317 South 13th Ave. • Kelso, WA 98626	• (360) 577-7222 • (800) 695-72	222x07 • FAX (360) 636-1068 PAGE _	OF COC #
PROJECT NAME /AC COLD OIL - PORTLAND (POX)			
PROJECT NUMBER			
PROJECT MANAGER JOHN RENDA	SALINE CONTAINERS SALINE CONTAI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1. See 1.
ANCHOR ENVIRONMENTAL, LLC	SWANNE STORY		
6650 SWREDWOOD IN #110	7 🗧 🎇 👸 🔞 🔞		
CITY/STATE/ZIP PARTY AND AR 9727 14	7 8 / 3 [. " 8 5		\$ \$ \$\\$\$\\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
E-MAIL ADDRESS TRENDA GAUCHOR ENV. COM PHONE 503-670-1108 X12 FAXS 503-670-1128		1	
MONE 503-670-1108x12 FAW 503-670-1128			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SAMPLER'S O'RINATURE		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	S S S S S S S S S S S S S S S S S S S
SAMPLE I.D. DATE TIME LAB I.D. MATRIX		ों है । १६ इं। १८ इं। १५ हैं । इं। १५ हैं । इं	TO SO TO THE REMARKS
MO-840705-1 4/7/05 1236 4,0 5	CONTAINERS OF CO	1	
1- 1-2 1 1340 1 1			
3 1510		 	
		 	~
1-1-4 1 1440 1		 	<u> </u>
	E-PA-T		
INVOICE INFORMATION	Circle urbies metals are to be ex-		
REPORT REQUIREMENTS P.O. #	Circle which metals are to be a		
I. Routine Report: Method BIII To:			Mn Mo Ni K Ag Na Se Sr Ti Sn V
Blank, Surrogate, as	Dissolved Metals: Al (As) Sb	Ba Be B Ca Cd Co Cr Cu Fe (Pb) Mg	Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg
VA :: 2	*INDICATE STATE HYDRO	CARBON PROCEDURE: AK CA WI N	ORTHWEST OTHER:(CIRCLE ONE)
II. Report Dup., MS, MSD as TURNAROUND REQUIREMENTS	SPECIAL INSTRUCTIONS	COMMENTS:	
24 hr48 hr.	* 4-5VOC	5: 4-nottulolenal	an Butylbennylphthalate.
(Includes oil row date)		A MINE A MANA	At the Air a retulationality
		Bucycongspermen	en butylbennyfethalete, Getys Di-A-octylphthalate, Dibengofuran
V. EDD			o, man of fine
Requested Report Date			İ
RELINQUISHED BY:	EIVED BY	RELINQUISHED BY:	RECEIVED BY:
1/8/05-0800 \ Traus fxaul	. 4/8/05 1520		
	Date/Time	Signature Date/Time	Signature Date/Time
Printed Name Printed Name	Firm	Printed Name Firm	Printed Name Firm

		/	_	ia Analytical Serv Receipt and Presei		PC	Abb	10	•
Pro	ject/Client_Anchor	- (mc Ca	(د کم ۱۱	Work Order K25	0 258	8		
Cod	oler received on 48-1	5	_ and op	ened on <u>4-8</u> -6	0 <u>5</u> by_	<u>bu</u>			
1.	Were custody seals on our If yes, how many and		lers?	Front				Y	N
2.	Were custody seals intact:			•				Y	N
3.	Were signature and date p	resent on th	e custody s	seals?	_			Y	N
4. 5.	Is the shipper's airbill ava	ailable and f	filed? If no	o, record airbill number	: <u>CAS Coun</u> iz	d	_	-1	_N
	Temperature of cooler(s) upon rec	eipt: (°C)	3.1					
	<u>-</u>	(°C)	•	2.10					
	Were samples hand deliver	red on the s	ame day as	collection?					N-
6.	Were custody papers prop	erly filled o	out (ink, sig	med, etc.)?		1		(y)	N
7.	Type of packing material	present	ven sla	Nos bubbleu	XOD, KEW	aler		`	
8.	Did all bottles arrive in g			1				(Y)	N
9.	Were all bottle labels com	plete (i.e ar	alysis, pre	servation, etc.)?	•			Y	N
10.	Did all bottle labels and	ags agree v	vith custody	y papers?				\bigcirc	N
11.	Were the correct types of	of bottles u	sed for the	tests indicated?				Ŷ	N
12.	Were all of the preserved	bottles rece	eived at the	lab with the appropria	te pH?			Y	N
13. Were VOA vials checked for absence of air bubbles, and if present, noted below?									N
14.	Did the bottles originate f	rom CAS/K	C or a branc	h laboratory?				Y	N
15.	Are CWA Microbiology	samples re	eceived wi	th >1/2 the 24hr. hold	time remaining fi	rom collection?		Y	N
16.	Was C12/Res negative?							Y	N
Exp	olain any discrepancies:_							·	
	<u> </u>								
_									
		<u> </u>							
				· · · · · · · · · · · · · · · · · · ·					
RE	SOLUTION:								
San	nples that required preser	vation or r	received or	ut of temperature:					
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials		
 								·	
<u> </u>								1	
									
<u> </u>									
_									
]	

PC Abble

General Chemistry Parameters

Analytical Report

Client: Project Name: **Anchor Environmental**

McCall Oil Portland (PDX)

Service Request: K2502588 Date Collected: 04/07/05

Project Number: 021062-02 Sample Matrix: Water

Date Received: 04/08/05

Solids, Total Suspended (TSS)

Units: mg/L (ppm)
Basis: NA

Analysis Method 160.2

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Analyzed	Result	Result Notes	
MO-040705-1 S-4	K2502588-001	5	1	04/13/05	37		
MO-040705-2 S-	K2502588-002	5	1	04/13/05	6		
MO-040705-3 S-1	K2502588-003	5	1	04/13/05	6		
MO-040705-4 S-7	K2502588-004	5	1	04/13/05	ND	•	
Method Blank	K2502588-MB	5	1	04/13/05	ND		

QA/QC Report

Client:

Anchor Environmental

Project Name:

McCall Oil Portland (PDX)

Project Number: 021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 04/13/05

Duplicate Summary Inorganic Parameters

Sample Name:

Batch QC

Lab Code:

K2502622-002DUP

Test Notes:

Units: mg/L (ppm)

Basis: NA

Analyte

Analysis Method

Sample Sample Result

Duplicate

Relative

Percent Result Result Average Difference Notes

Solids, Total Suspended (TSS)

160.2

38

MRL

5

46

19

QA/QC Report

Client:

Anchor Environmental

Project Name:

McCall Oil Portland (PDX)

Project Number:

021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 04/13/05

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K2502588-LCS

Units: mg/L (ppm)

Basis: NA

Test Notes:

CAS Percent Recovery Analysis Prep Percent Acceptance Result Analyte Method Method True Value Result Recovery Notes Limits Solids, Total Suspended (TSS) 160.2 91 None 358 324 85-115

Metals

METALS

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Anchor Environmental

Service Request: K2502588

Project No.:

021062-02

Project Name: McCall Oil Portland (PDX)

Sample No.	Lab Sample ID.
MO-040705-1	K2502588-001
MO-040705-1	K2502588-001 DISS
MO-040705-1D	K2502588-001D
MO-040705-1S	K2502588-001s
MO-040705-2	K2502588-002
MO-040705-2	K2502588-002 DISS
MO-040705-3	K2502588-003
MO-040705-3	K2502588-003 DISS
MO-040705-4	K2502588-004
MO-040705-4	K2502588-004 DISS
Method Blank	K2502588-MB

Were	ICP interelement corrections applied?	·		Yes/No YE	<u> 18</u>
Were	ICP background corrections applied?		•	Yes/No YE	is .
	If yes-were raw data generated before application of background corrections?			Yes/No No	<u>-</u> -
Com	If yes-were raw data generated before				
			. "		
Sign	ature:	Date:	shlor		

METALS

· **-1-**

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-040705-1 5-4

Lab Code: K2502588-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1 .	4/20/05	4/26/05	0.5		
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.19		
Chromium	200.8	0.2	1	4/20/05	4/26/05	1.1		
Copper	200.8	0.1	1	4/20/05	4/26/05	8.3		
Lead	200.8	0.02	1	4/20/05	4/26/05	6.15		
Zinc	200.8	0.5	1	4/20/05	4/26/05	89.8		

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-040705-1 5-4

Lab Code: K2502588-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	U	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.09		
Chromium	200.8	0.2	1	4/20/05	4/26/05	0.2		
Copper	200.8	0.1	1	4/20/05	4/26/05	4.4		
Lead	200.8	0.02	1	4/20/05	4/26/05	0.09		
Zinc	200.8	0.5	1	4/20/05	4/26/05	46.8		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-040705-2 5-3

Lab Code: K2502588-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	Ū	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	1.05		
Chromium	200.8	0.2	1	4/20/05	4/26/05	1.9		
Copper	200.8	0.1	1	4/20/05	4/26/05	8.6		
Lead	200.8	0.02	1	4/20/05	4/26/05	4.14		
Zinc	200.8	0.5	1	4/20/05	4/26/05	189		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Units: pG/L

Matrix: WATER

Basis: NA

Sample Name: MO-040705-2 5-7

Lab Code: K2502588-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	ם	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.96		
Chromium	200.8	0.2	1	4/20/05	4/26/05	1.3		
Copper	200.8	0.1	1	4/20/05	4/26/05	7.1		
Lead	200.8	0.02	1	4/20/05	4/26/05	1.06		
Zinc	200.8	0.5	1	4/20/05	4/26/05	182		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-040705-3 5-\

Lab Code: K2502588-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	g	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.16		
Chromium	200.8	0.2	1	4/20/05	4/26/05	7.0		
Copper	200.8	0.1	1	4/20/05	4/26/05	13.5		
Lead	200.8	0.02	1	4/20/05	4/26/05	27.1		
Zinc	200.8	0.5	1	4/20/05	4/26/05	86.9		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Units: pG/L

Basis: NA

Matrix:

WATER

Sample Name: MO-040705-3 5

Lab Code: K2502588-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	ט	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.07		
Chromium	200.8	0.2	1	4/20/05	4/26/05	1.3		
Copper	200.8	0.1	1	4/20/05	4/26/05	7.9		
Lead	200.8	0.02	1	4/20/05	4/26/05	0.61		
Zinc	200.8	0.5	1	4/20/05	4/26/05	47.8	П	

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Matrix: WATER

Units: µG/L

Basis: NA

Sample Name: MO-040705-4 5-1

Lab Code: K2502588-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	ט	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.07		
Chromium	200.8	0.2	1	4/20/05	4/26/05	1.1		
Copper	200.8	0.1	1	4/20/05	4/26/05	10.3		
Lead	200.8	0.02	1	4/20/05	4/26/05	2.33		
Zinc	200.8	0.5	1	4/20/05	4/26/05	51.1		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected: 04/07/05

Project Name: McCall Oil Portland (PDX)

Date Received: 04/08/05

Matrix: WATER

Units: pG/L

Basis: NA

Sample Name: MO-040705-4 3-7

Lab Code: K2502588-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	U	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.05		
Chromium	200.8	0.2	1	4/20/05	4/26/05	0.7		
Copper	200.8	0.1	1	4/20/05	4/26/05	9.4		
Lead	200.8	0.02	1	4/20/05	4/26/05	0.70		
Zinc	200.8	0.5	1	4/20/05	4/26/05	42.9		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Date Collected:

Project Name: McCall Oil Portland (PDX)

Date Received:

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: Method Blank

Lab Code: K2502588-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	4/20/05	4/26/05	0.5	Ū	
Cadmium	200.8	0.02	1	4/20/05	4/26/05	0.02	ט	
Chromium	200.8	0.2	1	4/20/05	4/26/05	0.2	ט	$\overline{}$
Copper	200.8	0.1	1	4/20/05	4/26/05	0.1	Ū	
Lead	200.B	0.02	1	4/20/05	4/26/05	0.02	ט	
Zinc	200.B	0.5	1	4/20/05	4/26/05	0.5	U	

% Solids: 0.0

- 5a -

SPIKE SAMPLE RECOVERY

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Units: pg/L

Project Name: McCall Oil Portland (PDX)

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MO-040705-1S

Lab Code: K2502588-001S

Analyte	Control Limit %R	Spike Result	С	Sample C Result	Spike Added	₩R	Q	Method
Arsenic	70 - 130	18.6	П	0.5	20.0	90		200.8
Cadmium	70 - 130	18.8		0.19	20.0	93		200.8
Chromium	70 - 130	19.8		1.1	20.0	93		200.8
Copper	70 - 130	26.7		8.3	20.0	92		200.8
Lead	70 - 130	24.8	M	6.15	20.0	93		200.8
Zinc	- 1i	107	ĪΠ	89.8	20.0	86		200.8

METALS -6-**DUPLICATES**

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil Portland (PDX)

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name:MO-040705-1D

Lab Code: K2502588-001D

Analyte	Control Limit(%)	Sample (S)	C	Duplicate (D)	С	RPD	ō	Method
Arsenic		0.5		0.5		3		200.8
Cadmium	20	0.19		0.19		2		200.8
Chromium	20	1.1		1.4	\top	20		200.8
Copper	20	8.3		8.5		3		200.8
Lead	20	6.15		6.31	1	3		200.8
Zinc	20	89.8		91.1		1		200.8

-7-

LABORATORY CONTROL SAMPLE

Client:

Anchor Environmental

Service Request: K2502588

Project No.: 021062-02

Project Name: McCall Oil Portland (PDX)

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aqueou	ıs ug/L			Solid (mg/kg)						
Analyte	True	Found	%R	True	Found	C	Limits	€R			
Arsenic	20.0	19.0	95				ĺ				
Cadmium	20.0	19.0	95			11					
Chromium	20.0	18.8	94								
Copper	20.0	19.0	95		1						
Lead	20.0	18.7	94								
Zinc	20.0	18.4	92		İ	T					

Fuel Identification Quantification EPA Method 8015

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005 Date Received: 04/08/2005

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-040705-1

Lab Code:

K2502588-001

Units: ug/L Basis: NA

Extraction Method: Analysis Method:

EPA 3510C

8015M

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q_	MRL_	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	04/14/05	04/20/05	KWG0506011	
Diesel Range Organics (DRO)	440	Y	100	1	04/14/05	04/20/05	KWG0506011	
Residual Range Organics (RRO)	340	L	250	I	04/14/05	04/20/05	KWG0506011	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	60	33-133	04/20/05	Acceptable	
o-Terphenyl	77	52-128	04/20/05	Acceptable	
n-Triacontane	90	50-150	04/20/05	Acceptable	

Comments:

Printed: 04/26/2005 15:56:44 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR47378

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005 Date Received: 04/08/2005

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-040705-2

Lab Code:

K2502588-002

Units: ug/L Basis: NA

Level: Low

Extraction Method:

EPA 3510C

Analysis Method:

8015M

Analyte Name	Result C	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	120 Z	100	1	04/14/05	04/20/05	KWG0506011	
Diesel Range Organics (DRO)	550 Y	7 100	1	04/14/05	04/20/05	KWG0506011	
Residual Range Organics (RRO)	1000 C	250	1	04/14/05	04/20/05	KWG0506011	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	64	33-133	04/20/05	Acceptable	
o-Terphenyl	78	52-128	04/20/05	Acceptable	
n-Triacontane	94	50-150	04/20/05	Acceptable	

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-040705-3

Lab Code:

K2502588-003

۷-۱

Units: ug/L Basis: NA

•

. Level: Low

Extraction Method:

EPA 3510C

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	Ū	100	1	04/14/05	04/20/05	KWG0506011	
Diesel Range Organics (DRO)	340	H	100	1	04/14/05	04/20/05	KWG0506011	
Residual Range Organics (RRO)	880	0	250	1	04/14/05	04/20/05	KWG0506011	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	62	33-133	04/20/05	Acceptable	
o-Terphenyl	73	52-128	04/20/05	Acceptable	
n-Triacontane	89	50-150	04/20/05	Acceptable	

Comments:

Printed: 04/26/2005 15:56:46 u:\Stealth\Crystal.rpt\Formlim.rpt

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-040705-4

. K2502588-004

Units: ug/L Basis: NA

Extraction Method: EPA 3510C

Level: Low

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL_	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	04/14/05	04/20/05	KWG0506011	
Diesel Range Organics (DRO)	310	Y	100	1	04/14/05	04/20/05	KWG0506011	
Residual Range Organics (RRO)	430	0	250	1	04/14/05	04/20/05	KWG0506011	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	63	33-133	04/20/05	Acceptable	
o-Terphenyl	71	52-128	04/20/05	Acceptable	
n-Triacontane	84	50-150	04/20/05	Acceptable	

Comments:

Printed: 04/26/2005 15:56:48 u:\Stealth\Crystal.rpt\Formim.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR47378

Page 1 of 1

00031

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Date Collected: NA

Sample Matrix:

Date Received: NA

Service Request: K2502588

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

KWG0506011-5

Units: ug/L

Extraction Method:

Lab Code:

EPA 3510C

Basis: NA

Analysis Method:

8015M

Level: Low

Auglieta Nama	Domis	^	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	Note
Analyte Name	Result	y	MIKL	Factor	Extracted	Allalyzeu	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	04/14/05	04/20/05	KWG0506011	
Diesel Range Organics (DRO)	ND	U	100	1	04/14/05	04/20/05	KWG0506011	
Residual Range Organics (RRO)	ND	U	250	1	04/14/05	04/20/05	KWG0506011	
								

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	70	33-133	04/20/05	Acceptable	
o-Terphenyl	77	52-128	04/20/05	Acceptable	
n-Triacontane	89	50-150	04/20/05	Acceptable	

QA/QC Report

Client: Project: **Anchor Environmental**

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Surrogate Recovery Summary

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: Analysis Method:

EPA 3510C

8015M

Units: PERCENT

Service Request: K2502588

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
MO-040705-1	K2502588-001	60	77	90
MO-040705-2	K2502588-002	64	78	94
MO-040705-3	K2502588-003	62	73	89
MO-040705-4	K2502588-004	63	71	84
Method Blank	KWG0506011-5	70	77 [89
Lab Control Sample	KWG0506011-3	79	96	96
Duplicate Lab Control Sample	KWG0506011-4	85	101	102

Surrogate Recovery Control Limits (%)

Sur1	=	4-Bromofluorobenzene	33-133
Sur2	=	o-Terphenyl	52-128
Sur3	=	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/26/2005 15:56:54

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

RR47378 SuperSet Reference:

QA/QC Report

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Extracted: 04/14/2005

Date Analyzed: 04/23/2005

Lab Control Spike/Duplicate Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method:

EPA 3510C

Analysis Method:

8015M

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG0506011

Lab Control Sample KWG0506011-3

Duplicate Lab Control Sample

KWG0506011-4

Lab Control Spike **Duplicate Lab Control Spike** %Rec **RPD** Limits %Rec **RPD** Limit %Rec **Analyte Name** Result Expected Result Expected Diesel Range Organics (DRO) 3110 3200 97 3640 3200 114 67-151 16 30 Residual Range Organics (RRO) 1580 1600 99 1860 1600 59-146 116 16 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/26/2005 15:56:57 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page

Semi-Volatile Organic Compounds EPA Method 8270C

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005 Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-040705-1

K2502588-001

Units: ug/L Basis: NA

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	04/12/05	04/27/05	KWG0505827	
Naphthalene	ND	U	0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
2-Methylnaphthalene	ND	U	0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
Acenaphthylene	ND	U	0.19	0.011	1	04/12/05	04/27/05	KWG0505827	
Acenaphthene	ND	U	0.19	0.0088	1	04/12/05	04/27/05	KWG0505827	
Dibenzofuran	ND	U	0.19	0.014	1	04/12/05	04/27/05	KWG0505827	
Fluorene	ND	U	0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
Phenanthrene	0.032	J.	0.19	0.011	1	04/12/05	04/27/05	KWG0505827	
Anthracene	ND	U	0.19	0.015	1	04/12/05	04/27/05	KWG0505827	
Fluoranthene	ND	U	0.19	0.013	1	04/12/05	04/27/05	KWG0505827	
Pyrene	0.097	J	0.19	0.015	1	04/12/05	04/27/05	KWG0505827	
Butyl Benzyl Phthalate	0.10	J	0.19	0.026	1	04/12/05	04/27/05	KWG0505827	
Benz(a)anthracene	ND	U	0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
Chrysene	ND '	U	0.19	0.014	1	04/12/05	04/27/05	KWG0505827	
Di-n-octyl Phthalaie	ND	U	0.19	0.032	1	04/12/05	04/27/05	KWG0505827	
Benzo(b)fluoranthene	ND	U	0.19	0.020	1	04/12/05	04/27/05	KWG0505827	
Benzo(k)fluoranthene	ND 1	U	0.19	0.020	1	04/12/05	04/27/05	KWG0505827	
Benzo(a)pyrene	ND '	U	0.19	0.016	1	04/12/05	04/27/05	KWG0505827	
Indeno(1,2,3-cd)pyrene	ND	U	0.19	0.024	1	04/12/05	04/27/05	KWG0505827	
Dibenz(a,h)anthracene	ND 1	U	0.19	0.031	1	04/12/05	04/27/05	KWG0505827	
Benzo(g,h,i)perylene	ND 1	U	0.19	0.017	1	04/12/05	04/27/05	KWG0505827	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	98	36-134	04/27/05	Acceptable	
Nitrobenzene-d5	98	47-128	04/27/05	Acceptable	
2-Fluorobiphenyl	92	41-117	04/27/05	Acceptable	
Terphenyl-d14	110	32-155	04/27/05	Acceptable	

Comments:

Printed: 05/12/2005 12:16:37 u:\Stealth\Crystal.rpt\Form\lm.rpt

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-040705-1

K2502588-001

Units: ug/L Basis: NA

† Analyte Comments

4-Mathylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 05/12/2005 12:16:37

u:\Stealth\Crystal.pt\Form\lm.rpt

Morgod

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR47802

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-040705-2 K2502588-002

Units: ug/L Basis: NA

Extraction Method:

EPA 3520C

Level: Low

Analysis Method:

8270C

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	0,12		0.48	0.051	1	04/12/05	04/27/05	KWG0505827	11000
Naphthalene	ND		0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
2-Methylnaphthalene			0.19	0.012	i	04/12/05	04/27/05	KWG0505827	
Acenaphthylene	ND	U	0.19	0.011	1	04/12/05	04/27/05	KWG0505827	
Acenaphthene	ND	U	0.19	0.0088	1	04/12/05	04/27/05	KWG0505827	
Dibenzofuran	ND	U	0.19	0.014	1	04/12/05	04/27/05	KWG0505827	
Fluorene	ND	U	0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
Phenanthrene	0.057	J	0.19	0.011	1	04/12/05	04/27/05	KWG0505827	
Anthracene	ND	U	0.19	0.015	1	04/12/05	04/27/05	KWG0505827	
Fluoranthene	0.040	J	0.19	0.013	1	04/12/05	04/27/05	KWG0505827	
Pyrene	0.037	J	0.19	0.015	1	04/12/05	04/27/05	KWG0505827	
Butyl Benzyl Phthalate	0.089	J	0.19	0.026	1	04/12/05	04/27/05	KWG0505827	
Benz(a)anthracene	ND	U	0.19	0.012	1	04/12/05	04/27/05	KWG0505827	
Chrysene	ND	U	0.19	0.014	1	04/12/05	04/27/05	KWG0505827	
Di-n-octyl Phthalate	ND	U	0.19	0.032	1	04/12/05	04/27/05	KWG0505827	
Benzo(b)fluoranthene	ND	U	0.19	0.020	1	04/12/05	04/27/05	KWG0505827	
Benzo(k)fluoranthene	ND	U	0.19	0.020	1	04/12/05	04/27/05	KWG0505827	
Benzo(a)pyrene	ND	U	0.19	0.016	1	04/12/05	04/27/05	KWG0505827	
Indeno(1,2,3-cd)pyrene	ND	U	0.19	0.024	1	04/12/05	04/27/05	KWG0505827	
Dibenz(a,h)anthracene	ND	U	0.19	0.031	1	04/12/05	04/27/05	KWG0505827	
Benzo(g,h,i)perylene	ND	U	0.19	0.017	1	04/12/05	04/27/05	KWG0505827	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	85	36-134	04/27/05	Acceptable	
Nitrobenzene-d5	83	47-128	04/27/05	Acceptable	
2-Fluorobiphenyl	87	41-117	04/27/05	Acceptable	
Terphenyl-d14	93	32-155	04/27/05	Acceptable	

Comments:

00035

Printed: 05/12/2005 12:16:38

u:\Stealth\Crystal.rpt\Form.lm.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR47802

Page 1 of 2

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall Oil Portland (PDX)/021062-02

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-040705-2

K2502588-002

Units: ug/L Basis: NA

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

_	-	
Comments:		
	,	

Printed: 05/12/2005 12:16:38 u:\Stealth\Crystal.pt\Formlm.rpt

Form 1A - Organic

00039

Page 2 of 2

SuperSet Reference: RR47802

Morgod

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005 Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-040705-3 K2502588-003

Units: ug/L Basis: NA

Extraction Method: Analysis Method:

EPA 3520C

8270C

Level: Low

Analyte Name	Result	Q_	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	04/12/05	04/28/05	KWG0505827	
Naphthalene	0.031	J	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
2-Methylnaphthalene	ND	U	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
Acenaphthylene	0.037	J	0.20	0.011	1	04/12/05	04/28/05	KWG0505827	-
Acenaphthene	ND	U	0.20	0.0088	1	04/12/05	04/28/05	KWG0505827	
Dibenzofuran	ND	U	0.20	0.014	1	04/12/05	04/28/05	KWG0505827	
Fluorene	0.026	J	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
Phenanthrene	0.19	J	0.20	0.011	1	04/12/05	04/28/05	KWG0505827	
Anthracene	0.039	J	0.20	0.015	1	04/12/05	04/28/05	KWG0505827	
Fluoranthene	0.23		0.20	0.013	1	04/12/05	04/28/05	KWG0505827	
Pyrene	0.28		0.20	0.015	1	04/12/05	04/28/05	KWG0505827	
Butyl Benzyl Phthalate	0.20		0.20	0.026	1	04/12/05	04/28/05	KWG0505827	
Benz(a)anthracene	0.081	J	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
Chrysene	0.14	J	0.20	0.014	1	04/12/05	04/28/05	KWG0505827	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	04/12/05	04/28/05	KWG0505827	
Benzo(b)fluoranthene	0.15	J	0.20	0.020	1	04/12/05	04/28/05	KWG0505827	
Benzo(k)fluoranthene	0.049	J	0.20	0.020	1	04/12/05	04/28/05	KWG0505827	
Benzo(a)pyrene	0.10	J	0.20	0.016	1	04/12/05	04/28/05	KWG0505827	
Indeno(1,2,3-cd)pyrene	0.089	J	0.20	0.024	1	04/12/05	04/28/05	KWG0505827	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	04/12/05	04/28/05	KWG0505827	
Benzo(g,h,i)perylene	0.14	J_	0.20	0.017	1	04/12/05	04/28/05	KWG0505827	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	97	36-134	04/28/05	Acceptable	
Nitrobenzene-d5	96	47-128	04/28/05	Acceptable	
2-Fluorobiphenyl	94	41-117	04/28/05	Acceptable	
Terphenyl-d14	100	32-155	04/28/05	Acceptable	

Comments:

Printed: 05/12/2005 12:16:40

u:\Stealth\Crystal.rpt\Form\lm.rpt

Merged

Form 1A - Organic

00040

Page 1 of 2

SuperSet Reference: RR47802

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-040705-3 K2502588-003 Units: ug/L Basis: NA

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:	

Printed: 05/12/2005 12:16:40

u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

00041

Page 2 of 2

SuperSet Reference:

RR47802

Analytical Results

Client:

Anchor Environmental

Project: Sample Matrix: McCall Oil Portland (PDX)/021062-02

Water

Service Request: K2502588 Date Collected: 04/07/2005

Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MO-040705-4 K2502588-004

Lab Code:

Units: ug/L Basis: NA

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Level: Low

Analysa Nama	Dk	^	3.00Y	MANY	Dilution	Date	Date	Extraction	Mada
Analyte Name	Result	7	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methylphenol†	ND		0.49	0.051	1	04/12/05	04/28/05	KWG0505827	
Naphthalene	ND	U	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
2-Methylnaphthalene	ND	U	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
Acenaphthylene	0.026	J	0.20	0.011	1	04/12/05	04/28/05	KWG0505827	
Acenaphthene	ND	U	0.20	0.0088	1	04/12/05	04/28/05	KWG0505827	
Dibenzofuran	ND	U	0.20	0.014	1	04/12/05	04/28/05	KWG0505827	
Fluorene	ND	U	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
Phenanthrene	0.045	J	0.20	0.011	1	04/12/05	04/28/05	KWG0505827	
Anthracene	ND	U	0.20	0.015	1	04/12/05	04/28/05	KWG0505827	
Fluoranthene	0.059	J	0.20	0.013	1	04/12/05	04/28/05	KWG0505827	
Pyrene	0.059	J	0.20	0.015	1	04/12/05	04/28/05	KWG0505827	
Butyl Benzyl Phthalate	0.076	J	0.20	0.026	1	04/12/05	04/28/05	KWG0505827	
Benz(a)anthracene	ND	U	0.20	0.012	1	04/12/05	04/28/05	KWG0505827	
Chrysene	ND	U	0.20	0.014	1	04/12/05	04/28/05	KWG0505827	
Di-n-octyl Phthalate	0.11	J	0.20	0.032	1	04/12/05	04/28/05	KWG0505827	
Benzo(b)fluoranthene	0.021	J	0.20	0.020	1	04/12/05	04/28/05	KWG0505827	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	04/12/05	04/28/05	KWG0505827	
Benzo(a)pyrene	ND	U	0.20	0.016	1	04/12/05	04/28/05	KWG0505827	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.024	1	04/12/05	04/28/05	KWG0505827	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	04/12/05	04/28/05	KWG0505827	
Benzo(g,h,i)perylene	ND	U	0.20	0.017	1	04/12/05	04/28/05	KWG0505827	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	97	36-134	04/28/05	Acceptable	
Nitrobenzene-d5	99	47-128	04/28/05	Acceptable	
2-Fluorobiphenyl	89	41-117	04/28/05	Acceptable	
Terphenyl-d14	99	32-155	04/28/05	Acceptable	

Comments:

00042

Printed: 05/12/2005 12:16:41 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 2 SuperSet Reference: RR47802

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: 04/07/2005

Date Received: 04/08/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: MO-040705-4

K2502588-004

Units: ug/L Basis: NA

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 05/12/2005 12:16:41 u:\Stealth\Crystal.rpt\Form\Im.rpt

Form 1A - Organic

20043

Page 2 of 2

SuperSet Reference: RR47802

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0505827-3

Extraction Method: EPA 3520C **Analysis Method:**

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND		0,50	0.051	1	04/12/05	04/26/05	KWG0505827	
Naphthalene	ND	_	0.20	0.012	ī	04/12/05	04/26/05	KWG0505827	
2-Methylnaphthalene	ND		0.20	0.012	1	04/12/05	04/26/05	KWG0505827	
Acenaphthylene	ND	U	0.20	0.011	1	04/12/05	04/26/05	KWG0505827	
Acenaphthene	ND	U	0.20	0.0088	1	04/12/05	04/26/05	KWG0505827	
Dibenzofuran	ND	U	0.20	0.014	1	04/12/05	04/26/05	KWG0505827	
Fluorene	ND	U	0.20	0.012	1	04/12/05	04/26/05	KWG0505827	
Phenanthrene	ND	U	0.20	0.011	1	04/12/05	04/26/05	KWG0505827	
Anthracene	ND	U	0.20	0.015	1	04/12/05	04/26/05	KWG0505827	
Fluoranthene	ND	U	0.20	0.013	1	04/12/05	04/26/05	KWG0505827	
Pyrene	ND	U	0.20	0.015	1	04/12/05	04/26/05	KWG0505827	
Butyl Benzyl Phthalate	ND	U	0.20	0.026	1	04/12/05	04/26/05	KWG0505827	
Benz(a)anthracene	ND	U	0.20	0.012	1	04/12/05	04/26/05	KWG0505827	
Chrysene	ND	U	0.20	0.014	1	04/12/05	04/26/05	KWG0505827	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	04/12/05	04/26/05	KWG0505827	
Benzo(b)fluoranthene	ND	U	0.20	0.020	1	04/12/05	04/26/05	KWG0505827	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	04/12/05	04/26/05	KWG0505827	
Benzo(a)pyrene	ND	U	0.20	0,016	1	04/12/05	04/26/05	KWG0505827	
Indeno(1,2,3-cd)pyrene	ND	ับ	0.20	0.024	1	04/12/05	04/26/05	KWG0505827	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	04/12/05	04/26/05	KWG0505827	
Benzo(g,h,i)perylene	ND	U	0.20	0.017	1	04/12/05	04/26/05	KWG0505827	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	·	
Phenol-d6	102	36-134	04/26/05	Acceptable		
Nitrobenzene-d5	103	47-128	04/26/05	Acceptable		
2-Fluorobiphenyl	97	41-117	04/26/05	Acceptable		•
Terphenyl-d14	134	32-155	04/26/05	Acceptable	· · · ·	

Comments:	 		

Analytical Results

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank KWG0505827-3

Units: ug/L Basis: NA

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 05/12/2005 12:16:42 u:\Stealth\Crystal.rpt\Formim.rpt

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR47802

QA/QC Report

Client:

Anchor Environmental

Project: Sample Matrix: McCall Oil Portland (PDX)/021062-02

Water

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Service Request: K2502588

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3	Sur4	
MO-040705-1	K2502588-001	98	98	92	110	
MO-040705-2	K2502588-002	85	83	87	93	
MO-040705-3	K2502588-003	97	96	94	100	
MO-040705-4	K2502588-004	97	99	89	99	
Method Blank	KWG0505827-3	102	103	97	134	
Lab Control Sample	KWG0505827-1	104	101	96	124	
Duplicate Lab Control Sample	KWG0505827-2	105	103	96	124	
- ·		t .				

Surrogate Recovery Control Limits (%)

Sur1 =	Phenol-d6	36-134
Sur2 =	Nitrobenzene-d5	47-128
Sur3 =	2-Fluorobiphenyl	41-117
Sur4 =	Terphenyl-d14	32-155

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00046

Printed: 05/12/2005 12:16:47 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

SuperSet Reference:

RR47802

QA/QC Report

Client:

Anchor Environmental

Project:

McCall Oil Portland (PDX)/021062-02

Sample Matrix:

Water

Service Request: K2502588 **Date Extracted: 04/12/2005**

Date Analyzed: 04/26/2005

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C Analysis Method:

8270C

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG0505827

Lab Control Sample KWG0505827-1

Duplicate Lab Control Sample KWG0505827-2

Analyte Name	Lab Control Spike		Duplicate Lab Control Spike		%Rec		RPD		
	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
4-Methylphenol	4.84	5.00	97	4.80	5.00	96	42-123	1	30
Naphthalene	3.71	5.00	74	3.86	5.00	77	10-150	4	30
2-Methylnaphthalene	3.40	5.00	68	3.41	5.00	68	10-143	0	30
Acenaphthylene	4.81	5.00	96	4.81	5.00	96	20-159	0	30
Acenaphthene	4.31	5.00	86	4.27	5.00	85	12-153	1	30
Dibenzofuran	4.27	5.00	85	4.21	5.00	84	21-145	1	30
Fluorene	4.31	5.00	86	4.26	5.00	85	24-150	1	30
Phenanthrene	4.50	5.00	90	4.32	5.00	86	23-144	4	30
Anthracene	4.21	5.00	84	4.19	5.00	84	22-148	1	30
Fluoranthene	4.80	5.00	96	4.75	5.00	95	28-154	1	30
Pyrene	4.60	5.00	92	4.56	5.00	91	20-150	1	30
Butyl Benzyl Phthalate	4.84	5.00	97	4.86	5.00	97	49-144	0	30
Benz(a)anthracene	4.39	5.00	88	4.49	5.00	90	10-182	2	30
Chrysene	4.69	5.00	94	4.70	5.00	94	15-177	0	30
Di-n-octyl Phthalate	4.79	5.00	96	4.64	5.00	93	55-143	3	30
Benzo(b)fluoranthene	4.43	5.00	89	4.37	5.00	87	11-175	1	30
Benzo(k)fluoranthene	4.86	5.00	97	4.76	5.00	95	10-183	2	30
Benzo(a)pyrene	4.45	5.00	89	4.36	5.00	87	10-182	2	30
Indeno(1,2,3-cd)pyrene	4.63	5.00	93	4.55	5.00	91	16-176	2	30
Dibenz(a,h)anthracene	4.66	5.00	93	4.52	5.00	90	10-186	3	30
Benzo(g,h,i)perylene	4.66	5.00	93	4.57	5.00	91	21-168	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00047

Printed: 05/12/2005 12:16:50 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

RR47802 SuperSet Reference:

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

April 15, 2005 030162-01

Mr. Tom Gainer, P.E. Oregon Department of Environmental Quality 2020 SW 4th Avenue, Suite 400 Portland, Oregon 97201-4987

Re: First Quarter 2005 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the first quarter 2005, and work planned for the second quarter 2005 for the McCall Oil and Chemical site in Portland, Oregon.

WORK COMPLETED FIRST QUARTER 2005

- · data management and reporting
- met with DEQ on March 28, 2005 to discuss the status of the remedial investigation and source control evaluation
- project management and meetings

PLANNED SECOND QUARTER 2005 RI TASKS

- data management and reporting
- respond to DEQ's February 22, 2005 comment letter (completed on April 5, 2005)
- collect storm water samples from the four locations identified in the RI workplan
- project management and meetings

RESULTS

No new data was generated during first quarter 2005.

PROBLEMS ENCOUNTERED

No problems were encountered during first quarter 2005.

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G. Anchor Environmental, L.L.C. John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

January 14, 2005 030162-01

Mr. Tom Gainer, P.E.
Oregon Department of Environmental Quality
2020 SW 4th Avenue, Suite 400
Portland, Oregon 97201-4987

Re: Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the fourth quarter 2004, and work planned for the first quarter 2005 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED, FOURTH QUARTER 2004

- data management and reporting
- measured water levels in all monitoring wells and at the Willamette River gauge
- sampled monitoring wells in accordance with sampling plan approved by DEQ in the letter dated November 13, 2003
- collected sediment sample from catch basin location S-3 on November 4, 2004
- Met with DEQ manager Tom Gainer for a site walk on November 5, 2004
- project management and meetings

PLANNED FIRST QUARTER 2005 RI TASKS

- data management and reporting
- project management and meetings

P:\Projects\McCall Portland\Reports\QtlyReport-4Q2004.doc

RESULTS

On October 20, 2004, groundwater elevations were measured in 20 monitoring wells and the Willamette River staff gauge. The water levels, converted to mean sea level, are plotted on Figure 2. Eighteen samples were collected on October 21-22, 2004 from 16 monitoring wells. On November 4, 2004, a sediment sample was collected from catch basin S-3. Copies of the field sampling data sheets are in Attachment A. The samples were submitted for analysis in accordance with the sampling plan (Table 1). The laboratory report and chain of custody documentation are in Attachment B. Review of the sampling and laboratory records revealed that the data were judged to be acceptable for their intended use. Please refer to the data validation review in Attachment C.

The field and laboratory data are presented in Tables 2 through 9 as follows.

Table 2	Monitoring Well and River Hydrology Measuremen	ts

Table 3 Total Petroleum Hydrocarbons - Groundwater

Table 4 PAHs and SVOCs - Groundwater

Table 5 Volatile Organic Compounds - Groundwater

Table 6 Metals – Groundwater

Table 7 Total Petroleum Hydrocarbons – Catch Basin Sediment

Table 8 PAHs and SVOCs - Catch Basin Sediment

Table 9 Metals - Catch Basin Sediment

PROBLEMS ENCOUNTERED

No problems were encountered during fourth quarter 2004.

If you have any questions, please let us know.

John J. Renda, R.G. Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G.

Cc: Ted McCall; McCall Oil and Chemical

TABLES

Table 1 Sampling Plan McCall Oil and Chemical

Well	Chlorinated VOCs	PAHs	Total Petroleum Hydrocarbons	As (Total and Dissolved)	Cr, Cu (Total and Dissolved)
EX-1	х		х	х	
EX-2		х	X	х	
EX-3		х	х	Х	
EX-4 (MW-2)	Х		х	X	
EX-7			х	х	
MW-1	X_		Х	Х	x
MW-3	х		х	х	х
MW-5	х	х	х	X	
MW-6	х		х	х	
MW-7	х	х	х	х	х
MW-8	x	x	x	х	х
MW-9			х	х	
MW-10	х		х	х	
MW-12			х	х	
MW-14	х	х	x	х	x
MW-15	X	х	х	<u>x</u>	
Note: Samples will be co	llected sem	iannually	7		

Table 2

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Northing	Easting	Reference Point Elevation		DTW	WLE
Well	Norming (lacal plane)	(local Plane)	(Feet MSL)	Date	(Feet)	(Feet MSL
EX-1	10085.543	4249.628	36.12	09/08/94	15.35	20.77
EX-1	10085.543	4249.628	36.12	12/29/94	14.60	21.52
EX-1	10085.543	4249.628	36.12	03/29/95	13.06	23.06
EX-1	10085.543	4249.628	36.12	. 06/27/95	13.65	22.47
EX-1	10085.543	4249.628	36.12	07/14/95	13.82	22.30
EX-1	10085.543	4249.628	36.12	05/01/97	12.71	23.41
EX-1	10085.543	4249.628	36.12	02/03/99	13.21	22.91
EX-1	10085.543	4249.628	36.12	12/08/00	15.65	20.47
EX-1	10085.543	4249.628	36.12	01/19/01	15.46	20.66
	10085.543	4249.628	36.12	02/08/01	15.55	20.57
EX-1 EX-1	10085.543	4249.628 4249.628	36.12	03/08/01	15.65	20.47
	•		36.12 36.12		15.72	20.40
EX-1	10085.543	4249.628	36.12 36.12	04/12/01 05/15/01	15.68	20.44
EX-1	10085.543	4249.628			15.75	20.37
EX-1	10085.543	4249.628	36.12	06/12/01		
EX-1	10085.543	4249.628	36.12	07/16/01	15.84	20.28
EX-1	10085.543	4249.628	36.12	08/14/01	15.97	20.15
EX-1	10085.543	4249.628	36.12	09/13/01	16.07	20.05
EX-1	10085.543	4249.628	36.12	10/25/01	16.31	19.81
EX-I	10085.543	4249.628	36.12	11/16/01	16.27	19.85
EX-1	10085.543	4249.628	36.12	12/18/01	15.88	20.24
EX-1	10085.543	4249.628	36.12	01/22/02	15.05	21.07
EX-1	10085.543	4249.628	36.12	02/14/02	14.56	21.56
EX-1	10085.543	4249.628	36.12	03/06/02	14.28	21.84
EX-1	10085.543	4249.628	36.12	10/02/02	15.39	20.73
EX-1	10085.543	4249.628	36.12	02/11/04	13.74	22.38
EX-1	10085.543	4249.628	36.12	10/20/04	15.13	20.99
EX-2	10558.448	4883.507	32.28	09/08/94	18.56	13.72
EX-2	10558.448	4883.507	32.28	12/29/94	17.87	14.41
EX-2	10558.448	4883.507	32.28	03/29/95	17.11	15.17
EX-2	10558.448	4883.507	32.28	06/27/95	17 <i>.</i> 27	15.01
EX-2	10558. 44 8	4883.507	32.28	07/14/95	17.42	14.86
EX-2	10558.448	4883.507	32.28	05/01/97	13.08	19.20
EX-2	10558.448	4883.507	32.28	02/03/99	16.30	15.98
EX-2	1 0558.448	4883.507	32.28	12/08/00	1 8.66	13.62
EX-2	10558.448	4883.507	32.28	01/1 9/0 1	18.67	13.61
EX-2	10558.448	4883.507	32.28	02/08/01	18.70	13.58
EX-2	10558.448	4883.507	32.28	03/08/01	18.76	13.52
EX-2	10558.448	4883.507	32.28	04/12/01	18.10	14.18
EX-2	10558.448	4883.507	. 32.28	05/15/01	17.94	14.34
EX-2	10558.448	4883.507	32.28	06/12/01	17.94	14.34
EX-2	10558.448	4883.507	32.28	07/16/01	18.49	13.79
EX-2	10558.448	4883.507	32.28	08/14/01	18.73	13.55
EX-2	10558.448	4883.507	32.28	09/13/01	18.90	13.38
EX-2	10558.448	4883.507	32.28	10/25/01	19.18	13.10
EX-2	10558.448	4883.507	32.28	11/16/01	19.24	13.04
EX-2	10558.448	4883,507	32.28	12/18/01	18.50	13.78
EX-2	10558.448	4883.507	32.28	01/22/02	17.83	14.45
EX-2	10558.448	4883.507	32.28	02/14/02	17.49	14.79
EX-2	10558.448	4883.507	32.28	03/06/02	17.45	14.83
EX-2	10558.448	4883.507	32.28	10/02/02	18.22	14.06
EX-2	10558.448	4883.507	32.28	02/11/04	17.54	14.74
EX-2	10558.448	4883.507	32.28	10/20/04	18.48	13.80
EX-3	10884.027	4568.183	32.07	09/08/94	17.96	14.11
EX-3	10884.027	4568,183	32.07	12/29/94	16.72	15.35
EX-3	10884.027	4568.183	32.07	03/29/95	15.43	16.64
EX-3	10884.027	4568.183	32.07	06/27/95	15.91	16.16
EX-3	10884.027	4568.183	32.07	07/14/95	15.96	16.11
EX-3	10884.027	4568.183	32.07	05/01/97	12.84	19.23
EX-3	10884.027	4568.183	32.07	02/03/99	15.12	16.95

Table 2

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Manth!	Easting	Reference Point Elevation		DTW	WLE
Well	Northing (lacal plane)	(local Plane)	(Feet MSL)	Date	(Feet)	(Feet MSL)
EX-3	10884.027	4568.183	32.07	12/08/00	18.27	13.80
EX-3	10884.027	4568.183	32.07	01/19/01	18.13	13.94
EX-3	10884.027	4568.183	32.07	02/08/01	18.10	13.97
EX-3	10884.027	4568.183	32.07	03/08/01	18.17	13.90
EX-3	10884.027	4568.183	32.07	04/12/01	17.44	14.63
EX-3	10884.027	4568.183	32.07	05/15/01	17.08	14.99
EX-3	10884.027	4568.183	32.07	06/12/01	17.04	15.03
EX-3	10884.027	4568.183	32.07	07/16/01	17.82	14.25
EX-3	10884.027	4568.183	32.07	08/14/01	18.25	13.82
EX-3	10884.027	4568.183	32.07	09/13/01	18.51	13.56
EX-3	10884.027	4568.183	32.07	10/25/01	18.92	13.15
EX-3	10884.027	4568.183	32.07	11/16/01	19.02	13.05
EX-3	10884.027	4568.183	32.07	12/18/01	17.91	14.16
EX-3	10884.027	4568.183	32.07	01/22/02	16.41	15.66
EX-3	10884.027	4568.183	32.07	02/14/02	15.95	16.12
EX-3	10884.027	4568.183	32.07	03/06/02	15.88	16.19
EX-3	10884.027	4568.183	32.07	10/02/02	17.59	14.48
EX-3	10884.027	4568,183	32.07	02/11/04	15.99	16.08
EX-3	10884.027	4568.183	32.07	10/20/04	18.11	13.96
						•
EX-4 (MW-2)	10459.152	3767.039	35.60	10/18/93	16.63	18.97
EX-4 (MW-2)	10459.152	3767.039	35.60	10/28/93	16.72	18.88
EX-4 (MW-2)	10459.152	3767.039	35.60	01 <i>/</i> 27/ 94	16.56	19.04
EX-4 (MW-2)	10459.152	3767.039	35.60	09/08/94	16.86	18.74
EX-4 (MW-2)	10459.152	3767.039	35.60	12/29/94	16.09	19.51
EX-4 (MW-2)	10459.152	3767.039	35.60	03/29/95	14.63	20.97
EX-4 (MW-2)	10459.152	3767.039	35.60	06/27/95	15.22	20.38
EX-4 (MW-2)	10459.152	3767.039	35.60	07/14/95	15.41	20.19
EX-4 (MW-2)	10459.152	3767.039	35.60	05/01/97	14.08	21.52
EX-4 (MW-2)	10459.152	3767.039	35.60	02/03/99	14.58	21.02
EX-4 (MW-2)	10459.152	3767.039	35.60	12/08/00	16.97	18.63
EX-4 (MW-2)	10459.152	3767.039	35.60	01/19/01	16.81	18.79
EX-4 (MW-2)	10459.152	3767.039	35.60	02/08/01	16.84	18.76
EX-4 (MW-2)	10459.152	3767.039	35.60	03/08/01	16.92	18.68
EX-4 (MW-2)	10459.152	3767.039	35.60	04/12/01	16.96	18.64
EX-4 (MW-2)	10459.152	3767.039	35.60	05/15/01	16.92	1 8.68
EX-4 (MW-2)	10459.152	3767.039	35.60	06/12/01	16.98	18.62
EX-4 (MW-2)	10459.152	3767.039	35.60	07/16/01	17.09	18.51
EX-4 (MW-2)	10459.152	3767.039	35.60	08/14/01	17. 22	18.38
EX-4 (MW-2)	10459.152	3767.039	35.60	09/13/01	17.30	18.30
EX-4 (MW-2)	10459.152	3767.039	35.60	10/25/01	17.51	1 8.09
EX-4 (MW-2)	10459.152	3767.039	35.60	11/16/01	17.52	18.08
EX-4 (MW-2)	10459.152	3767.039	35.60	12/18/01	17.22	18.38
EX-4 (MW-2)	10459.152	3767.039	35.60	01/22/02	16.28	19.32
EX-4 (MW-2)	10459.152	3767.039	35.60	02/14/02	15.80	19.80
EX-4 (MW-2)	10459.152	3767.039	35.60	03/06/02	15.61	19.99
EX-4 (MW-2)	10459.152	3767.039	35.60	10/02/02	16.49	19.11
EX-4 (MW-2)	10459.152	3767.039	35.60	02/11/04	15.14	20.46
EX-4 (MW-2)	10459.152	3767.039	35.60	10/20/04	16.55	19.05
EX-5	10932.866	4201.793	31.87	09/08/94	NM	
EX-5	10932.866	4201.793	31.87	12/29/94	15.85	16.02
EX-5	10932.866	4201,793	31.87	03/29/95	14.84	17.03
EX-5	10932.866	4201.793	31.87	06/27/95	16.32	15.55
EX-5	10932.866	4201.793	31.87	07/14/95	16.34	15.53
EX-5	10932.866	4201.793	31.87	05/01/97	12.06	19.81
EX-5	10932.866	4201.793	31.87	02/03/99	13.45	18.42
EX-5	10932.866	4201.793	31.87	12/08/00	19.72	12.15
EX-5	10932.866	4201.793 4201.793	31.87	01/19/01	18.87	13.00
EX-5	10932.866	4201.793 4201.793	31.87	02/08/01	18.98	12.89
EA-J	10732.000	4401./73	31.07	ATA COLOI	19.22	12.65

Table 2

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Northing	Easting	Reference Point Elevation	_	DTW	WLE
Well	(lacal plane)	(local Plane)	(Feet MSL)	Date	(Feet)	(Feet MSL)
EX-5	10932.866	4201.793	31.87	04/12/01	18.96	12.91
EX-5	10932.866	4201.793	31.87	05/15/01	18.94	12.93
EX-5	10932.866	4201.793	31.87	06/12/01	19.05	12.82
EX-5	10932.866	4201.793	31.87	07/16/01	19.76	12.11
EX-5	10932.866	4201.793	31.87	08/14/01	20.32	11.55
EX-5	10932.866	4201.793	31.87	09/13/01	20.70	11.17
EX-5	10932.866	4201.793	31.87	10/25/01	21.27	10.60
EX-5	10932.866	4201.793	31.87	11/16/01	21.04	10.83
EX-5	10932.866	4201.793	31.87	12/18/01	16.64	15.23
EX-5	10932.866	4201.793	31.87	01/22/02	16.10	15.77
EX-5	10932.866	4201.793	31.87	02/14/02	15.35	16.52
EX-5	10932.866	4201.793	31.87	03/06/02	15.93	15.94
EX-5	10932.866	4201.793	31.87	10/02/02	19.58	12.29
EX-5	10932.866	4201.793	31.87	02/11/04	15.70	16.17
EX-5	10932.866	4201.793	31.87	10/20/04	20.17	11.70
EX-6	10295.278	4299.654	34.38	09/08/94	NM	
EX-6	10295.278	4299.654	34.38	12/29/94	13.98	20.40
EX-6	10295.278	4299.654	34.38	03/29/95	12.51	21.87
EX-6	10295.278	4299.654	34.38	06/27/95	13.04	21.34
EX-6	10295.278	4299.654	34.38	07/14/95	13.17	21.21
EX-6	10295.278	4299.654	34.38	05/01/97	11.93	22.45
EX-6	10295.278	4299.654	34.38	02/03/99	12.71	21.67
EX-6	10295.278	4299.654	34.38	12/08/00	Well casing filler	
EX-6	10295.278	4299.654	34.38	11/16/01	Decommissioned	1
EX-7	9860.733	4158.265	35.29	09/08/94	NM	
EX-7	9860.733	4158.265	35.29	12/29/94	13.21	22.08
EX-7	9860.733	4158.265	35.29	03/29/95	11.69	23.60
EX-7	9860.733	4158.265	35.29	06/27/95	12.34	22.95
EX-7	9860.733	4158.265	35.29	07/14/95	12.38	22.91
EX-7	9860.733	4158,265	35.29	05/01/97	11.44	23.85
EX-7	9860.733	4158.265	35.29	02/03/99	11.81	23.48
EX-7	9860.733	4158.265	35.29	12/08/00	14.32	20.97
EX-7	9860.733	4158.265	35.29	01/19/01	14.15	21.14
EX-7	9860.733	4158.265	35.29	02/08/01	14.18	21.11
EX-7	9860.733	4158.265	35.29	03/08/01	14.30	20.99
EX-7	9860.733	4158.265	35.29	04/12/01	14.37	20.92
EX-7	9860.733	4158.265	35.29	05/15/01	14.33	20.96
EX-7	9860.733	4158.265	35.29	06/12/01	14.41	20.88
EX-7	9860.733	4158.265	35.29	07/16/01	14.51	20.78
EX-7	9860.733	4158.265	35.29	08/14/01	14.65	20.64
EX-7	9860.733	4158.265	35.29	09/13/01	14.75	20.54
EX-7	9860.733	4158.265	35.29	10/25/01	15.01	20.28
EX-7	9860.733	4158.265	35.29	11/16/01	14.98	20.31
EX-7	9860.733	4158.265	35.29	12/18/01	14.42	20.87
EX-7	9860.733	4158.265	35.29	01/22/02	13.50	21.79
EX-7	9860.733	4158.265	35.29	02/14/02	13.15	22.14
EX-7	9860.733	4158.265	35.29	03/06/02	12.86	22.43
EX-7	9860.733	4158.265	35.29	10/02/02	13.76	21.53
EX-7	9860.733	4158.265	35.29	02/11/04	12.31	22.98
EX-7	9860.733	4158.265	35.29	10/20/04	13.80	21.49
MW-I	10531.66	3883.202	35.48	05/11/93	15.56	19.92
MW-1	10531.66	3883.202	35.48	10/18/93	17.04	18.44
MW-1	10531.66	3883.202	35.48	10/28/93	17.16	18.32
MW-1	10531.66	3883.202	35.48	01/27/94	16.99	18.49
MW-1	10531.66	3883,202	35.48	09/08/94	NM 16.43	10.00
MW-1 MW-1	10531.66 10531.66	3883.202 3883.202	35.48 35.48	12/29/94 03/29/95	16.43 NM	19.05
	111711 00	1881 /11/	47 AX	(14/74/47)		

Table 2

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Northing	Easting	Reference Point Elevation	_	DTW	WLE
Well	(lacal plane)	(local Plane)	(Feet MSL)	Date	(Feet)	(Feet MS)
MW-1	10531.66	3883.202	35.48	07/14/95	NM	
MW-1	10531.66	3883,202	35.48	05/01/97	14.12	21.36
MW-1	10531.66	3883.202	35.48	02/03/99	14.83	20.65
MW-1	10531.66	3883.202	35.48	12/08/00	17.40	18.08
MW-1	10531.66	3883.202	35.48	01/19/01	17.23	18.25
MW-1	10531.66	3883.202	35.48	02/08/01	17.32	18.16
MW-1	10531.66	3883.202	35.48	03/08/01	17.42	18.06
MW-1	10531.66	3883,202	35.48	04/12/01	17.41	18.07
MW-1	10531.66	3883.202	35.48	05/15/01	17.37	18.11
MW-1	10531.66	3883.202	35.48	06/12/01	NM	10.11
MW-1	10531.66	3883.202	35.48	07/16/01	17.59	17.89
MW-1	10531.66	3883.202	35.48	08/14/01	17.70	17.78
MW-1	10531.66	3883.202	35.48	09/13/01	17.78	17.70
MW-1 MW-1	10531.66	3883.202	35.48	10/25/01	17.97	17.51
		3883.202	35.48	11/16/01	17.88	17.60
MW-1	10531.66			12/18/01	17.44	18.04
MW-1	10531.66	3883.202	35.48 35.49	01/22/02	16.68	18.80
MW-I	10531.66	3883.202	35.48			19.10
MW-1	10531.66	3883.202	35.48 35.48	02/14/02	16.38	
MW-1	10531.66	3883.202	35.48	03/06/02	16.03	19.45
MW-1	10531.66	3883.202	35.48	10/02/02	16.98	18.50
MW-1	10531.66	3883.202	35.48	02/11/04	15.63	19.85
MW-1	10531.66	3883.202	35.48	10/20/04	16.96	18.52
MW-3	10606.911	3812.937	34.56	10/18/93	16.47	18.09
MW-3	10606.911	3812.937	34.56	10/28/93	16.60	17.96
MW-3	10606.911	3812.937	34.56	01/27/94	16.40	18.16
MW-3	10606.911	3812.937	34.56	09/08/94	NM	
MW-3	10606.911	3812.937	34.56	12/29/94	15.90	18.66
MW-3	10606.911	3812.937	34.56	03/29/95	NM	10.00
MW-3	10606.911	3812.937	34.56	06/27/95	NM	
MW-3 MW-3	10606.911	3812.937	34.56	07/14/95	NM	
MW-3	10606.911	3812.937	34.56	05/01/97	13.73	20.83
MW-3	10606.911	3812.937	34.56	02/03/99	14.36	20.20
MW-3	10606.911	3812.937	34.56	12/08/00	16.73	17.83
m w-3 MW-3	10606.911	3812.937 3812.937	34.56	01/19/01	16.60	17.96
MW-3		3812.937	34.56	02/08/01	16.64	17.92
MW-3 MW-3	10606.911	3812.937 3812.937	34.56	03/08/01	16.73	17.83
	10606.911		34.56	04/12/01	16,73	17.83
MW-3	10606.911	3812.937	34.56	05/15/01	16.71	17.85
MW-3	10606.911	3812.937			16.76	17.80
MW-3	10606.911	3812.937	34.56	06/12/01		
MW-3	10606.911	3812.937	34.56	07/16/01	16.91	17.65
MW-3	10606.911	3812.937	34.56	08/14/01	16.97	17.59
MW-3	10606.911	3812.937	34.56	09/13/01	17.09	17.47
MW-3	10606.911	3812.937	34.56	10/25/01	17.24	17.32
MW-3	10606.911	3812.937	34.56	11/16/01	17.16	17.40
MW-3	10606.911	3812.937	34.56	12/18/01	16.82	17.74
MW-3	10606.911	3812.937	34.56	01/22/02	16.09	18.47
MW-3	10606.911	3812.937	34.56	02/14/02	15.65	18.91
MW-3	10606.911	3812.937	34.56	03/06/02	15.50	19.06
MW-3	10606.911	3812.937	34.56	10/02/02	16.36	18.20
MW-3	10606.911	3812.937	34.56	02/11/04	15.12	19.44
MW-3	10606.911	3812.937	34.56	10/20/04	16.43	18.13
	10694,292		22.61	10/18/93	16.21	17.40
MW-4	-	3806.683	33.61		16.26	17.40
MW-4	10694,292	3806.683	33.61	10/28/93		
MW-4	10694,292	3806.683	33.61	01/27/94	16.06	17.55
MW-4	10694.292	3806.683	33.61	09/08/94	NM 16.66	10.00
MW-4	10694,292	3806.683	33.61	12/29/94	15.55	18.06
MW-4	10694.292	3806.683	33.61	03/29/95	NM	
MW-4 MW-4	10694.292	3806.683	33.61	06/27/95	NM	
	10694.292	3806.683	33.61	07/14/95	NM	

Table 2

Monitoring Weil and River Hydrology Measurements

McCall Oil and Chemical

	Northing	Easting	Reference Point Elevation		DTW	WLE
Well	(lacal plane)	(local Plane)	(Feet MSL)	Date	(Feet)	(Feet MSL
MW-4	10694,292	3806.683	33.61	05/01/97	13.32	20.29
MW-4	10694.292	3806.683	33.61	02/03/99	14.04	19.57
MW-4	10694.292	3806.683	33.61	12/08/00	16.25	17.36
MW-4	10694.292	3806.683	33.61	01/19/01	16.17	17.44
MW-4	10694.292	3806.683	33.61	02/08/01	16.21	17.40
MW-4	10694.292	3806.683	33.61	03/08/01	16.29	17.32
MW-4	10694.292	3806.683	33.61	04/12/01	16.28	17.33
MW-4	10694.292	3806,683	33.61	05/15/01	16.28	17.33
MW-4	10694.292	3806.683	33.61	06/12/01	16.32	17.29
MW-4	10694,292	3806.683	33.61	07/16/01	16.43	17.18
MW-4	10694.292	3806.683	33.61	08/14/01	16.53	17.08
MW-4	10694,292	3806.683	33.61	09/13/01	16.60	17.01
MW-4	10694.292	3806.683	33.61	10/25/01	16.74	16.87
MW-4	10694.292	3806.683	33.61	11/16/01	16.63	16.98
MW-4	10694,292	3806.683	33.61	12/18/01	16.20	17.41
MW-4	10694,292	3806.683	33.61	01/22/02	15.65	17.96
MW-4	10694,292	3806.683	33.61	02/14/02	15.26	18.35
MW-4	10694.292	3806.683	33.61	03/06/02	15.18	18.43
MW-4	10694.292	3806.683	33.61	10/02/02	15.96	17.65
MW-4	10694,292	3806.683	33.61	02/11/04	14.76	18.85
MW-4	10694.292	3806.683	33.61	10/20/04	15.96	17.65
			34.66		20.13	14.53
MW-5	10840.045	3669.241 3669.241		10/18/93		
MW-5	10840.045		34.66	10/28/93	20.48 19.89	14.18
MW-5	10840.045	3669.241	34.66	01/27/94 09/08/94		14.77
MW-5	10840.045	3669,241	34.66		NM	12.41
MW-5	10840.045	3669.241	34.66	12/29/94	19.25	15.41
MW-5	10840.045	3669.241	34.66	03/29/95	NM	
MW-5	10840.045	3669.241	34.66	06/27/95	NM NM	
MW-5	10840.045	3669.241	34.66	07/14/95	NM 15.01	10.75
MW-5	10840.045	3669.241	34.66	05/01/97	15.91	18.75
MW-5	10840.045	3669.241	34.66	02/03/99	18.15	16.51 14.86
MW-5	10840.045	3669.241	34.66	12/08/00	19.80	
MW-5	10840.045	3669.241	34.66	01/19/01 02/08/01	19.69 19.67	14.97 14.99
MW-5	10840.045	3669,241	34.66 ,	03/08/01	19.75	14.91
MW-5	10840.045	3669.241	34.66	04/12/01	19.80	14.91
MW-5	10840.045	3669.241	34.66	05/15/01	20.00	14.66
MW-5	10840.045	3669.241	34.66	06/12/01	20.01	14.65
MW-5	10840.045	3669.241	34.66	07/16/01	20.32	
MW-5	10840.045	3669.241	34.66 34.66	08/14/01	20.32	14.34 14.27
MW-5	10840.045 10840.045	3669,241	34.66		20.47	14.27
MW-5		3669.241	34.66 34.66	09/13/01	20.47	14.19
MW-5	10840.045	3669.241 3669.241	34.66 34.66	10/25/01 11/16/01	20.19	
MW-5	10840.045	3669.241	34.66 34.66	12/18/01	20.19 19.18	14.47 15.48
MW-5	10840.045	36 69.24 1	34.66 34.66	01/22/02	19.00	15.48
MW-5	10840.045	3669.241 3669.241		02/14/02	18.79	15.87
MW-5	10840.045		34.66	02/14/02 03/06/02	18.95	15.71
MW-5	10840.045	3669.241	34.66		20.25	15.71 14.41
MW-5	10840.045	3669.241	34.66	10/02/02		14.41 15.70
MW-5 MW-5	10840,045 10840.045	3669.241 3669.241	34.66 34.66	02/11/04 10/20/04	18.96 20.50	15.70
MW-6	10441.876	4127.999	34.83	10/25/01	16.73	18.10
MW-6	10441.876	4127,999	34.83	11/16/01	16.67	18.16
MW-6	10441.876	4127.999	34.83	12/18/01	16.35	18.48
MW-6	10441.876	4127.999	34.83	01/22/02	15.46	19.37
MW-6	10441.876	4127.999	34.83	02/14/02	15.94	18.89
MW-6	10441.876	4127.999	34.83	03/06/02	14.73	20.10
MW-6	10441.876	4127.999	34.83	10/02/02	15.57	19.26
MW-6	10441.876	4127.999	34.83	02/11/04	14.17	20.66

Table 2

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Marthin.	Contin-	Reference Point		(Contract)	
Well	Northing (lacal plane)	Easting (local Plane)	Elevation (Feet MSL)	Date	DTW (Feet)	WLE (Feet MSL)
- VV CIII	(meat plant)	(Total Tiane)	(Peer Mass)	Date	(Feet)	(Feet MSL
MW-7	10746.817	3975.831	34.74	10/25/01	25.77	8.97
MW-7	10746.817	3975.831	34.74	11/16/01	24.94	9.80
MW-7	10746.817	3975.831	34.74	12/18/01	21.26	13.48
MW-7	10746.817	3975.831	34.74	01/22/02	22.72	12.02
MW-7	10746.817	3975.831	34.74	02/14/02	22.61	12.13
MW-7	10746.817	3975.831	34.74	03/06/02	23.33	11.41
MW-7	10746.817	3975.831	34.74	10/02/02	25.08	9.66
MW-7	10746.817	3975.831	34.74	02/11/04	22,66	12.08
MW-7	1 0746.817	3975.831	34.74	10/20/04	24.40	10,34
MW-8	10850.356	4091.319	32.24	10/25/01	25.64	6.60
MW-8	10850.356	4091.319	32.24	11/16/01	23.85	8,39
MW-8	10850.356	4091.319	32.24	12/18/01	19.55	12.69
MW-8	10850.356	4091.319	32.24	01/22/02	22.44	9.80
MW-8	10850.356	4091.319	32.24	02/14/02	22.54	9.70
MW-8	10850.356	4091.319	32.24	03/06/02	23.52	8.72
MW-8	10850.356	4091.319	32.24	10/02/02	25.41	6.83
MW-8	10850.356	4091.319	32.24	02/11/04	21.64	10.60
MW-8	10850.356	4091.319	32.24	10/20/04	23.35	8.89
MW-9	10533.922	3573.223	36.00	01/22/02	17.57	18.43
MW-9	10533.922	3573.223	36.00	02/14/02	17.21	18.79
MW-9	10533.922	3573.223	36.00	03/06/02	17.02	18.98
MW-9	10533.922	3573.223	36.00	10/02/02	17.85	18.15
MW-9	10533.922	. 3573.223	36.00	02/11/04	16.63	19.37
MW-9	10533.922	3573.223	36.00	10/20/04	1 7.90	18.10
MW-10	10244.374	3856.751	35.06	01/22/02	14.97	20.09
MW-10	10244.374	3856.751	35.06	02/14/02	14,46	20.60
MW-10	10244.374	3856.751	35.06	03/06/02	14.20	20.86
MW-10	10244.374	3856.751	35.06	10/02/02	15.81	19.25
MW-10	10244.374	3856.751	35.06	02/11/04	13.64	21,42
MW-10	10244.374	3856.751	35.06	10/20/04	15.19	19.87
MW-11	9936.308	4506.014	34.41	01/22/02	13.32	21.09
MW-11	9936.308	4506.014	34.41	02/14/02	12.94	21.47
MW-11	9936.308	4506.014	34.41	03/06/02	12,76	21.65
MW-11	9936,308	4506.014	34.41	10/02/02	Free product, una	ble to measure
MW-11	9936.308	4506.014	34.41	02/11/04	Free product, una	
MW-11	9936.308	4506.014	34.41	10/20/04	Free product, una	
MW-12	10224.87	4799.258	32.79	01/22/02	17.88	14.91
MW-12	10224.87	47 99 .258	32.79	02/14/02	17.46	15.33
MW-12	10224.87	4799.258	32.79	03/06/02	17.37	15.42
MW-12	10224.87	4799.258	32.79	10/02/02	17.65	15.14
MW-12	10224.87	4799.258	32.79	02/11/04	17.22	15.57
MW-12	10224.87	4799.258	32.79	10/20/04	17.97	14.82
MW-13	10534.855	4458.115	34.94	01/22/02	18.83	16.11
MW-13	10534.855	4458.115	34.94	02/14/02	17.95	16. 99
MW-13	10534.855	4458.115	34.94	03/06/02	17.57	17.37
MW-13	10534.855	4458.115	34.94	10/02/02	18.80	16.14
MW-13	10534.855	4458.115	34.94	02/11/04	18.17	16.77
MW-13	10534.855	4458.115	34.94	10/20/04	19.31	15.63
MW-14	10795.996	3837.191	40.17	02/11/04	22.57	17.60
MW-14	10795.996	3837.191	40.17	10/20/04	23.54	16.63
MW-15	10006,311	4517.743	33.56	02/11/04	11,23	22.33
MW-15	10006.311	4517.743	33.56	10/20/04	12.47	21.09

Table 2

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

			Reference Point			
	Northing	Easting	Elevation		DTW	WLE
Well	(lacal plane)	(local Plane)	(Feet MSL)	Date	(Feet)	(Feet MSL)
WG-1	11177	4800	37.28	10/28/93	32.82	4.46
WG-1	111 77	4800	. 37.28	01/27/94	30.04	7.24
WG-1	11177	4800	37.28	09/08/94	NM	
WG-1	11177	4800	37.28	12/29/94	NM	
WG-1	11177	4800	37.28	03/29/95	NM	
WG-1	11177	4800	37.28	06/27/95	NM	
WG-1	111 77	4800	37.28	07/14/95	NM	
WG-1	11177	4800	37.28	05/01/97	17.80	19.48
WG-1	11177	4800	37.28	02/03/99	23.02	14.26
WG-1	11177	4800	37.28	12/08/00	31.60	5.68
WG-1	11177	4800	37.28	01/19/01	31.74	5.54
WG-1	11177	4800	37.28	02/08/01	30.78	6.50
WG-1	11177	4800	37.28	03/08/01	31.80	5.48
WG-1	11177	4800	37.28	04/12/01	29.15	8.13
WG-1	11177	4800	37.28	05/15/01	29.95	7.33
WG-1	11177	4800	37.28	06/12/01	31.02	6.26
WG-1	11177	4800	37.28	07/16/01	34.23	3.05
WG-1	11177	4800	37.28	08/14/01	33.27	4.01
WG-1	11177	4800	37.28	09/13/01	31.15	6.13
WG-1	11177	4800	37.28	10/25/01	31.38	5.90
WG-1	11177	4800	37.28	11/16/01	30.77	6.51
WG-1	11177	4800	37.28	12/18/01	25.45	11.83
WG-1	11177	4800	37,28	01/22/02	27.80	9.48
WG-1	11177	4800	37.28	02/14/02	29.27	8.01
WG-1	11177	4800	37.28	03/06/02	29.46	7.82
WG-1	11177	4800	37.28	10/02/02	32.60	4.68
WG-1	11177	4800	37.28	02/11/04	28.65	8.63
WG-1	11177	4800	37.28	10/20/04	29.33	7.95

Note: Reference point elevations for EX-1 to EX-7, MW-1 to MW-5 and WG-1 surveyed by W&H Pacific on 9/19/00. MW-6 to MW-13 surveyed by W&H Pacific on 1/30/02. MW-14 and MW-15 surveyed by W&H Pacific on 4/5/04.

Table 3
Total Petroleum Hydrocarbons
Groundwater
McCall Oil and Chemical

					
Location	Date Sampled	Gasoline		Diesel	Heavy Fuel Oil
Monitoring Wells - Water µ		·			
EX-1	09/08/94	50	U	50 U	266
EX-1 Duplicate	09/08/94	5	U		
EX-1	12/30/94	50	U	50 U	632
EX-1	03/29/95	50	U	50 U	454
EX-1	07/14/95	50	U	50 U	200 U
EX-1	05/02/97	167	Y	50 U	200 U
EX-1 Duplicate	05/02/97	188	Y	50 U	200 U
EX-1	02/04/99	100	U	100 U	924
EX-1 Duplicate	02/04/99	100	U	100 U	814
EX-1	12/20/00	990	Z	100 U	250 U
EX-1	03/07/02	460	H	280 Y	•
EX-1	10/03/02	100	U	100 U	250 U
EX-1	02/11/04	500	Z	120 Y	250 U
EX-1 Duplicate	02/11/04	450	Z	120 Y	250 U
EX-1	10/22/04	210	Z	110 H	250 U
EX-2	09/08/94	50	U	50 U	200
EX-2	12/30/94	50	U	50 U	441
EX-2	03/29/95	50	U	50 U	398
EX-2	07/14/95	50	U	50 U	885
EX-2	05/01/97	50	U	519 Y	200 U
EX-2	02/04/99	10	U	10 U	569
EX-2	12/20/00	100	U	100 U	250 U
EX-2	03/07/02	110	U	170 Y	270 U
EX-2	10/04/02	100	U	270 Y	290 O
EX-2	02/12/04	100	U	110 Y	250 U
EX-2	10/21/04	100	U	160 Y	250 U
EX-3.	09/08/94	50	U	50 U	200
EX-3 Duplicate	09/08/94	50	U	50 U	200
EX-3	12/30/94	50	U	50 U	474
EX-3	03/29/95	50	U	50 U	226
EX-3	07/14/95	50	U	50 U	200 U
EX-3	05/01/97	50	U	64 Y	200 U
EX-3	02/04/99	100	U	100 U	
EX-3	12/20/00	690	Z	100 U	250 U
EX-3	03/07/02	110	U	110 Y	
EX-3	10/04/02	100	U	120 Y	250 U
EX-3	02/12/04	100	U	100 U	250 U
EX-3	10/21/04	100	บ	100 U	250 U
1	- I			l	i

Table 3
Total Petroleum Hydrocarbons
Groundwater
McCall Oil and Chemical

		TPH - FIQ						
Location	Date Sampled	Gasoline		Diesel		Heavy Fuel Oil		
EX-4/MW-2	09/08/94	50	U	50	G	200		
EX-4/MW-2	12/30/94	50	U	1000	U	3840		
EX-4/MW-2	03/29/95	50	Ū	2140	i	200	U	
EX-4/MW-2	07/14/95	50	U	343		200	U	
EX-4/MW-2 Duplicate	07/14/95	50	U	50	U	200	U	
EX-4/MW-2	05/01/97	50	U	1310	Y	200	U	
EX-4/MW-2	02/03/99	100	U	787	Y	250	U	
EX-4/MW-2	12/20/00	640	Z	100	U	250	U	
EX-4/MW-2	03/07/02	160	H	920	Y	290	0	
EX-4/MW-2	10/03/02	150	H	980	Y	250	U	
EX-4/MW-2	02/13/04	120	H	920	Y	280	0	
EX-4/MW-2	10/22/04	240	H	1700	Y	610	L	
EX-5	12/30/94	50	Ū	50	ט	1400		
EX-5	03/29/95	50	U	50	U	639		
EX-5 Duplicate	03/29/95	50	U	50	U	767		
EX-5	07/14/95	50	U	1500	1	200	U	
EX-5	05/01/97	50	U	50	U	200	U	
EX-5 Duplicate	05/01/97	50	U	50	U	200	U	
EX-5	02/04/99	100	บ	573	Y	250	U	
EX-5 Duplicate	02/04/99	100	U	550	Y	250	U	
EX-5	12/20/00	950	Z	100	U	250	U	
EX-5	03/07/02	100	U		Y	250	Ū	
EX-5	10/04/02	100	U	120	Y	270	0	
EX-6	12/30/94	50	υ	50	บ	842		
EX-6 Duplicate	12/30/94	50	U	50	U	851		
EX-6	03/29/95	50	U	50	U	1160		
EX-6	07/14/95	50	U	50	U	200	U	
EX-6	05/02/97	50	U	50	U	1450		
EX-6	02/04/99	100	U	1280	Y	250	U	
EX-7	12/30/94	50	U	50	υ	200	U	
EX-7	03/29/95	50	U	50	U	200	U	
EX-7	07/14/95	-50	U	50	U	200	U	
EX-7	05/02/97	50	U	50	U	200	U	
EX-7	02/03/99	100	U	250	U	250	U	
EX-7	12/20/00	530	Z	100	U	250	U	
EX-7	03/06/02	100	U	100	U	250	U	
EX-7	10/03/02	100	บ	100	ט	250	U	
EX-7	02/13/04	100	U	100	U	250	U	
EX-7	10/21/04	100	Ū	100	Ū	250	U	
EX-7 Duplicate	10/21/04	100	Ū		Ū	270	0	
			-					

Table 3
Total Petroleum Hydrocarbons
Groundwater
McCall Oil and Chemical

				TPH - FIQ			
Location	Date Sampled	Gasoline		Diesel		Heavy Fuel Oil	
MW-1	05/01/97	50	U	319	Y	200	U
MW-1	02/03/99	100	Ū	250		250	Ū
MW-1	12/20/00	1200	z	100		250	Ŭ
MW-1	03/07/02	100	Ū	110	_	250	U
MW-1	10/03/02	100	Ū	220		250	Ü
MW-1	02/11/04	100	U	120		250	Ū
	10/22/04	100	U	300	Y	320	L
MW-1	10/22/04	100	Ū	270	_	320	L
MW-1 Duplicate	10/22/04	100	U	270	1	320	L
MW-3	05/01/97	50	U	1430		200	U
MW-3	02/03/99	100	U	1190	_	250	U
MW-3	12/20/00	720	Z	100		250	U
MW-3 Duplicate	03/07/02	240	H	1000		390	0
MW-3	03/07/02	220	H	1000		410	0
MW-3	10/03/02	320	H		Y	520	L
MW-3	02/11/04	300	H	2000	Y	250	U
MW-3	10/22/04	150	H	2400	Y	540	L
MW-4	05/01/97	50	U	312	Y	200	U
MW-4	02/03/99	100	U	716		250	U
MW-4	12/20/00	100	U	100	U	250	U
MW-4	03/07/02	180	H	870		350	0
MW-4	10/03/02	170	H	1	Y	250	U
MW-5	05/01/97	50	υ	204	Y	200	U
MW-5	02/03/99	100	Ū	391		250	Ū
MW-5	12/20/00	100	Ū	100		250	Ū
MW-5	03/07/02	100	Ū	310	-	260	Ō
MW-5	10/03/02	100	Ū	280	Y	250	Ū
MW-5 Duplicate	10/03/02	100	Ū	310		250	Ū
MW-5	02/11/04	100	Ū		Ÿ	250	Ū
MW-5	10/22/04	100	Ū	540		330	L
MW-6	10/25/01	250	U	630	U	630	U
MW-6 Duplicate	10/25/01	250	Ŭ	630	_	630	U
MW-6	03/08/02	160	Ž		Ÿ	500	Ö
MW-6	10/03/02	100	Ũ		Ŷ	350	L
MW-6 Duplicate	10/03/02	100	Ŭ	1	Ŷ	270	L
MW-6	02/12/04	100	Ū	130		250	Ū
MW-6	10/21/04	100	Ŭ	210		250	บั
MW-7	10/25/01	250	U	630	TI	630	ט
MW-7	03/08/02	110	U	1500		4000	o
MW-7	10/04/02	160	H	1100		820	0
MW-7	02/12/04	100	U	240		250	บ
MW-7 Duplictate	02/12/04	100	Ü	240		250 250	Ü
MW-7 Duplictate	10/21/04	100	Ü	430		250	ΰ

Table 3 **Total Petroleum Hydrocarbons** Groundwater McCall Oil and Chemical

			_	TPH - FIQ			
Location	Date Sampled	Gasoline		Diesel		Heavy Fuel Oil	
MW-8	10/25/01	250	U	3090		1840	
MW-8	03/07/02	650	н	20000	Y	9200	0
MW-8	10/04/02	1100	H	35000			DO
MW-8	02/12/04	100	Ü	330	Y	250	U
MW-8	10/21/04	100	ŭ	1300	Y	830	ō
MW-9	01/22/02	140	н	480	Y	310	0
MW-9	03/06/02	200	H	520	Y	300	U
MW-9 Duplicate	03/06/02	210	H	600	Y	290	U
MW-9	10/03/02	150	H	850	Y	250	U
MW-9	02/13/04	100	U	300	Y	250	U
MW-9	10/22/04	130	H	1100	Y	510	L
MW-10	01/22/02	100	U	250	Y	510	0
MW-10	03/06/02	110	U	170	Y	320	0
MW-10	10/03/02	100	U	170	Y	250	U
MW-10	02/13/04	100	U	370	Y	250	U
MW-10	10/21/04	100	U	650	Y	310	L
MW-11	01/22/02	1900	H	15000	Y	4300	0
MW-11	03/08/02	1700	H	11000	Y	2600	0
MW-12	01/22/02	110	H	630	Y	1000	0
MW-12	03/06/02	150	H	1100	Y	1900	0
MW-12	10/04/02	100	U	570	Y	660	0
MW-12	02/13/04	100	U	340	Y	250	U
MW-12	10/21/04	100	U	360	Y	410	0
MW-13	01/22/02	300	H		Y	2300	0
MW-13 Duplicate	01/22/02	360	H	1300	Y	2900	0
MW-13	03/06/02	150	H	710	Y	1500	0
MW-13	10/04/02	150	Z	650	Y	1300	0
MW-14	02/12/04	100	U	300	Y	250	U
MW-14	10/21/04	100	U	430	Y	280	L
MW-15	02/12/04	100	ប		U	250	U
MW-15	10/22/04	100	U	110	H	250	U

Notes: U = Not detected at method reporting limit. F = Fingerprit of the sample matches the clution pattern of calibration standard L = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of lighter weight constituents. H = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of heavier weight constituents. O = The fingerprint resembles oil, but does not match the calibration standard.

Y = The fingerprint resembles a petroleum product in the correct carbon range, but the clution pattern does not match the calibration standard.

Z - The fingerprint does not resemble a petroleum product.

DET- Detected above method reporting limit (method reporting limit shown)

D - The reported result is from a dilution.

TABLE 4
PAHs and SVOCs (μg/L)
Groundwater
McCall Oil and Chemical

																		Gr	ound	water																
Sample Designation Matrix Date Sampled	EX-1 Water 12/20/00	EX- Wate 03/07/	er	EX-1 Water 10/03/02	2	EX-2 Water 12/20/00		EX-2 Water 03/07/02	V	EX-2 Water 9/04/02	1	EX-2 Water 2/12/04	1	EX-2 Water 10/21/04		EX-3 Water 12/20/00		EX-3 Water 03/07/02		EX-3 Water 10/04/02	2	EX-3 Water 02/12/04	ļ	EX-3 Water 10/21/04		EX-4/MW-2 Water 12/20/00		EX-4/MW-2 Water 03/07/02	2	EX-4/MW-2 Water 10/03/02		EX-5 Water 12/20/00		EX-5 Water 03/07/02	2	EX-5 Water 10/04/02
			· .																LPA	Hs				,				 !	-							
Naphthalene	0.008	U 0.01	3 U	0.028	U	0.01	J	0.013	U 0	0.022	J (0.023	J	0.012	U	0.02	J	0.013	U	0.038	J	0.012	U	0.012	U	0.008	U	0.014	U	0.012	U	0.009	J	0.028	J	0.022
Acenaphthylene	0.006	U 0.01	1 U	0.011	U	0.006	U	0.011	U 0	0.011	U (0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.011	U	0.006	U	0.012	U	0.011	U	0.006	U	0.011	U	0.011
Acenaphthene	0.007	U 0.009	4 U	0.0088	U	0.02	J	0.041	J 0	0.110	J (0.025	J	0.037	J	0.01	J	0.0093	U	0.023	J	0.0088	U	0.0088	U	0.14		0.30		0.19	J.	0.009	J	0.024	J	0.015
Fluorene	0.006	U 0.01	3 U	0.012	U	0.006	U	0.013	U 0	0.012	U (0.012	U	0.012	U	0.006	U	0.013	U	0.012	U	0.012	U	0.012	U.	0.006	U	0.014	U	0.012	U	0.006	U	0.013	U	0.012
Phenanthrene	0.01	J 0.03	8 · J.	0.028	J	0.04	J	0.047	J 0).057	J (0.039	J	0.021	J	0.04	J	0.06	J.	0.06	J	0.028	J	0.016	J	0.10		0.52		0.16	J	0.02	J	0.034	J	0.039
Anthracene	0.008	J 0.06	3 J	0.110	J	0.006	U	0.016	U 0	0.015	$\mathbf{U} \cdot 0$	0.015	U	0.015	U	0.006	U,	0.019	J	0.016	J	0.015	U	0.015	U	0.006	U	0.071	J	0.060	J	0.006	U	0.016	U	0.017
2-Methylnaphthalene	0.008	U 0.01	3 U	0.012	U	0.008	J	0.012	J 0	0.017	J (0.013	J	0.012	U	0.008	U	0.012	U	0.015	j	0.012	U	0.012	U	0.008	U	0.013	U	0.012	U	0.008	U	0.012	U	0.012
Total LPAH	0.018	0.10	1	0.166		0.078		0.100	0	0.206		0.100		0.058		0.07		0.08		0.15		0.028		0.016		0.24		0.89		0.41		0.038		0.086		0.093
																			HPA	Hs																
Fluoranthene	0.02	J 0.01	4 U	0.053	J	0.009	J	0.017	J 0	0.013	U (0.013	U	0.013	U	0.01	J	0.038	J	0.034	J	0.013	U	0.013	Ü	0.01	J	0.048	J	0.028	J	0.009	J	0.013	U	0.013
Pyrene	0.03	J 0.03	9 J	0.068	J	0.03	J	0.039	J 0	0.074	J (0.036	J	0.032	J	0.03	J	0.064	J	0.061	J ·	0.028	J	0.030	J	0.02	J	0.13	J	0.049	J	0.040	J	0.046	J	0.067
Benz(a)anthracene	0.01	J 0.01	3 U	0.024	J	0.007	J	0.013	U 0	0.012	U (0.012	U	0.012	U	0.008	J	0.013	U	0.012	U	0.012	U	0.012	U	0.007	J	0.013	U	0.012	U	0.006	J	0.013	U	0.012
Chrysene	0.02	J 0.01	5 U	0.033	J	0.007	J	0.015	U 0	0.014	U (0.014	U	0.014	U	0.01	J	0.015	U	0.014	U	0.014	U	0.014	U	0.008	٠J	0.016	U.	0.014	U	0.008	J	0.015	U	0.014 T
Benzo(b)fluoranthene	0.01	J. 0.02	1 U	0.033	J.	0.006	J	0.021	U 0	0.020	U (0.020	U	0.020	U	0.006	J	0.021	U	0.020	U	0.020	U	0.020	U	0.006	J	0.021	U	0.020	U	0.005	U	0.021	Ù	0.020 T
Benzo(k)fluoranthene	0.01	J 0.02	1 U	0.020	U	0.006	J	0.021	U 0	0.020	U C	0.020	U	0.020	U	0.006	J	0.021	U	0.020	U	0.020	U	0.020	U	0.006	J	0.021	· U ·	0.020	U	0.003	J	0.021	U	0.020
Benzo(a)pyrene	0.02	J 0.01	8 U	0.051	J	0.007	J	0.017	U 0	0.016	UĊ	0.016	U	0.016	U	0.007	J	0.017	U	0.016	U	0.016	U	0.016	U	0.007	J	0.018	U	0.016	U	0.006	U	0.017	U	0.016 T
Indeno(1,2,3-cd)pyrene	0.02	J 0.02	6 U	0.050	J	0.009	J	0.026	U 0	0.024	U (0.024	U	0.024	U	0.009	J	0.026	U	0.024	U	0.024	U	0.024	U	0.007	J	0.027	U	0.024	U	0.007	J	0.026	U	0.024 T
Dibenz(a,h)anthracene	0.004	U · 0.03	U	0.031	U	0.005	J	0.033	U 0	0.031	U (0.031	U	0.031	U	0.004	U	0.033	U	0.031	U	0.031	U	0.031	U	0.004	U	0.034	U	0.031	U	0.004	U	0.033	U	0.031
Benzo(g,h,i)perylene	0.02	J 0.03	9 J	0.061	J ·	0.01	J	0.018	Π. 0	0.017	U (0.017	U	0.017	U	0.02	J	0.034	J	0.025	J	0.017	U	0.017	Ü	0.009	J	0.019	U	0.017	U	0.03	J	0.054	J	0.031
Total HPAHs	0.16	0.08	3	0.37		0.10		0.06	- (0.07		0.04		0.03		0.106		0.136		0.120		0.028		0.030		0.080		0.178		0.077		0.103		0.100		0.098
																			svo	Cs														-		
3- and 4-Methylphenol									•																											
Coelution	0.003	U 0.05	5 U	0.051	Ū	0.02	J	0.055	U 0	0.051	U (0.051	U	0.051	U	0.05	J	0.087	J	0.090	J	0.051	U	0.051	U	0.003	U	0.056	U	0.051	U	0.007	J	0.055	U	0.051 T
Dibenzofuran	0.007	U 0.01	5 U	0.014	U	0.007	U	0.014	U 0	0.014	U C	0.014	U	0.014	U	0.007	U	0.014	U	0.014	U	0.014	U	0.014	U	0.007	U	0.015	U	0.014	U	0.007	U	0.014	U	0.014 T
Butyl Benzyl Phthalate	0.02	U 0.02	8 U	0.026	U	0.02	U	0.028	U 0	0.026	U - 0	0.026	U	0.026	U	0.02	U	0.028	U	0.026	U	0.026	U	0.026	U	0.02	U	0.028	U	0.026	U	0.02	U	0.028	U	0.026 T
Di-n-octyl Phthalate	0.003	U 0.03	5 U	0.032	U	0.003	U	0.035	U 0	0.032	U (0.032	U	0.032	U	0.003	U	0.035	U	0.032	U	0.032	U	0.032	U	0.003	U.	0.036	U	0.032	U	0.003	U	0.035	U	0.032 T
						, ,														***						-										

NOTE: µg/L = micrograms per liter or parts per billion. U = not detected at or above the indicated method reporting limit. J = estimated concentration. D = reported result is from a dilution

TABLE 4
PAHs and SVOCs (μg/L)
Groundwater
McCall Oil and Chemical

							-									Groun	dwate	r									·							
Samula Davionation	EX-7	EX-7		EX-7	-	MW-1		MW-1		MW-1	:	MW-3		MW-3		MW-3 Dur		MW-3		MW-4		MW-4		MW-4	1	MW-5 .	MV	7-5	MW-5	<u>.</u> 1	MW-5 Dup	MW-	5	MW-
Sample Designation Matrix	Water	Water		Water		Water		Water		Water		Water		Water		Water	,	Water		Water		Water		Water		Water	Wa	_	Water		Water	Wate		Wate
Date Sampled	12/20/00	03/06/02	,	10/03/02		12/20/00		03/07/02		10/03/02		12/20/00		03/07/02		03/07/02		10/03/02		12/20/00		03/07/02		0/03/02		2/20/00	03/0		10/03/0		10/03/02	02/11/		10/22/
Date Sampled	12/20/00	03/00/02	•	10/05/02		12/20/00	-	03/01/02		10/05/02						05/07/02		10/03/02			·	03/01/02		0,03,02	•	2,20,00	03/0	,02				02,11,	• •	10,22,
.*				•		-										LPA	Hs																	
Naphthalene	0.008 U	0.14	J	0.022	J	0.008	U	0.012	U	0.012	U	0.008	U	0.012	U	0.012	U	0.012	U	0.008	U	0.014	•	0.012	-		J 0.0	-	0.012	_	0.023	0.025		0.01
Acenaphthylene	0.006 U	• • • • •	U	0.011	\mathbf{U}	0.006	U	0.011	Ū.	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.006	U	0.012	U		U		J 0.0	-	0.011	U	0.011 U			0.01
Acenaphthene	0.007 U	0.0089	U	0.0088	U	0.007	U	0.0088	U	0.0088	U	0.17		0.21		0.23	٠.	0.33		0.03	J	0.064	J	0.130	J	0.007	J 0.00	94 U	0.0088	3 U	0.0088 U	0.008	8 U	0.00
Fluorene	0.006 U	0.013	Ū	0.012	U	0.006	U	0.012	U	0.014	U	0.006	U -	0.012	. U	0.012	U	0.012	U	0.006	U	0.014	U	0.012	U	0.006	J 0.0	13 U	0.012	_	0.012 U	0.012	U	0.01
Phenanthrene	0.007 U	0.016	J	0.015	J	0.007	U	0.011	Ū	0.012	U	0.13		0.18	J	0.17	J	0.27		0.06	J	0.082	J	0.086	J	0.007	J 0.0	11 U	0.021	J	0.021 J	0.011	U	0.01
Anthracene	0.006 U	0.019	· J	0.038	J	0.006	U	0.015	U	0.028	J	0.02	J	0.049	J	0.055	J	0.092	J	0.01	J	0.035	J	0.046	J	0.006	J 0.0	16 U	0.025	J	0.022 J	0.015	U	0.01
2-Methylnaphthalene	0.008 Ü	0.012	U	0.012	U	0.008	U	0.012	U	0.012	U	0.008	· U	0.012	U	0.012	U	0.012	U	0.008	Ű	0.013	U	0.012	U	0.008 1	J 0.0	13 U	0.012	U	0.012 U	0.012	. U	0.01
Total LPAH	0.008	0.18		0.08		0.008		0.015		0.03		0.32		0.44		0.46		0.69		0.10		0.18		0.26		0.008	0.0	3	0.05		0.07	0.025		0.01
		•				,										HPA	Hs								•									
Fluoranthene	0.007 U	0.018	J	0.024	J	0.007	U	0.013	U	0.013	U	0.01	J	0.065	J	0.071	J	0.087	J	0.02	J	0.04	J	0.013	U	0.007	J 0.0	14 U	0.031	J	0.026 J	0.013	Ū	0.01
Pyrene	0.007 บ	0.022	j	0.028	J	0.007	U	0.015	U	0.015	U	0.05	J	0.13	Ĵ	0.11	J	0.19	J	0.05	J	0.11	J	0.15	J	0.007	J 0.0	24 J	0.037	J	0.034 J	0.015	U	0.01
Benz(a)anthracene	0.005 บ		U	0.012	Ü	0.005	U	0.012	U	0.012	U	0.008	J	0.012	U	0.024	J	0.048	J	0.01	J	0.053	J	0.038	J	0.005	J 0.0	13 · U	0.030	J	0.012 U	0.012	U	0.01
Chrysene	0.006 U	0.015	U	0.014	U	0.006	U	0.014	U	0.014	U	0.009	J	0.033	J	0.030	J	0.062	· J	0.02	J	0.048	J	0.054	J	0.006	J 0.0	15 U	0.022	J	0.014 U	0.014	U	0.01
Benzo(b)fluoranthene	0.005 U	0.020	U	0.020	U	0.005	U.	0.020	U	0.020	U	0.006	· J	0.020	U	0.020	. U	0.055	J	0.01	J	0.021	U	0.044	J	0.005	J 0.0	21 U	0.020	Ū	0.020 U	0.020	U	0.02
Benzo(k)fluoranthene	0.004 J	0.020	U	0.020	U	0.003	U	0.020	Ū	0.020	U	0.006	J	0.020	U	0.020	U	0.020	U	0.01	J	0.021	U.	0.020	U	0.003	J 0.0	21 U	0.020	U	0.020 U	0.020	U	0.02
Benzo(a)pyrene	0.006 U	0.017	Ü	0.019	J	0.006	U	0.016	Ú	0.016	U	0.007	J	0.016	U	0.016	Ū	0.077	J	0.01	J	0.018	U	0.043	J	0.006	J 0.0	8 U	0.016	U	0.016 U	0.016	U	0.01
ideno(1,2,3-cd)pyrene	0.005 J	0.025	U	0.024	U	0.004	U	0.024	U	0.024	U	0.008	J	0.024	U	0.024	IJ	0.053	'I	0.01	J	0.026	U	0.032	J	0.004 1	J 0.0	26 U	0.024	U	0.024 U	0.024	U	0.02
ibenz(a,h)anthracene	0.004 U	0.031	11	0.031	IJ	0.004	U	0.031	U	0.031	U -	0.004	U	0.031	U	0.031	IJ	0.031	IJ	0.004	IJ	0.033	U	0.031	U	0.004 1	J 0.0	3 U	0.031	U	0.031 U	0.031	Ū	0.03
Benzo(g,h,i)perylene	0.007 J	0.017	U	0.021	J	0.005	U	0.017	. U	0.017	U	0.009	I	0.039	J	0.017	IJ	0.066	J	0.02	. 1		_	0.048	-		J 0.0	-	0.017		0.017 U		_	0.01
Total HPAHs	0.016	0.040		0.092		0.007		0.031		0.031		0.113		0.267		0.235		0.638		0.160		0.251		0.409		0.007	0.0		0.12		0.09	0.031		0.03
104111111				* .						•						SVC	Cs			:														
and 4-Methylphenol									-																									
Coelution	0.003 U	0.052	U	0.051	U	0.003	U	0.051	U	0.051	U	0.003	U	0.051	U	0.051	U	0.051	U	0.003	U	0.056	U	0.051	U	0.003	J 0.0	55 U	0.051	U	0.051 U	0.051	U	0.05
Dibenzofuran	0.007 U		U	0.014	Ū	0.007	U	0.014	Ū	0.014	Ū	0.007	U	0.014	U	0.014	IJ	0.014	U	0.095	-	0.015	_	0.00.	-	0.007	J 0.0		0.200	_	0.014 U		_	0.01
atyl Benzyl Phthalate	0.007 U		ī	0.014	IJ	0.02	· II	0.052	J	0.026	IJ	0.02	IJ	0.026	IJ	0.026	II	0.026	IJ	0.02	-	0.013	_				J 0.02				0.026 U		_	0.02
Di-n-octyl Phthalate	0.02 U		Ü	0.020	U	0.003	IJ	0.032	IJ	0.032	ŢIJ	0.003	U	0.020	Ü	0.020	ΙΙ	0.032	U	0.003	_		_	*	_	0.003 T			*******	•	0.014 U			0.02
21-11-octyl I minaiate	0.003	0.033		0.002		0.003		0.052	<u>~</u> _	V.052	<u> </u>	0.003		0.032	<u> </u>	0.002	<u> </u>	0.052		3.003		3.033						-	0.014			0.032	<u> </u>	
	1																																	
	i																					-												

2 of 4

TABLE 4
PAHs and SVOCs (μg/L)
Groundwater
McCall Oil and Chemical

						•															
											Groundwa	ter									
Sample Designation	MW-6	MW-6 Dup	MW-6	N	MW-6	MW-6 Dup	MW-7	MW-7	MW-7	MW-7	MW-7 Dup	MW-7	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9 Dup	MW
Matrix	Water	Water	Water	7	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Wat
Date Sampled	10/25/01	10/25/01	03/08/02		0/03/02	10/03/02	10/25/0	03/08/0	2 10/04/0	2 02/12/04	02/12/04	10/21/04	10/25/01	03/07/02	10/04/02	02/12/04	10/21/04	01/22/02	03/06/02	03/06/02	10/03
1				·				<u> </u>													
Naphthalene	5.00	J 5.00	U 0.12	Y /	0.048 .	0.066	J 5.00	U 0.086	J 0.020	J 0.012	LPAHs U 0.012 U		U 5.00	U 0.16	J 0.38	0.031 J	0.012 U	0.17	J 0.013	U 0.012 U	J 0.01
Acenaphthylene	5.00		U 0.038		0.046 . 0.011 T		U 5.00	U 0.025	J 0.020	U 0.011	U 0.012 U				U 0.210	0.031 J	•		J 0.013	J 0.069 J	J 0.01
Acenaphthene Acenaphthene	5.00		U 0.0095		0.011 t 0.0088 t	J 0.011	J 5.00	U 0.0092			U 0.045	J 0.011		U 0.58	0.78	0.011	0.011	0.034	J 0.12	J 0.009 J	0.0
Fluorene	5.00		U 0.0093	-	0.012 T	J 0.012	U 5.00	U 0.0032	U 0.008	U 0.0088	U 0.012 T			U 0.56	0.78	0.34	0.22	0.012		U 0.012 U	
Phenanthrene	5.00		U 0.13		0.012 (0.012	J 5.00	U 0.013	J 0.012	J 0.024	J 0.036		U 5.00	U 1.2	1.7	0.30	0.22	0.012	0.22	0.16 J	0.0
Anthracene	5.00		U 0.047	-	0.035 0.045	J 0.049	J 5.00	U 0.039	J 0.034	J 0.024	J 0.029			U 0.097	J 0.380	0.028 J	0.22 0.015 U	0.090	0.098	J 0.067 J	0.00
Anuracene 2-Methylnaphthalene	5.00		U 0.025			J 0.012	U 5.00	U 0.034	J 0.031		U 0.012 U			U 0.081	J 0.160	J 0.012 U	•	0.020		U 0.012 U	
Total LPAH	3.00	3.00	0.38		0.13	0.012	0 3.00	0.034	0.012	0.012	0.012	0.012	5 5.00	2.68	4.52	0.98	0.65	0.71	0.55	0.45	0.5
Total LPAH			0.30		0.13	0.17		0.20	0.03	0.043	HPAHs			2.00	4.32	0.70	0.03	0.71	0.33	,0.43	- 0.5
Fluoranthene	5.00	U 5.00	U 0.18	J	0.08	0.12	J 5.00	U 0.061	J 0.013	U 0.013			U 5.00	U 0.22	0.73	0.035 J	0.048 J	0.25	0.33	0.13 J	0.1
Pyrene ·	5:00	U 5.00	U 0.25		0.12	0.20	5.00	U 0.089	J 0.025	J 0.015	U 0.015 U	J 0.015	U 5.00	U 0.34	1.10	0.066 J	0.079 J	0.41	0.48	0.26	0.2
Benz(a)anthracene	5.00	U 5.00	U 0.077	J . (0.033	0.042	J 5.00	U 0.044	J 0.012	U 0.012	U 0.012 U	J 0.012	U 5.00	U 0.071	J 0.390	0.012 U	J 0.012 U	0.18	0.23	0.096 J	0.0
Chrysene	5.00	J 5.00	U 0.087	J	0.038	0.052	J 5.00	U 0.045	J 0.014	U 0.014	U 0.014 T	J 0.014	U 5.00	U 0.16	J 0.56	0.014 U	J 0.014 U	0.18	0.24	0.10 J	0.0
Benzo(b)fluoranthene	5.00	U 5.00	U 0.088	J (0.037	0.057	J 5.00	U 0.021	U 0.020	U 0.020	U 0.020 U	J 0.020	U 5.00	U 0.064	J 0.350	0.020 U	J 0.020 U	0.18	0.28	0.098 J	0.0
Benzo(k)fluoranthene	5.00	U 5.00	U - 0.045	J (0.020 T	J 0.020	U 5.00	U 0.021	U 0.020	U 0.020	U 0.020 U	J 0.020	U 5.00	U 0.02 1	U 0.13 .	J 0.020 U	J 0.020 U	0.078	0.096	J 0.027 J	0.0
Benzo(a)pyrene	5.00	U 5.00	U 0.096	J (0.028	0.057	J 5.00	U 0.017	U 0.016	U 0.016	U 0.016 T	J 0.016	U 5.00	U 0,089	J 0.360	0.016 U	J 0.016 U	0.19	0.26	0.094 J	0.0
ideno(1,2,3-cd)pyrene	5.00	U 5.00	U 0.088	J (0.037	0.057	J 5.00	U 0.026	U 0.024	U 0.024	U 0.024 T	J 0.024	U 5.00	U 0.04	J 0.25	0.024 U	J 0.024 U	0.12	0.15	J. 0.062 J	0.0
Dibenz(a,h)anthracene	5.00	U 5.00	U 0.033	U (0.031 T	J 0.031	U 5.00	U 0.032	U 0.031	U 0.031	U 0.031 U	J 0.031	U 5.00	U 0.031 1	U 0.031 L	J 0.031 <u>U</u>	J 0.031 U	0.031 T	J 0.031	U 0.031 U	J. 0.03
Benzo(g,h,i)perylene	5.00	U 5.00	U 0.09	J (0.048	J 0.071	J 5.00	U 0.099	J 0.017	U 0.017	U 0.017 U	J 0.017	U 5.00	U 0.057	J 0.310	0.017 U	0.017 U	0.130	0.16	J 0.065 J	0.0
Total HPAHs			1.00		0.42	0.66		0.34	0.03	0.03	0.03	0.03		1.04	4.18	0.101	0.127	1.72	2.23	0.93	0.8
											SVOCs										
 and 4-Methylphenol 									-								. <u>.</u>				
Coelution	3.00	9 5.00	U 0.073		0.051 J	J 0.051	U 5.00	U 1.1	0.05	U 0.051		0.001		U 0.22	J 1.60		J 0.051 U			U 0.051 U	
Dibenzofuran	5.00		U 0.015	_	0.01.	J 0.014	U 5.00	U 0.014	U 0.014	U 0.014	U 0.014 U	0.01	• • • • • • • • • • • • • • • • • • • •	U 0.18	J 0.014 T		0.014 U			U 0.014 U	
utyl Benzyl Phthalate	5.00	0 5.00	U 0.028		0.026	J 0.026	U 5.00	U 0.027	U 0.026	U 0.026	0 0.020	0.020		ປ 0.13		J 0.026 U			J 0.050	J 0.074 J	0.02
Di-n-octyl Phthalate	5.00	U 5.00	U 0.035	U (0.032	J 0.032	U 5.00	U 0.034	U 0.032	U 0.032	U 0.032 T	J 0.032	J 5.00	U 0.032 T	U 0.032 T	J 0.032 U	0.032 U	0.032 T	J 0.033	U 0.032 U	0.03
		•						-				,									
							-				•										
	1																				

OTE: µg/L = micrograms per liter or parts per billion. U = not detected at or above the indicated method reporting limit. J = estimated concentration. D = reported result is from a dilution

TABLE 4
PAHs and SVOCs (μg/L)
Groundwater
McCall Oil and Chemical

															G	roui	ndwater															
Sample Designation	MW-10	,	MW-10		MW-10		MW-11		MW-11		MW-12		MW-12		MW-12		MW-13	1	/W-13 Dı		MW-13		MW-13		MW-14		MW-14		MW-15		MW-15	
Matrix	Water		Water		Water		Water		Water		Water		Water		Water		Water	1	Water	ıp	Water		Water		Water		Water		Water		Water	
ľ	01/22/02		3/06/02		10/03/02		01/22/02		03/08/02		01/22/02		03/06/02	,	10/04/02		01/22/02		01/22/02		03/06/02		10/04/02	,	02/11/04		10/21/04		02/12/04	i	10/22/04	ı
Date Sampled	01/22/02	. 0	13/00/02		10/03/02		01/22/02		03/06/02	•	01/22/02		.03/00/02	•	10/04/02		01/22/02		01/22/02		03/00/02		10/04/02	•	02/11/04		10/21/04		02/12/04		10/22/04	1
•																LP	AHs									<u> </u>						
Naphthalene	0.058	J	0.24		0.012	U	0.012	U	0.12	· U	0.11	J	0.12	J	0.012	U	0.190	J	0.25		0.24		0.10	J	0.023	J	0.012	Ū	0.016	J	0.012	U
Acenaphthylene	0.019	J	0.022	j	0.011	U	0.011	U	0.110	U	0.017	J	0.028	J	0.011	U	0.031	J	0.042	J	0.054	J	0.022	J	0.011	U	0.011	U	0.011	U	0.011	Ú
Acenaphthene	0.120	J	0.009	U	0.0088	U	0.43		1.6	JD	0.190	J	0.15	ĵ	0.25		0.087	J	0.093	J	0.18	J	0.25		0.0310	J	0.0088	U	0.0088	U	0.0088	U
Fluorene	0.012	U	0.013	U	0.012	U	0.86		2.0	D	0.012	U	0.013	U	0.012	U	0.041	J	0.033	J	0.037	J	0.012	U	0.012	U	0.012	U	0.012	U	0.012	U
Phenanthrene	0.073	J	0.08	J	0.012	· J	1.80		3.0	D	0.11	J	0.11	J	0.15	J	0.11	J	0.13	J	0.19	J	0.14	J	0.011	U	0.011	U	0.011	U	0.011	U
Anthracene	0.032	J	0.029	J	0.029	J	0.41		0.660	Л	0.019	J	0.016	Ŭ	0.054	J	0.025	J	0.033	J	0.041	J	0.019	J	0.015	U	0.015	U	0.070	J	0.055	J
2-Methylnaphthalene	0.012	U	0.015	J	0.012	U	20	D	24	D	0.036	J.	0.034	J	0.012	U	0.058	J	0.073	j	0.056	J	0.026	J	0.012	U	0.012	U	0.012	U	0.012	U
Total LPAH	0.30		0.39		0.04		23.50		31.26		0.48		0.44		0.45		0.54		0.65		0.80		0.56		0.054		0.015		0.086		0.055	-
							-									HP	AHs															
Fluoranthene .	0.081	J	0.10	J	0.016	J	0.43		0.38	Ъ	0.036	J	0.058	J	0.013	U	0.10	J	0.12	J	0.14	J	0.058	J	0.013	U	0.013	Ü	0.013	U	0.013	Ū
Рутепе	0.130	J	0.15	J	0.059	J	0.61		0.89	Ъ	0.076	J	0.11	J	0.10	J	0.14	J	0.19	J	0.19	J	0.11	J	0.015	U	0.015	U	0.021	J	0.024	J
Benz(a)anthracene	0.078	J	0.081	J	0.026	J	0.012	U	0.23	ΊD	0.012	U	0.052	J	0.012	U	0.038	J	0.053	·J	0.063	J	0.012	U	0.012	U	0.012	U	0.012	U	0.012	U
Chrysene	0.084	J	0.094	J	0.017	J	0.13	J	0.50	·JD	0.047	J	0.046	J	0.014	U	0.052	J	0.056	J	0.075	J	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U
Benzo(b)fluoranthene	0.056	J	0.070	J	0.020	U	0.02	U	0.20	U	0.020	U	0.021	U	0.020	U	0.020	U	0.072	J	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U
Benzo(k)fluoranthene	0.020	U	0.037	J	0.020	U	0.02	U	0.20	U	0.020	U	0.021	U	0.020	U	0.020	U	0.020	·U	0.020	U	0.020	U	0.020	U	0.020	U	. 0.020	U	0.020	U
Benzo(a)pyrene	0.071	J	0.090	J	0.016	U.	0.016	U	• 0.16	U	0.016	U	0.018	U	0.016	Ū	0.044	J	0.072	J	0.098	J	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U
Indeno(1,2,3-cd)pyrene	0.024	U·	0.052	J	0.024	U	0.024	U	0.24	U	0.024	U	0.026	U	0.024	U	0.024	U	0.053	J	0.082	J	0.024	U	0.024	Ų	0.024	U.	0.024	U	0.024	U
Dibenz(a,h)anthracene	0.031	U	0.031	U	0.031	U	0.031	U	0.31	U	0.031	U	0.033	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	. U	0.031	U
Benzo(g,h,i)perylene	0.047	J	0.061	J	0.017	U	0.017	U	0.17	U	0.017	U	0.047	J	.0.017	-U	0.017	U	0.072	J	0.110	J	0.021	J	0.017	U	0.017	U	0.017	U	0.017	U
Total HPAHs	0.55		0.74		0.12		1.17		2.00		0.16		0.31	:	0.10		0.37		0.69		0.76		0.26		0.031		0.031		0.021		0.024	
					·											SV	OCs_															
3- and 4-Methylphenol																																
Coelution	0.051	Ξ.	0.053	U	0.051	Ų	0.051	U	0.510	U	1.9		0.41	J	0.07	J	28	D	31	D	1.5		0.4	J	0.051	U	0.051	U	0.051	U	0.051	U
Dibenzofuran	0.014		0.014	U	0.014	U	0.014	U	0.81	JD.	0.20	U	0.015	U	0.014	U	0.018	J	0.021	J	0.021	J	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U
Butyl Benzyl Phthalate	0.045	J	0.040	J	0.026	U	0.026	U	0.26	U	0.20	Ü	0.028	U		U	0.026	U	0.026	U	0.027	U	0.026	U	0.026	U	0.026 -	U	0.026	U	0.026	U
Di-n-octyl Phthalate	0.032	U	0.033	U	0.032	U	0.032	U	0.32	U	0.20	U	0.035	U	0.032	U	0.032	U	0.032	U	0.034	U	0.032	U	0.032	U	0.032	U	0.032	U	0.032	U
`							-										-				•					•						
																				-	٠.					-						
																		_							٠.							
	NOTE: μg/l	L = mic	crograms	per lit	er or parts p	er bill	ion. U = no	t det	ected at or a	bove	the indicated	i meti	nod reportit	ng lin	nit. J = estim	ated o	concentratio	n. D	= reported r	esult	is from a dili	ition.										

TABLE 5 VOLATILE ORGANIC COMPOUNDS (μg/L) GROUNDWATER McCall Oil and Chemical

																								,
							٠.]		٠.		'						
																	·						ı	
													-											
	1].														İ		·					
Sample Designation	Matrix	Date Sampled			<u> </u>						l		0.5.77									240		
EX-1	Water	05/02/97	 	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	1.8		0.5 U	2.0 U	0.5 U	4.4	20 U	0.5 U	9,9	5.9	0.5 U	240	0.5 U	0.5 U
EX-1	Water	05/02/97	•	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	1.7		0.5 U	2.0 U	0.5 U	3.9		0.5 U	8.3	5.2	0.5 U	270	0.5 U	0.5 U
EX-1	Water	02/04/99	-	50 U	50 U	50 U	50 U	50 U	50 U	2000 U	50 U		50 U	200 U	50 U	50 U	2000 U	50 U	50 U	50 U	50 U	120	50 U	50 U
EX-1	Water	02/04/99	ļ	50 U	50 U	- 50 U	50 U	50 U	50 U	2000 U	50 U		50 U	200 U	50 U	50 U	2000 U	50 U	' 50 U	50 U	50 U	130	50 U	50 U
EX-1	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.53	20 U	0.5 U	0.5 U	0.5 U	0.5 U	9.1	0.5 U	0.5 U
EX-1	Water	03/07/02		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	,	2.5 U	10 U	2.5 U	3.2 D	100 U	2.5 U	2.5 U	2.5 U	2.5 U	13 D	2.5 U	2.5 U
EX-1	Water	10/03/02		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	<u> </u>	. 2.5 U	10 U	2.5 U	0.5 U	100 U	2.5 U	2.5 U	2.5 U	2.5 U	11	2.5 U	2.5 U
EX-1	Water	02/11/04	<u> </u>	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U		2.5 U	10 U	2.5 U	0.5 U	100 U	2.5 U	2.5 U	2.5 U	2.5 U	22 D	2.5 U	2.5 U
EX-1 Duplicate	Water	02/11/04		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	٠	2.5 U	10 U	2.5 U	0.5 U	100 U	2.5 U	2.5 U	2.5 U	2.5 U	24 D	2.5 U	2.5 U
EX-1	Water	10/22/04		1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	50 U	1.3 U		1.3 U	5.0 U	1.3 U	1.3 U	50 U	1.3 U	1.3 U	1.3 U	1.3 U	4.1 D	1.3 U	1.3 U
											-													
EX-2	Water	05/01/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	02/04/99		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	· 0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	10/04/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 Ú	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	03/07/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U .	0.5 U		0.5 U	2.0 U	0.5 U	0:5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EA-Z	water.	03/01/02		0.5 0	0.5 0	0.5 0	0.5_0	0.5 0	0.5 0	20 0	0.5 0		0.5 0	2.0 0	0.5 0	0.5 0			- 0.5 0	0.5 0	0.5 0			0.5 0
EX-3	Water	05/01/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	02/04/99		0.5 U	0.5 'U'	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	1		5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	12/20/00	3.0 0						:		0.5 U	0.5 0							•		0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	03/07/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U			0.5 U	2.0 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U				
EX-3	Water	10/03/02		0.5 U	0.5 U	0.5 U	·0.5 U	0.5 U	0.5 U	20 U	0.5 U	:	0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	ļ				·											 ;								
EX-4/MW-2	Water	05/01/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	<u> </u>	0.5 U		0.5 U	0.5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	02/03/99		0.5 U	0.5 U	0.8	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U		0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	- 20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 Ü	20 U		0,5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	03/07/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	10/03/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 _. U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	1.8	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	02/13/04	·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	10/22/04		0.5 U	0.5 Ù	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
																		<u></u>	· · ·					<u>. </u>

1 of 12

TABLE 5 VOLATILE ORGANIC COMPOUNDS (µg/L) GROUNDWATER McCall Oil and Chemical

											all Oil an	a 						<u> </u>							
Sample Designation	Matrix	Date Sampled	1,2-Dichloroethane	Benzene	Trichloroethene	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	2-Hexanone	cis-1,3-Dichloropropene	Toluene	trans 1,3-Dichloropropene	1,1,2-Trichloroethane	4-Methyl-2-pentanone	1,3 Dichloropropane	Tetrachloroethene	Dibromochloromethane	1,2 Dibromoethane	Chlorobenzene	1,1,1,2-Tetrachloroethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Styrene	Bromoform
EX-I	Water	05/02/97	0.5 U	0.5 U	410	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U_	0.5 U	0.5 U	20 U	0.5 U	3300	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-1	Water	05/02/97	0.5 U	0.5 U	470	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U_	0.5 Ü	0.5 U	20 U	0.5 U	3600	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-1	Water	02/04/99	50 U	50 U	220	50 U	50 U	50 U	2000 U	50 U	50 U_	50 U	50 U	2000 U	50 U	2600	50 U	200 U	50 U	50_U	50 U	50 U	50 U	50 U	50 U
EX-1	Water	02/04/99	. 50 U	50 U	250	50 U	50 U	50 U	2000 U	50 U	50 U_	50 U	50 U	2000 U	50 U	3000	50 U	200 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
EX-1	Water	12/20/00	0.5 U	0.5 U	20	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	400 D	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-1	Water	03/07/02	2.5 U	2.5 U	32 D	2.5 U	2.5 U	2.5 U	100 U	2.5 U	2:5 U	. 2.5 U	*2.5 U	100 U	2.5 U	480 D	2.5 U	10.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
EX-1	Water	10/03/02	2.5 U	2.5 U	25	2.5 U	2.5 U	2.5 U	100 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	340 D	2.5 U	10.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
EX-1	Water	02/11/04	2.5 U	2.5 U	82 D	2.5 U	2.5 U	2.5 U	100 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	1700 D	2.5 U	10.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
EX-1 Duplicate	Water	02/11/04	2.5 U	2.5 U	89 D	2.5 U	2.5 U	2.5 U	100 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	1700 D	2.5 U	10.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
EX-1	Water	10/22/04	1.3 U	1.3 U	19 D	1.3 U	1.3 U	1.3 U	50 U	1.3 U	1.3 U	1.3 U	1.3 U	50 U	1.3 U	740 D	1.3 U	5.0 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
EX-2	Water	05/01/97	0.5 U	0.5 U	0 <u>.5 U</u>	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-2	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	ŀ							· .									•								
EX-3	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 •U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5. U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	` 2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-3	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	1.3	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
																					· · ·	<u> </u>			
EX-4/MW-2	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.65	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	03/07/02	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5_U	0.5 U
EX-4/MW-2	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	1.3	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	02/13/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-4/MW-2	Water	10/22/04	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		1	•													· · · · · · · · · · · · · · · · · · ·		· 		 .					

TABLE 5 VOLATILE ORGANIC COMPOUNDS (μg/L) GROUNDWATER

McCall Oil and Chemical

·									IVICC	an On a	nd Chem	icai											
Sample Designation	Matrix	Date Sampled	Isopropylbenzene	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	Bromobenzene	n-Propylbenzene	2-Chlorotoluene	4-Chlorotoluene	1,3,5-Trimethylbenzene	tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylbenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorobenzene	1,2-Dibromo-3- chloropropane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Naphthalene	Hexachlorobutadiene
EX-1	Water	05/02/97	2.0 U	0.5· U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	Water	05/02/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	Water	02/04/99	200 U	50 U	50 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	50 U	200 U	50 U	200 U	50 U	200 U	200 U	200 U	200 U	200 U
EX-1	Water	02/04/99	200 U	50 U	50 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	50 U	200 U	50 U	200 U	50 U	200 U	200 U	200 U	200 U	200 U
EX-1	Water	12/20/00	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	· 0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	Water .	03/07/02	10.0 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	Water	10/03/02	10.0 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	Water	02/11/04	10.0 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U_	10.0 U	10.0 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1 Duplicate	Water	02/11/04	10.0 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	Water	10/22/04	5.0 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
														·		·							•
EX-2	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 ਪ
EX-2	Water	02/04/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 ປ	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	Water	12/20/00	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	Water	10/04/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U.	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U_	2.0 U
EX-2	Water	03/07/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
			ļ				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								<u>·</u> _						
EX-3	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	Water	02/04/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U_	2.0 U
EX-3	Water	12/20/00	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	Water	03/07/02	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	Water	10/03/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U_	2.0 U
	ļ																						
EX-4/MW-2	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	02/03/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	12/20/00	2.0 U	. 0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U		2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	03/07/02	2.0 U -	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	10/03/02	2.0 U	0.5 U	0.5 U	·2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	02/13/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	Water	10/22/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
			<u> </u>																				

TABLE 5 VOLÁTILE ORGANIC COMPOUNDS (µg/L) GROUNDWATER McCall Oil and Chemical

											iccan or	i and Che	iiiicai											
Sample Designation	Matrix	Date Sampled	2-Chloroethyl Vinyl Ether	Dichlorodifluoromethane	Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	Acetone	1,1-Dichloroethene	Trichlorotrifluoroethane	Carbon Disulfide	Methylene Chloride	trans-1, 2-dichloroethene	1,1-Dichloroethane	2-Butanone (MEK)	2,2-Dichloropropane	cis-1, 2-dichloroethene	Chloroform	Bromochloromethane	1,1,1-Trichloroethane	1,1-Dichloropropene	Carbon Tetrachloride
EX-5	Water	05/01/97		. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	05/01/97		0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 Ū	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	02/04/99		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0. <u>5</u> U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	02/04/99		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		· 0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	- 0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	03/07/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	10/04/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		1.4	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-6	Water	05/02/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	1.0	20 U	0.5 U	2.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-6	Water	02/04/99		0.5 U	0.5 U	0.6	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.8	20 U	0.5 U	3.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
					· · · · · · · · · · · · · · · · · · ·							<u> </u>												· .
EX-7	Water	05/02/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 · U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	02/03/99		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	10/03/02		0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U_	0.5 ⊍	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		_			-														· · · · · ·	***************************************			•	
MW-1	Water	05/01/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.9		0.5 U	2.0 U	0.5 U	7.4	20 U	0.5 U	0.7	12.0	0.5 U	8.0	0.5 U	0.5 U
MW-1	Water	02/03/99		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	2.8	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	0:5 U	0.5 U
MW-1	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	∙0.5 U	9.7	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	10/03/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	3.6	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	02/11/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.58	20 U	0.5 U	2.2	0.5 U_	0.5 U	0.5 U	0.5 U	0.5·U
MW-1	Water	10/22/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	_	0.5 U	2.0 U	0.5 U	0.5 U		0.5 U	0.5 U	0.87	0.5 U	0.5 U	0.5 U	0.5 U
MW-1 Duplicate	Water	10/22/04		0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.88	0.5 U	0.5 U	0.5 U	0.5 U
		:		i															· —		 	<u> </u>		•
MW-3	Water	05/01/97		0.5 U	0.5 U	5.9	0.5 U	0.5	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	02/04/99		0.5 U	0.5 U	2.6	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	12/20/00	5.0 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	03/07/02		0.5 U	0.5 U	2.6	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U		0.5 U	0.5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3 Duplicate	Water	03/07/02	 	0.5 U	0.5 U	2.1	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U		0.5 U	0.5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	10/03/02	-	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	- 0.5 U	20 U		0,5 <u>U</u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	02/11/04		0.5 U	0.5 U	0.5 U	- 0.5 U	0.5 U	0.5 U	20 U	0.5 U	<u></u>	0.5 U	2.0 U	0.5 U	0.5 U_	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	10/22/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
			·														-							
MW-4	Water	05/01/97		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U •		0.5 U		0.5 U	2.0 U	0.5 U	3.5	20 U		4.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-4	Water	02/03/99	<u> L</u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20-U	0.5 U		0.5 U	1.0 U	0.5 U	0.8	20 U	0.5 U	4.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE 5 VOLATILE ORGANIC COMPOUNDS (µg/L) GROUNDWATER McCall Oil and Chemical

			·									d Chemi													
Sample Designation	Matrix	Date Sampled	1,2-Dichloroethane	Benzene	Trichloroethene	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	2-Hexanone	cis-1,3-Dichloropropene	Toluene	trans 1,3-Dichloropropene	1,1,2-Trichloroethane	4-Methyl-2-pentanone	1,3 Dichloropropane	Tetrachloroethene	Dibromochloromethane	1,2 Dibromoethane	Chlorobenzene	1,1,1,2-Tetrachloroethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Styrene	Вготобот
EX-5	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-5	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป
EX-5	Water	03/07/02	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 บ	0.5 U	0.5 U	0.5 U
EX-5	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 ป	0.5 U	0.5 U
EX-6	Water	05/02/97	0.5 U	0.5 U	2.6	0.5 U	0.5 U	0,5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.7	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú
EX-6	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	05/02/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 บ
EX-7	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
EX-7	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
				***														_					<u> </u>		
MW-I	Water	05/01/97	0.5 U	0.5 U	28.0	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	110	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0:5 · U	0.5 U	0.5 U	0.5 U
MW-1	Water	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	1.7	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-I	Water	12/20/00	0.5 U	0.5 U	0.56	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	3.5	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	3.2	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.9	0.5 U	0.5 U	20 U	0.5 U	1.4	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	02/11/04	0.5 U	0.5 U	5.2	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	2.3	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-1	Water	10/22/04	0.5 U	0.5 U	0.67	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	2.8	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-1 Duplicate	Water	10/22/04	0.5 U	0.5 U	0.65	0.5 U	0.5 U	0.5 U	20 Ü	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	2.9	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
																···									
MW-3	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.7 Total	0.5 U	0.5 U	0.5 U
MW-3	Water	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5· U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3 Duplicate	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-3	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 บ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
				•																					
MW-4	Water	05/01/97	0.5 U	0.5 U	8.1	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	11.0	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 .U	0.5 Ų
MW-4	Water	02/03/99	0.5 U	0.5 U	2.0	0.5 U	0.5 U .	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	2.5	1.9	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE 5 VOLATILE ORGANIC COMPOUNDS (µg/L) GROUNDWATER McCall Oil and Chemical

							<u> </u>		IVICC	all Oil a	na Chem	ıcaı											
Sample Designation	Matrix	Date Sampled	Isopropylbenzene	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	Bromobenzene	n-Propylbenzene	2-Chlorotoluene	4-Chlorotoluene	1,3,5-Trimethylbenzene	tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylbenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorobenzene	1,2-Dibromo-3- chloropropane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Naphthalene	Hexachlorobutadiene
EX-5	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U .	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	02/04/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	. 2.0 U	2.0 U
EX-5	Water	02/04/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	12/20/00	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	03/07/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	Water	10/04/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
																			,				
EX-6	Water	05/02/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	12.0 U	2.0 ป	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-6	Water	02/04/99	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	05/02/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 Ü	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	02/03/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	12/20/00	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	03/06/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 ປັ	0.5 U	2.0 U	0.5 U	2.0 U	0.5 ป	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	Water	10/03/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
							·										·		<u> </u>				
MW-1	Water	05/01/97	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 ป	2.0 U	2.0 U	2.0 U	2.0 .U	2.0 U
MW-1	Water	02/03/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	12/20/00	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	-0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	03/06/02	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	10/03/02	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	02/11/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	Water	10/22/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 ป	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1 Duplicate	Water	10/22/04	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	- 2.0 U
MW-3	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	02/04/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	12/20/00	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	03/07/02	2.0 U	0.5 U	0.5 U_	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3 Duplicate	Water	03/07/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	Water	10/03/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U_	0.5 U		2.0 U		2.0 U	
MW-3	Water	02/11/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	Ò.5 U	2.0 U	0.5 U		2.0 U		2.0 U	2.0 U
MW-3	Water	10/22/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U		2.0 U	0.5 U	2.0 U			2.0 U		2.0 U	
																· · · · · ·							
MW-4	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	· 0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	Water	02/03/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U ·	2.0 U		2.0 U	0.5 U	2.0 U_			2.0 U		2.0 U	2.0 U
																····							

TABLE 5 VOLATILE ORGANIC COMPOUNDS (µg/L) GROUNDWATER

McCall	Oil	and	Chem	nical
--------	-----	-----	------	-------

			,						,	,	VICCALI OI			,										
Sample Designation	Matrix	Date Sampled	2-Chloroethyl Vinyl Ether	Dichlorodifluoromethane	Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	Acetone	1,1-Dichloroethene	Trichlorotrifluoroethane	Carbon Disulfide	Methylene Chloride	trans-1, 2-dichloroethene	1,1-Dichloroethane	2-Butanone (MEK)	2,2-Dichloropropane	cis-1, 2-dichloroethene	Chloroform	Bromochloromethane	1,1,1-Trichloroethane	1,1-Dichloropropene	Carbon Tetrachloride
MW-4	Water	12/20/00	5.0 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	20 U.	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-4	Water	03/07/02		0.5 U	0.5 U	2.6	0.5 U	0.5 U	0.5 U	20 U	0.5 U	•	0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-4	Water	10/03/02		0.5 U	0.5 U	0.69	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 Ú	0.5 U	0.59	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U
		·			100 A A A A A A						~~~								-					
MW-5	Water	05/01/97	<u> </u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	02/03/99		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	12/20/00	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U	20 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	03/07/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	10/03/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5 Duplicate	Water	10/03/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	02/11/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0:5 U	0.5 U	0.5 U
MW-5	Water	10/22/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
·		·	<u> </u>																-					
MW-6	Water	10/25/01		2.5 U	2.5 U	5 U	2.5 U	2.5 U	2.5 U	125 U	2.5 U	10 U	50 U	25.0 U	2.8	6.4	50 U	2.5 U	422	2.5 U	2.5 U	7.45	2.5 U	2.5 U
MW-6 Duplicate	Water	10/25/01		2:5 U	2.5 U	5 U	2.5 U	2.5 U	2.5 U	125 U	2.5 U	10 U	50 U	25.0 U	2.6	6.9	50 U	2.5 U	411	2.5 U	2.5 U	7.65	2.5 U	2.5 U
MW-6	Water	03/08/02		2.5 U	2.5 U	5.6 D	2.5 Ú	2.5 U	2.5 U	100 U	3.8 D		2.5 U	10.0 U	4.0 D	11.0 D	100 U	2.5 U	700 D	2.5 U	2.5 U	22 D	2.5 U	2.5 U
MW-6	Water	10/03/02		1.3 U	1.3 UJ	11.0 D	1.3 U	1.3 U	1.3 U	50 U	2.9 D		1.3 U	5.0 U	3.8 D	7.5 D	50 U	1.3 U	770 D	1.3 U	1.3 U	7.7 D	1.3 U	1.3 U
MW-6 Duplicate	Water	10/03/02		1.3 U	1.3 UJ	12.0 D	1.3 U	1.3 U	1.3 U	50 U	3.0 D		1.3 U	5.0 U	3.9 D	7.8 D	50 U	1.3 U	740 D	1.3 U	1.3 U	8.0 D	1.3 U	1.3 U
MW-6	Water	02/12/04		1.3 U	1.3 U	11.0 D	1.3 U	1.3 U	1.3 U	50 U	2.5 D		1.3 U	5.0 U	3.6 D	4.5 D		1.3 U	630 D	1.3 U	1.3 U	7.6 D	1.3 U	1.3 U
MW-6	Water	10/21/04		2.5 U	2.5 U	14.0 D	2.5 U	2.5 U	2.5 U	100 U	3.4 D	·····	2.5 U	10.0 U	4.4 D	3.8 D	100 U	2.5 U	780 D	2.5 U	2.5 U	6.4 D	2.5 U	2.5 U
NOV 7	Wasan	10/05/01		0611	0.6.11	1011	0.5.11	0.5.11	0.5.11	26 11	0.5.11	2011	10.0 II	50.11	0611	0.5.77	10.11	0611	20	0.5.11	0.5.11	0.5.11	0.5.71	0.5.11
MW-7 MW-7	Water	10/25/01 03/08/02		0.5 U	0.5 U	1.0 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	25 U 20 U	0.5 U	2.0 U	10.0 U	5.0 U	0.5 U	0.5 U	10 U	0.5 U	2.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-7	Water	10/04/02		0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U 2.0 U	0.5 U 0.5 U	0.5 U 0.5 U	20 U	0.5 U 0.5 U	2.1	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U
MW-7	Water	02/12/04		0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	20 U	0.5 U_	<u> </u>	0.5 U	2.0 U	0.5 U	0.5 U	20 U_	**	5.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-7 Duplicate	Water	02/12/04		0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	20 U	0.5 U	·	0.5 U	2.0 U	0.5 U	0.5 U	20 U		5.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-7	Water	10/21/04		0.5 U		0.78	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U		0.5 U	0.5 U	20 U		3.2	0.5 U		0.5 U	0.5 U	0.5 U
		10.21.0						0.5 0	0.0 0	- 20 0		-	0.5 0		0.5 0		200		J. 2	<u> </u>	0.5 0	<u> </u>	<u> </u>	- 0.5 0
MW-8	Water	10/25/01		0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	25 U	0.5 U	2.0 U	10.0 U	5.0 U	0.5 U	0.5 U	10 U	0.5 U	1.21	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8	Water	03/07/02	·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U		0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8	Water	10/04/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	•	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8	Water	02/12/04		0.5 U		0.5 U	. 0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8	Water	10/21/04		0.5 U		0.5 U		0.5 U	0.5 U	20 U	0.5 U		0.5 U		0.5 U	0.5 U	20 U		1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
																						·		
MW-9	Water	01/22/02	-	0.5_U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-9	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U		0.5 U	20 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U

TABLE 5 VOLATILE ORGANIC COMPOUNDS (μg/L) GROUNDWATER

McCall Oil and Chemical

						-																<u> </u>		
Sample Designation	Matrix	Date Sampled	1,2-Dichloroethane	Benzene	, Trìchloroethene	1,2-Dichloropropane	Bromodichloromethane	2-Hexanone	cis-1,3-Dichloropropene	Toluene	trans 1,3-Dichloropropene	1,1,2-Trichloroethane	4-Methyl-2-pentanone	1,3 Dichloropropane	Tetrachloroethene	Dibromochloromethane	1,2 Dibromoethane	Chlorobenzene	1,1,1,2-Tetrachloroethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Styrene	Bromoform
MW-4	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	. 0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-4	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5		0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-4	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5		0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5·U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
																,		:						
MW-5	Water	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	. 0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	03/07/02	0.5 U	0.5 Ų	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 ัับ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U . 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5 Duplicate	Water	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-5	Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
										,	·-··				•	•		4 .				****		
MW-6	Water	10/25/01	2.5 U	. 5 U	20.5	2.5 U	2.5 U 2.5	U 50 U	2.5 U	5 U .	2.5 U	2.5 U	2.5 U	2.5 U	23	2.5 U	2.5 U	2.5 U	2.5 U	5 U	10 U	5 U	5 U	2.5 U
MW-6 Duplicate	Water	10/25/01	2.5 U	5 U	20.6	2.5 U	2.5 U 2.5	U 50 U	2.5 U	5 U	2.5 U	2.5 U	2.5 U	2.5 U	21.2	2.5 U	2.5 U	2.5 U	2.5 U	5 U	10 U	5 U	5 U	2.5 U
MW-6	Water	03/08/02	2.5 U	2.5 U	200 D	2.5 U	2.5 U 2.5	<u>U 100 U</u>	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	360 D	2.5 U	10.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
MW-6	Water	10/03/02	1.3 U	1.3 U	33 D	1.3 U	1.3 U 1.3	U 50 U	1.3 U	1.3 U	1.3 U	1.3 U	50 U	1.3 U	40 D	1.3 U	5.0 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
MW-6 Duplicate	Water	10/03/02	1.3 U	1.3 U	36 D	1.3 U	1.3 U 1.3	U- 50 U	1.3 U	1.3 U	1.3 U	1.3 U	50 U	1.3 U	43 D	1.3 U	5.0 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
MW-6	Water	02/12/04	1.3 U	1.3 U	71 D	1.3 U	1.3 U 1.3	U 50 U	1.3 U	1.3 U	1.3 U	1.3 U	50 U	1.3 U	70 D	1.3 U	. 5.0 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
MW-6	Water	10/21/04	2.5 U	2.5 U	55 D	2.5 U	2.5 U 2.5	U 100 U	2.5 U	2.5 U	2.5 U	2.5 U	100 U	2.5 U	62 D	2.5 U	10.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
							· .																	
MW-7	Water	10/25/01	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U 0.5	U 10 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	1.0 U	2.0 U	1.0 U	1.0 U	0.5 U
MW-7	Water	03/08/02	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	3.4	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-7	Water	10/04/02	0.5 U	· 0.5 U	0.5 U		0.5 U 0.5		0.5 U	2.4	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-7	Water	02/12/04	0.5 U	0.5 U	0.5 U		0.5 U 0.5			0.5 ปั	0.5 U	0.5 U	20 U	0.5 U	0.5 U		2.0 U		0.5 U	0.5 U	0.5 U			
MW-7 Duplicate	Water	02/12/04	0.5 U	0.5 U	0.5 U		0.5 U 0.5		0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U
MW-7	Water	10/21/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U_	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8	Water	10/25/01	0.5 U	: 1.0 U	0.5 U	0.5 U	0.5 U 0.5	U 10 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0 U	2.0 U	1.0 U	1.0 U	0.5 U
MW-8	Water	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U_	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	.0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8 .	Water	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 Ù	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 °U
MW-8	Water	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-8	Water	10/21/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		 		1													· · ·				 			•
MW-9	Water	01/22/02	0.5 U	: 0.5 U	0. <u>5</u> U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-9	Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5	U 20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE 5 VOLATILE ORGANIC COMPOUNDS (μg/L) GROUNDWATER McCall Oil and Chemical

Semple Depulsion Maria. Semple Depulsion Semple Depulsion Semple Semple Semple Depulsion Semple	- 15.									McC	all Oil ar	nd Chem	ical											
March Water Oystool 20 U	Sample Designation	Matrix	Date Sampled	Isopropylbenzene	1 4	1,2,3-Trichloropropane	Bromobenzene	n-Propylbenzene	2-Chlorotoluene	4-Chlorotoluene	\ \cdot \cdo	tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylbenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorobenzene	Dibromo	4,	1,2,3-Trichlorobenzene	Naphthalene	Hexachlorobutadiene
West West 1090702 20 U 65 U 65 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 35 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 35 U 20 U 20 U 20 U 20 U 20 U 20 U 35 U 35 U 20 U 20 U 20 U 20 U 20 U 20 U 35 U 35 U 20 U 20 U 20 U 20 U 20 U 20 U 35 U 35 U 20 U 20 U 20 U 20 U 20 U 20 U 35 U 35 U 20 U	MW-4	Water	12/20/00	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
New Properties Water 1000002 20 U 05 U 05 U 05 U 20 U 20 U 20 U 20 U		1			0.5 U	0.5 U			2.0 U	2.0 U	2.0 U	-						-				· · · · · · · · · · · · · · · · · · ·		2.0 U
SWS Water 0.000397 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 2.0 U 0.5 U	MW-4	Water	10/03/02 .	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	. 2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U					2.0 U
New S. Water 122000 20 0.5 U 0.5 U 0.5 U 2.0 U 2										·					-									
MW-S Water 020000 20 U 05 U 05 U 20 U 20 U 20 U 20	MW-5	Water	05/01/97	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	. 2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5 Water 050000 20 0.5 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0	MW-5	Water	02/03/99	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U		2.0 U	2.0 U
MW-S Water 100302 2 0 U 0.5 U 0.5 U 0.5 U 2.0 U	MW-5	Water	12/20/00	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MY-S Dugliène Water 1003/02 20 U 05 U 05 U 20 U 20 U 20 U 20 U 20 U	MW-5	Water	03/07/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5 Water 10/2204 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U	MW-5	Water	10/03/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-6 Water 1002501 10.0 U 25 U 25 U 25 U 25 U 25 U 50 U 50 U 5	MW-5 Duplicate	Water	10/03/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-6 Duplicate Water 1002501 100 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	MW-5	Water	02/11/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-6 Duplicate Water 102501 100 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 10 U 10 MW-6 Duplicate Water 0.036802 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0	MW-5	Water	10/22/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-6 Duplicate Water 102501 100 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 10 U 10 MW-6 Duplicate Water 0.036802 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0										_		·		-				-						
MW-6 Water 03/08/02 10.0 U 2.5 U 2.5 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U	MW-6	Water	10/25/01	10.0 U	2.5 U	2.5 U	2.5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.5 U	5.0 U	2.5 U	10.0 U	2.5 U	25_U_	2.5 U	25 U	2.5 U	2.5 U	10 U	10 U
MW-6 Water 10/03/02 50 U 13 U 13 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 5	MW-6 Duplicate	Water	10/25/01	. 10.0 U	2.5 U	2.5 U	2.5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.5 U	5.0 U	2.5 U	10.0 U	2.5 U	25 U	2.5 U	25 U	2.5 U	2.5 U	10 U	10 U
MW-6 Duplicate Water 10/03/02 50 U 13 U 13 U 13 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 5	MW-6	Water	03/08/02	10.0 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
MW-6 Water 02/12/04 5.0 U 1.3 U 1.3 U 5.0	MW-6	Water	10/03/02	5.0 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
MW-6 Water 10/21/04 10.0 U 2.5 U 2.5 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U 2.5 U 10.0 U 1	MW-6 Duplicate	Water	10/03/02	5.0 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	5.0 U	5.0 U	. 5.0 U	5.0 U
MW-7 Water 10/25/01 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.5 U 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 2.0	MW-6	Water	02/12/04	5.0 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
MW-7 Water 03/08/02. 2.0 U 0.5 U 0.5 U 2.0	MW-6	Water	10/21/04	10.0 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
MW-7 Water 10/04/02 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0		1			·												•							 .
MW-7 Water 10/04/02 2.0 U 0.5 U 0.5 U 2.0	MW-7	Water	10/25/01	2.0 U	0.5 U	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.5 U	1.0 U	0.5 U	2.0 U	0.5 U	5.0 U	0.5 U	5.0 U	0.5 U	0.5 U	2.0 U	2.0 U
MW-7 Water 02/12/04 2.0 U 0.5 U 0.5 U 0.5 U 2.0	MW-7	Water	03/08/02.	2.0 U	0.5 U	0.5 U	2.0 U	-2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7 Duplicate Water 02/12/04 2.0 U 0.5 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U	MW-7	Water	10/04/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8 Water 10/25/01 2.0 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.5 U 1.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5	MW-7	Water	02/12/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 ,U	2.0 U	2.0 U	2.0 U
MW-8 Water 10/25/01 2.0 U 0.5 U 0.5 U 0.5 U 2.0	MW-7 Duplicate	Water	02/12/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8 Water 03/07/02 2.0 U 0.5 U 0.5 U 0.5 U 2.0	MW-7	Water	10/21/04	2.0 U	0.5 Ų	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U		2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8 Water 10/04/02 2.0 U 0.5 U 0.5 U 2.0	MW-8	Water	10/25/01	2.0 U	0.5 U	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	· · · · · · · ·	1.0 U	0.5 · U	1.0 U	0.5 U	2.0 U	0.5 U	5.0 U	0.5 U	5.0 U	0.5 U	0.5 U	2.0 U	2.0 U
MW-8 Water 02/12/04 2.0 U 0.5 U 0.5 U 2.0	MW-8	Water	03/07/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-8 Water 10/21/04 2.0 U 0.5 U 0.5 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0 U 0.5 U 2.0	MW-8	Water	10/04/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
	MW-8	Water	02/12/04	2.0 U	0.5 U	0.5 U	2.0· U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9 Water 01/27/02 2011 0511 0511 2011 2011 2011 2011 20	MW-8	Water	10/21/04	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U_	- 2.0 U	2.0 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
11117 111101 1112102 2.00 0.30 0.30 2.00 2.00 2.00 2.00 2.	MW-9	Water	01/22/02	2.0 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	·2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9 Water 03/06/02 2.0 U 0.5 U 0.5 U 2.0		Water		2.0 U	0.5 U	0.5 U																		

TABLE 5 VOLATILE ORGANIC COMPOUNDS (μg/L) GROUNDWATER McCall Oil and Chemical

										I	viccali Oli	and one	IIIICai											
Sample Designation	Matrix	Date Sampled	2-Chloroethyl Vinyl Ether	Dichlorodifluoromethane	Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	Acetone	1,1-Dichloroethene	Trichlorotrifluoroethane	Carbon Disulfide	Methylene Chloride	wans-1, 2-dichloroethene	1,1-Dichloroethane	2-Butanone (MEK)	2,2-Dichloropropane	cis-1, 2-dichloroethene	Chloroform	Bromochloromethane	1,1,1-Trichloroethane	1,1-Dichloropropene	Carbon Tetrachloride
MW-9 Duplicate	Water	03/06/02		0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-9	Water .	10/03/02		0.5. U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
								-																
MW-10	Water	01/22/02		0.5, U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
. MW-10	Water	10/03/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	.2.0 U	0.5 U	0.5 U	20 U·	0.5 U	0.69	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	Water	02/13/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-10	Water	10/21/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U.	0.5 U	0.5 U	20 U	0.5 U	0.69	0.5 Ú	0.5 U	0.5 U	0.5 U	0.5 U
																-					•	-		
MW-11	Water	01/22/02-		0.5 U	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-11	Water	03/08/02		0.5· U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
								•																
MW-12	Water .	01/22/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5. U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-12	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U .	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U
MW-12	Water	10/04/02		0.5 _. U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	ļ									·									-			•		
MW-13	Water	01/22/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-13 ·	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 .U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	Ò.5 U	0.5 U
MW-13 Duplicate	Water	03/06/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-13	Water	10/04/02		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· 20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป
	<u> </u>																							
MW-14	Water	02/12/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-14	Water	10/21/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	·	0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
						-···										 								
MW-15	Water	02/12/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW-15	Water	10/22/04		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U		0.5 U	2.0 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
			<u> </u>									-												
			NOTE: μg/L = mi	icrograms	per liter or part	ts per billion.	U = not detecte	ed at or above th	e indicated me	thod reporting	g limit. J = esti	mated concen	tration.											

IOTE: $\mu g/L$ = micrograms per liter or parts per billion. U = not detected at or above the indicated method reporting limit. J = estimated concentration

TABLE 5 VOLATILE ORGANIC COMPOUNDS (µg/L) GROUNDWATER McCall Oil and Chemical

											u Cheim													
Matrix	Date Sampled	1,2-Dichloroethane	Benzene	Trichloroethene	1,2-Dichloropropane	Bromodichloromethane	Dibromomethane	2-Hexanone	ت ^{اری} cis-1,3-Dichloropropene	Toluene	trans 1,3-Dichloropropene	1,1,2-Trichloroethane	4-Methyl-2-pentanone	1,3 Dichloropropane	Tetrachloroethene	Dibromochloromethane	1,2 Dibromoethane	Chlòrobenzene	1,1,1,2-Tetrachloroethane	Ethylbenzene	m.p-Xylenes	o-Xylene	Styrene	Bromoform
Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 .U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/03/02	0.5 U	' 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5_U_	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
								•	• •															
Water	01/22/02	0,5 U	0.5 U	0.57	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0:5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/03/02	0.5 U	· 0.5 U	1.7	0.5 U	0.5 U	0.5 U	20 U	0.5 Ü	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	02/13/04	0.5 U	0.5 U	0.66	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/21/04	0.5 U	. 0.5 U	1.7	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
			,																					
Water	01/22/02	0.5 U	2.0	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	1.6	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	4.7	3.1	8.2	0.5 U	0.5 U
Water	03/08/02	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	1.1	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	2.9	2.3	5.2	0.5 U	0.5 U
					:																			
Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	03/06/02	0.5 U	- 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.52	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/04/02	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
														•										
Water	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/04/02	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.'5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/21/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	. 0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Water	10/22/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	0.5 U	20 U	0.5 U	0.5 U	0.5 U	2.0 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U
			· .									·		·	- 									
		NOTE: ug/I = ~	niorograme nor li	ter or narts ner hil	lion II = not o	letected at or a	shove the ind	icated metho	d reporting lin	nit I=estimate	ed concentrati	ion		•										
	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	Water 03/06/02 Water 10/03/02 Water 01/22/02 Water 03/06/02 Water 10/03/02 Water 02/13/04 Water 01/21/04 Water 01/22/02 Water 03/08/02 Water 03/06/02 Water 01/22/02 Water 01/22/02 Water 03/06/02 Water 03/06/02 Water 03/06/02 Water 02/12/04 Water 10/21/04 Water 02/12/04 Water 02/12/04	Matrix Date Sampled Eq. (2) Water 03/06/02 0.5 U Water 10/03/02 0.5 U Water 01/22/02 0.5 U Water 03/06/02 0.5 U Water 10/03/02 0.5 U Water 02/13/04 0.5 U Water 01/22/02 0.5 U Water 01/22/02 0.5 U Water 01/22/02 0.5 U Water 03/06/02 0.5 U Water 01/22/02 0.5 U Water 03/06/02 0.5 U Water 03/06/02 0.5 U Water 03/06/02 0.5 U Water 03/06/02 0.5 U Water 02/12/04 0.5 U Water 10/21/04 0.5 U Water 02/12/04 0.5 U	Matrix Date Sampled English English	Matrix Date Sampled English English	Matrix Date Sampled Ed. Ed.	Matrix Date Sampled 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Matrix Date Sampled C1 Ag Ag	Matrix Date Sampled C1 E8 E8	Matrix Date Sampled 5g/2 2g/2 2g/2	Matrix Date Sampled 3 8 8 8 4 6 8 8 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Date Sampled GR GR	Matrix Date Sampled GR GR	Matrix Date Sampled Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Color Early Early Color Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Earl	Matrix Date Sampled Carlo Sampled Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Ca	Matrix Date Sampled Color Early Color Early Color Early Color Early Early Color Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Earl	Matrix Data Sampled Color Section Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Co	Matrix Date Sampled C	Matrix Date Sampled \$\frac{1}{2}\$ \$\frac{3}{8}\$ \$\frac{1}{5}\$ \$\frac{3}{8}\$ \$\frac{1}{5}\$ \$\frac{3}{8}\$ \$\frac{1}{5}\$ \$\frac{1}{6}\$ \$\frac{1}{5}\$ \$\frac{1}{6}\$ \$\frac{1}{5}\$ \$\frac{1}{6}\$ \$\frac{1}{5}\$ \$\frac{1}{6}\$ \$\frac{1}{5}\$ \$\frac{1}{6}\$ \$\fr	Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage Maintage	Marie Davis Sampled Color Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davis Davi	Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marco Marc	Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marce Marc	Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Mari

11 of 12

TABLE 5
VOLATILE ORGANIC COMPOUNDS (µg/L)
GROUNDWATER
McCall Oil and Chemical

McCall Oll and Chemical			
2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene	sec-Butylbenzene 1,3-Dichlorobenzene 4-Isopropyltoluene	n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3- chloropropane	1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Naphthalene Hexachlorobutadiene
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U		2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 4.5	2.0 U 0.5 U 2.0 U 0.5 U	U 2.4 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 3.3	2.0 U 0.5 U 2.0 U 0.5 U	U 2.3 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 4.8 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 I	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 I	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 I	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 I	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
2.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2.0 U 0.5 U 2.0 U 0.5 U	U 2.0 U 0.5 U 2.0 U	2.0 U 2.0 U 2.0 U 2.0 U
		at or above the indicated method reporting limit. J = estimated concentration.	

12 of 12

Table 6
Metals
Groundwater
McCall Oil and Chemical

					- *****	
			Date			
Location		Matrix	Sampled	Arsenic	Chromium	Copper
Monitoring Wells - G	roundwater u		Bampiou	711301110	Cinomian	Сорры
EX-1	Total	Water	02/11/04	3.0		
EX-1 Duplicate	Total	Water	02/11/04	2.6]	
EX-1 Duplicate	Dissolved	Water	02/11/04	1.6		
EX-1 Duplicate	Dissolved	Water	02/11/04	1.4		
EX-1 Duplicate EX-1	Total	Water	10/22/04	2.6		
EX-1	Dissolved	Water	10/22/04	1.9	1	
EA-1	DISSOIVEL	water	10/22/04	1.5	1	
EX-2	Total	Water	02/11/04	57.1		
EX-2	Dissolved	Water	02/11/04	65.8		
EX-2	Total	Water	10/21/04	64.6	1	
EX-2	Dissolved	Water	10/21/04	72.4		
EA-2	Dissolved	W atci	10/21/04	720.7		
EX-3	Total	Water	02/12/04	87.2		
EX-3	Dissolved	Water	02/12/04	86.1		
EX-3	Total	Water	10/21/04	90.0		
EX-3	Dissolved	Water	10/21/04	90.2		
EA-3	Dissolved	Water	10/21/04	70.2		
EX-4/MW-2	Dissolved	Water	12/20/00	8.8	8.1	2.0
EX-4/MW-2	Total	Water	03/07/02	56.8	5.8	7.7
EX-4/MW-2	Dissolved	Water	03/07/02	47.5	2.4	0.6
EX-4/MW-2	Dissolved	Water	10/03/02	14.9	0.4	2.5
EX-4/MW-2	Total	Water	02/13/04	53.1	"	
EX-4/MW-2	Dissolved	Water	02/13/04	55.2	1 1	
EX-4/MW-2	Total	Water	10/22/04	63.9	ļ j	
EX-4/MW-2	Dissolved	Water	10/22/04	48.3	•	
121-4/11/11-2	Dissolved	,, man	10,2201	.0.0	1	
EX-7	Total	Water	02/12/04	0.5	1	
EX-7	Dissolved	Water	02/12/04	0.5 U		
EX-7	Total	Water	10/21/04	0.6		
EX-7 Duplicate	Total	Water	10/21/04	0.5 U		
EX-7	Dissolved	Water	10/21/04	0.5 U	1	
EX-7 Duplicate	Dissolved	Water	10/21/04	0.5 U		
						·
MW-1	Dissolved	Water	12/20/00	2.50 U	9.5	514
MW-1	Total	Water	03/07/02	0.80	1.9	139
MW-1	Dissolved	Water	03/07/02	1.00 U	2.0	130
MW-1	Dissolved	Water	10/03/02	0.8	0.3	196
MW-1	Total	Water	02/11/04	0.6	1.2	82.8
MW-1	Dissolved	Water	02/11/04	0.6	0.7	70.8
MW-1	Total	Water	10/22/04	0.9	0.2 U	242
MW-1 Duplicate	Total	Water	10/22/04	1.0	0.2 U	245
MW-1	Dissolved	Water	10/22/04	1.0	0.2 U	250
MW-1 Duplicate	Dissolved	Water	10/22/04	0.9	0.2 U	246

Table 6
Metals
Groundwater
McCall Oil and Chemical

Matrix	Date Sampled	ľ		
	i Sambied	Arsenic	Chromium	Copper
Water	12/20/00	39.7	0.4 U	0.5
Water	03/07/02	42.8	6.4	11.0
Water	(41.6	6.7	7.8
	1	43.4	5.7	1.3
1	1	43.4		0.7
			ı	0.9
		46.9		1.8
1 ' '	02/11/04	46.1	1	0.4
	10/22/04	48.8		0.6
Water	10/22/04	49.1	0.2	0.4
Water	12/20/00	12.7	1.00 T	1.00 U
1				29.90
]			1.20
Water	10/03/02	16.5	0.20 U	0.70
	00/11/04	16.7	<u> </u>	ļ
1		f .		
Water	10/22/04	19.5	1	
Water	10/25/01	29.8	67.8	98.8
Water	10/25/01	27.3	35.0	48.6
Water	10/25/01	18.2	1.00 U	2.00 U
Water	10/25/01	19.0	1.00 U	2.00 U
Water	03/08/02	6.8	9.6	18.3
Water	03/08/02	20.4	0.80	2.5
Water	10/03/02	23.5	0.20	0.6
Water	10/03/02	23.3	0.30	0.9
Water	02/12/04	22.6		
Water	02/12/04	22.6		
Water	10/21/04	22.4		
Water	10/21/04	23.1		
Water	10/25/01	18.1	127	164
Water	10/25/01	3.04	1.00 U	2.00 U
Water	03/08/02	4.4	9.1	19.1
Water	03/08/02	3.5	2.3	1.3
Water	10/04/02		2.1	0.7
Water	02/12/04	5	0.7	0.5
Water	02/12/04	5	0.8	0.4
Water	02/12/04	5.1	2.0	0.3
Water	02/12/04	5.1	0.7	0.3
Water	10/21/04	5.1	1.1	0.1 U
Water	10/21/04	6.3	1.1	0.1 U
	Water Water	Water 03/07/02 Water 03/07/02 Water 10/03/02 Water 02/11/04 Water 02/11/04 Water 10/22/04 Water 10/22/04 Water 12/20/00 Water 03/07/02 Water 03/07/02 Water 03/07/02 Water 10/03/02 Water 10/22/04 Water 10/22/04 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 03/08/02 Water 03/08/02 Water 10/03/02 Water 10/03/02 Water 10/03/02 Water 10/03/02 Water 10/03/02 Water 10/03/02 Water 10/03/02 Water 10/25/01 Water 10/25/01 Water 10/21/04 Water 10/21/04 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/21/04 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 10/25/01 Water 03/08/02 Water 03/08/02 Water 03/08/02 Water 02/12/04 Water 02/12/04 Water 02/12/04 Water 02/12/04 Water 02/12/04 Water 02/12/04 Water 02/12/04 Water 02/12/04 Water 02/12/04	Water 03/07/02 43.4 Water 10/03/02 49 Water 10/03/02 49 Water 02/11/04 46.9 Water 10/22/04 48.8 Water 10/22/04 49.1 Water 12/20/00 12.7 Water 03/07/02 9.2 Water 03/07/02 10.0 Water 10/03/02 16.5 Water 10/03/02 16.5 Water 10/22/04 24.6 Water 10/22/04 19.5 Water 10/22/04 19.5 Water 10/25/01 29.8 Water 10/25/01 27.3 Water 10/25/01 18.2 Water 10/25/01 19.0 Water 03/08/02 6.8 Water 03/08/02 20.4 Water 03/08/02 23.5 Water 10/03/02 23.5 Water 10/03/02 23.5 Water 10/03/02 23.5 Water 10/03/02 23.5 Water 10/03/02 23.5 Water 10/03/02 23.5 Water 10/03/02 23.5 Water 02/12/04 22.6 Water 10/21/04 22.6 Water 10/21/04 22.4 Water 10/21/04 23.1 Water 10/25/01 18.1 Water 10/25/01 3.04 Water 03/08/02 9.1 Water 03/08/02 9.1 Water 02/12/04 5 Water 02/12/04 5.1 Water 02/12/04 5.1 Water 02/12/04 5.1 Water 02/12/04 5.1 Water 02/12/04 5.1 Water 02/12/04 5.1 Water 02/12/04 5.1	Water 03/07/02 43.4 5.7 Water 03/07/02 43.4 2.5 Water 10/03/02 49 0.7 Water 02/11/04 46.9 2.5 Water 10/22/04 48.8 0.5 Water 10/22/04 49.1 0.2 Water 10/22/04 49.1 0.2 Water 03/07/02 10.0 10.0 0.2 Water 03/07/02 9.2 8.70 0.20 U Water 03/07/02 10.0 3.30 0.20 U Water 03/07/02 10.0 3.30 U Water 03/07/02 10.0 3.30 U Water 02/11/04 15.7 0.20 U Water 02/11/04 15.7 0.20 U Water 10/22/04 24.6 0.20 U Water 10/25/01 18.2 1.00 U Water 1

Table 6
Metals
Groundwater
McCall Oil and Chemical

			Date				
Location		Matrix	Sampled	Arsenic	Chromium	Coppe	T
MW-8	Total	Water	10/25/01	43.9	225	394	
MW-8	Dissolved	Water	10/25/01	2.33	1.00 U		U
MW-8	Total	Water	03/07/02	4.3	14.7	36.1	
MW-8	Dissolved	Water	03/07/02	8.6	2.9	1.3	
MW-8	Dissolved	Water	10/04/02	9.6	1.4	0.3	
MW-8	Total	Water	02/12/04	5.4	1.7	2.0	
MW-8	Dissolved	Water	02/12/04	5.6	0.8	0.2	
MW-8	Total	Water	10/21/04	10.1	3.1	3.8	
MW-8	Dissolved	Water	10/21/04	10.3	1.0	0.1	U
MW-9	Total	Water	02/13/04	18.3			
MW-9	Dissolved	Water	02/13/04	19.0	i l		
MW-9	Total	Water	10/22/04	28.5			
MW-9	Dissolved	Water	10/22/04	30.7			
MW-10	Total	Water	02/13/04	30.9			
MW-10	Dissolved	Water	02/13/04	28.9	1 1		
MW-10	Total	Water	10/21/04	32.8	1 1		
MW-10	Dissolved	Water	10/21/04	34.2			
MW-12	Total	Water	02/13/04	23.3			
MW-12	Dissolved	Water	02/13/04	23.7			
MW-12	Total	Water	10/21/04	27.4	}	1	
MW-12	Dissolved	Water	10/21/04	28.2			
MW-14	Total	Water	02/12/04	1.5	1.3	1.7	
MW-14	Dissolved	Water	02/12/04	1.5	2.6	1.3	
MW-14	Total	Water	10/21/04	2.7	0.6	2.4	
MW-14	Dissolved	Water	10/21/04	1.5	0.5	2.1	
MW-15	Total	Water	02/12/04	3.5			
MW-15	Dissolved	Water	02/12/04	3.4		1	
MW-15	Total	Water	10/22/04	7.6			
MW-15	Dissolved	Water	10/22/04	6.2]		

Table 7 Total Petroleum Hydrocarbons Catch Basin Sediment McCall/GWCC Portland, Oregon

					TPH - FIQ	***		
Location	Matrix	Date Sampled	Gasoline		Diesel		Heavy Fuel Oil	
Catch Basins	- Sediment mg/kg (ppn	n)						
S-1	Soil	12/15/00	26	Y	400	H	1900	0
S-2	Soil	12/15/00	21	Y	300	н	2200	DO
S-3	Soil	12/15/00	580	Y	2400	н	7600	DO
S-3	Soil	11/04/04	210	U	1600	ЛН	8500	
S3-01C	Soil	12/15/00	10	U	10	บ	30	Y

Notes: U = Not detected at method reporting limit. F = Fingerprit of the sample matches the elution pattern of calibration standard

- L = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of lighter weight constituents.
- H = The fingerprint resembles a petroleum product, but the clution pattern indicates the presence of heavier weight constituents.
- O = The fingerprint resembles oil, but does not match the calibration standard.
- Y = The fingerprint resembles a petroleum product in the correct carbon range, but the clution pattern does not match the calibration standard.
- Z = The fingerprint does not resemble a petroleum product.
- D = The reported result is from a dilution.

TABLE 8
PAHs and SVOCs (µg/kg)
Catch Basin Sediment
McCall/GWCC

Sample Designation	S-1	S-2	S-3	S-3	S3-01C
Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Date Sampled	12/15/00	12/15/00	12/15/00	11/04/04	12/15/00
			LPAHs		
Naphthalene	200 JD	50 JD	400 JD	64 JD	12 U
Acenaphthylene	40 JD	20 JD	60 JD	37 JU	12 U
Acenaphthene	200 JD	30 JD	720 U	26 JU	12 U
Fluorene	100 JD	20 JD	3600 D	72 JD	12 U
Phenanthrene	1500 D	320 D	3600 D	660 JD	12 U
Anthracene	400 JD	50 JD	2600 D	140 Д	12 U
2-Methylnaphthalene	100 JD	50 JD	400 JD	31 JU	0.6 J
Total LPAH	2540	540	10660	936	0.6
			HPAHs		
Fluoranthene	2600 D	690 D	5800 D	1400 JD	3 J
Pyrene	2600 D	770 D	5500 D	1200 JD	3 J
Benz(a)anthracene	1300 D	440 D	2500 D	400 JD	2 J
Chrysene	2000 D	740 D	5300 D	1100 JD	3 J
Benzo(b)fluoranthene	2000 D	780 D	4100 D	1100 JD	3 J
Benzo(k)fluoranthene	1500 D	540 D	3400 D	270 JD	2 J
Benzo(a)pyrene	1900 D	670 D	3700 D	490 JD	2 J
Indeno(1,2,3-cd)pyrene	1500 D	490 D	3200 D	530 ID	2 J
Dibenz(a,h)anthracene	300 JD	100 Л	800 JD	150 JD	24 U
Benzo(g,h,i)perylene	1600 D	500 D	3600 D	790 JD	3 J
Total HPAHs	17300	5720	37900	7430	23
			SVOCs		
3- and 4-Methylphenol					
Coelution	13000 U	1900 U	4000 JD	3000 JD	240 U
Dibenzofuran	100 JD	20 JD	200 JD	69 JD	12 U
Butyl Benzyl Phthalate	1500 D	2500 D	5000 D	930 JD	1 J
, , , ,					
Di-n-octyl Phthalate	13000 U NOTE: µg/kg = microgra imit. J = estimated conce	1900 U	14000 U per billion. U = not detec	11000 JD	2 J

N\Data\Projects\Remed\Jobs\mccallG\WC\database\SVOCs+PAHs.XLS\SVOC+PAHSoil

Table 9 Metals Catch Basin Sediment McCall/GWCC Portland, Oregon

ocation Catch Basins - Se	diment mo/ko	Matrix (nnm)	Date Sampled	Arsenic	Cadmium	Chromium	Copper	Lead	Zinc
S-1	Total	Sediment	12/15/00	5.2	2.00	48.9	137	145	638
S-2	Total	Sediment	12/15/00	7.5	1.42	63.7	316	211	584
S-3	Total	Sediment	12/15/00	37.9	2.86	144	1050	454	985
S-3	Total	Sediment	11/04/04	25.6	1.90	189	1360	600	752
S3-01C	Total	Sediment	12/15/00	4.4	0.12	11.9	27.4	8.58	82.7

FIGURES

ATTACHMENT A FIELD SAMPLING DATA SHEETS

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670,1108 Fax 503.670.1128

Memorandum

To:

File 020162-02

From: Timothy Stone

Date:

January 12, 2005

Re:

October 2004 groundwater monitoring at McCall Oil and Chemical Corporation,

Portland, Oregon

OVERVIEW

On October 20, 2004 Anchor Environmental, L.L.C.(Anchor), measured groundwater levels in 18 monitoring wells and the Willamette River staff gauge at McCall Oil and Chemical Corporation, Portland, Oregon (McCall). Eighteen samples were collected on October 21-22, 2004 from 16 monitoring wells. Anchor returned to the site on November 4, 2004 to collect a sediment sample from catch basin S-3. The samples were submitted for analysis as indicated on the chain of custody documentation (attached).

PURGING AND SAMPLING GROUNDWATER

Before sampling, wells were purged of at least three casing volumes and until field parameters (temperature, pH, and specific conductivity) stabilized. After each volume was removed, temperature, pH, and specific conductivity measurements were recorded on the field sampling data sheet (attached) for each well. The final field parameter measurements for each monitoring well are presented in the attached table.

Monitoring wells were purged and sampled using a peristaltic pump equipped with polyethylene tubing and Pharmed peristaltic pump tubing that has been dedicated to each monitoring well. Samples for dissolved metals were field filtered prior to field preservation with nitric acid.

Quality control consisted of analyzing two laboratory-supplied trip blanks that accompanied the sample containers to the field and back to the laboratory, and collecting and analyzing field duplicate samples from EX-7 and MW-1.

CATCH BASIN SEDIMENT SAMPLE

On November 4, 2004 Anchor collected a sample of the sediment which had accumulated in catch basin S-3. The sample was collected from below the standing water in the catch basin

using a stainless steel scoop. Free water was decanted from the recovered sample and the remaining sediment was transferred directly into laboratory provided glass sample jars sealed with Teflon-lined lids. The samples were submitted to the laboratory for the analyses identified on the chain of custody documentation (attached).

SAMPLE HANDLING AND SHIPPING

Samples were stored at or below 4 degrees Celsius and delivered by courier to Columbia Analytical Services (CAS), Kelso, Washington, under chain of custody documentation.

Attachments: Table of Sampling Field Parameters

Task Sheet

Water Level Survey

Field Sampling Data Sheets

Chain-of-Custody Documentation

Table Sampling Field Parameters McCall Oil Portland, Oregon October 2004

		2	Depth to	Pore	6-11		Specific	
		Date	Water	Volumes	Gallons	_	Conductance	Temperature
Well	Blind Code	Sampled	(feet)	Purged	Removed	pН	μS	•℃
			Monitoring Wo	dis			,	
EX-1	MO-102204-12	10/22/2004	15.13	3	4.5	4.78	305	19.56
EX-2	MO-102104-6	10/21/2004	18.48	3	3.0	6.34	620	18.96
EX-3	MO-102104-7	10/21/2004	18.11	3	3.0	6.33	671	18.64
EX-4 (MW-2)	MO-102204-17	10/22/2004	16.55	3	5.4	6.35	621	18.06
EX-7	MO-102104-2	10/21/2004	13.80	3	. 5,4	6.38	239	18.08
MW-1	MO-102204-13	10/22/2004	16.96	3	1.5	6.66	1143	17.61
MW-3	MO-102204-15	10/22/2004	16.43	3	6.0	6.38	925	17.30
MW-5	MO-102204-11	10/22/2004	20.50	3	7.2	6.60	1246	16.44
MW-6	MO-102104-4	10/21/2004	15.59	3	4.5	6.46	487	18.57
MW-7	MO-102104-9	10/21/2004	24.40	3	3.0	6.55	787	15.06
MW-8	MO-102104-8	10/21/2004	23.35	3	3.3	6.32	601	14.96
MW-9	MO-102204-16	10/22/2004	17.90	3	3.6	6.35	461	18.69
MW-10	MO-102104-1	10/21/2004	15.19	3	2.4	6.60	628	18.74
MW-12	MO-102104-5	10/21/2004	17.97	3	3.6	6.52	852	17.55
MW-14	MO-102104-10	10/21/2004	23:54	3	6.9	6.39	702	16.05
MW-15	MO-102204-18	10/22/2004	12.47	3	6.0	6.50	438	17.41
			QA/QC					
EX-7 (FD)	MO-102104-3	10/21/2004	13.80	3	5.4	6.38	239	18.08
MW-1 (FD)	MO-102204-14	10/22/2004	16.96	3	1.5	6.66	1143	17.61

Notes:

NM = not measured

FD=field duplicate sample

NA = not applicable

McCall Oil Chemical Corporation Task Sheet October 2004

0'4-	Punge Start	Dane	Dent	Blind	Sample	Well							
Site	Time	DTB	DTW	Code	Time	Integrity							
<u></u>		r		oring Wells	 	T							
EX-1	10:20	24.10	15.13	MO-102204-12	11:15	/							
EX-2	12:15	24.62	18.48	1-102104-6	12:50	1							
EX-3	13:10	23.95	18.11	- 102104-7	13:50	V							
EX-4 (MW-2)	13:55	27.30	16.55	1-102204-17	14:30								
EX-7	09:13	24.60	13.80	1-102104-2	10:00	✓ ·							
MW-1	11:30	19.95	16.96	- 102204-13	12:00	/							
MW-3	12:10	26.95	16.43	-102204-15	12:55								
MW-5 09:90 35.20 20.50 - 102204-11 10:00 V													
MW-6 10:40 24.50 15.59 -102104-4 11:20 V													
MW-6 $10:90$ 29.50 15.59 $102109-9$ $11:20$ $15:10$ 30.0 24.40 $102109-9$ $16:00$													
MW-8	14:05	29.83	23.35	-102104-8	15:00	/							
MW-9	13:05	25.03	17.90	-102204-16	13:45	✓							
MW-10	08:00	19.85	15.19	-102104-1	08:53	/							
MW-12	11:30	24.82	17.97	-102104-5	11:59	✓ .							
MW-14	16:15	37.45	23.54	-102104-10	17:00	/							
MW-15	14:45	24.40	12.47	- 102204-18	15:30	<u>/</u>							
			$\boldsymbol{\varrho}$	AlQC		· .							
DUP (EX-7)	09:13	24.60	13.80	mo-102104-3	10:05								
DUP (MW-1)	1(:30	19.95		MO-102204-14	12:05								
DUP	•	•	•	•	:	-							
Notes: 10/20/ 10/21/	104 104 - 7.	rip Blan	k#1 (s	ubmitted for VOCs									
10/22/	64 - T.	rip Blas	ck #2/	ubmitted for VOCs submitted for VOC	(3)								
throng 10/25/1	, p4												

WATER LEVEL FORM McCall Oil/Great Western Chemical February 2004

Well	Time	DTW	Comments
		·	
	<u> </u>		<u> </u>
EX-1	1345	15.13	
EX-2	1550	18.48	V
EX-3	1455	18.11	
EX-4 (MW-2)	1306	16.55	# *
EX-5	13150	28.50 MS	V
EX-7	1432	/3.80	V
MW-1	1336	16.96	
MW-3	1331	16.43	* corrosion
MW-4	1323	15.96	
MW-5	13:15	26.50	V
MW-6	1522	15.59	
MW-7	1515	24.40	<i>J</i>
MW-8	1507	23,35	
MW-9	1300	17.90	
MW-10	14:25	15.19	V
MW-11	NA	NA	NA
MW-12	15 38	17,97	
MW-13	1448	19.31	
MW-14	1512	23.54	1/
MW-15	1530	12.47	1
WG-1	1610	32.33	. 1
	·	29.33	
lotes:			
ERSONNEL J. M.	TONE		
ROBE# 25431		•	

* replaced bolts / tap a cleanout bolthole to 7/16"

well morument

									6650 SW I	Redwood	Lane.	ouite 11	0	
A	\nearrow 1	ANC	Ή ()R						rtland, C	•			ļ
	y /	VIRONME	NTAL.	L.L.G.				Office:		-	Fax:		603) 670	<u>ጌ</u> 1122
	T/W > -	ARE	14.0	101				OHICE.			_	(3	03) 0/(F1140
	ECT N		McCal							D: MU				
SITE	ADDR	ESS:	Portlar	nd, OR					BLIND I		<u>102104</u>	-		
						T	T		DUP I				}	()
	ND FRO		NE	E	SE	S	SW	(W)		JGHT		DIUM	<u> </u>	EAVY
. 1	WEATH	IER: SU	NNY		UDY	R	AIN)		? T	EMPERA	TURE	°F 58	<u> </u>	
HYD	ROLO	GY/LEVEL	MEASU	JREMI	ENTS (Nearest 0.	01 ft)		[Product Thicknes	s] [Wates	Column]		[Water C	date mattel Solumn x Gal/ft]
	ate	Time	DT-Be			roduct		Water	DTP-DTW	DIF	FDTW]	Volu	ıme (gal)
10/3	20 /04	14:25	19.	85			1 15	.19		4	1.66	X1		0.76
7	7						1			<u> </u>	<u> </u>	хз		1.20
Ge1/#+	(dia./2) ² x	0.163 1"=	0.041	12:-	0.163	3"-	0.367	4"-	0.653 6"=	1,469	10"-	4.080	12"=	5.875
			A	_		y -		, -	ad Bailer (F) Dedicate		1	1.000		-5.075
		ATER SAN									le Depth	•		[√ifused]
Bottle		Date	Tir				t & Volu		Preservativ		Ice	Filter	pН	
		***			Method -			ml)	/HC		YES)	NO) pri	
VOA		10/21/04	08:	22	D	(3)		-						-V/-
	r Glass		<u> </u>				+	00011.00	(None) HC		(ES)	100		
White		_/_/_	-				250, 5	00, 1L	Non		YES	NO	NA	
Yellov	v Poly		:				250, 5	00, 1L	H ₂ SC	4	YES	NO		
Greer	ı Poly	1 1	:			<u> </u>	250, 5	00, 1L	NaOl	đ	YES	NO		
Red To	tal Poly	1-1	:			1.	250,5	00.1L	HINO	3)	(XES)	9		
Red Di	ss. Poly	11	:			1	250/5	00, 1L	HINO	3)	YES (YES)		
		11	:	1			 	00, 1L		•	YES			
L		Total Bottle	s (include	duplicate	e count):	4								
	ВОТ	TLE TYPE				WED PER	BOTTLE T	YPE (Circle	applicable or wri	te non-stand	ard analysi	s below)		
	VOA - GI	* ((8260B)	•		_		`			-			
Analysis Allowed per Bottle Type	AMBER -	Glass ((IPH-FIQ)	(PAH)									*	
ğ	WHITE-P	oly												
목	AELTOM-	Poly												
4 E	GREEN - F	Poly												
₹ ₹	RED TOTA		[M	(Cr) (Cu)									
	RED DISSO	OLVED - Poly	(As) <i>)</i>	(Cr) (Cu)										
<u> </u>			<u> </u>											
		LITY DAT		Purge :	tart Ti		8:00					let Dept		
Meas.	Metho	d [§] Purge	d (gal)	Pl	1	E Con	d (μS)	Temp	°C	Diss O	2 (mg/l)	W	ater Qu	ality
4	·		·						7.1		ا ــــــــــــــــــــــــــــــــــــ			
3	В		4	<u>b</u> .	60		28	<u>/g.</u>	74	0	26		Ī	
2	В	I	6	6.	61	. 6	28	18.	74	0	29	Clar	slight	gellroty
1	В	0.	8	6.	58		32	18.	71	0.	41	Can	Tue	Content
0		0.0											10	
[Casing]	[Select A-	G) (Ozmulati	ve Totals]					[Circle :	arits)			[Clarity, Col	or)
		Jt th	iore	of Al	heer	,								
		74 - 7		ν				,	•					
									<u> </u>	4				
SAMP	LER: T	im Stone							سَدا	You				
		RINTED NAME)					7	SIGNATULE)	1				
										<i>'</i> /	•			

	9	A 1			<u> </u>					6650	SW Re	dwood	Lane,	uite 11	0	
1	F 1	Al	NC	.H(OR	•					Port	land, O	R 9722	4		
LX	-77	NVI	ONME	NTAL.	L.L.C				Office:	(50	3) 670-	1108	· Fax:	(5	03) 670	0-1128
PROJ	ECT N	IAM	E:	McCa	ll Oil					W	ELL ID	EX.	-7			
SITE	ADDI	RESS	:	Portla	ınd, OR					BLI	ND ID	МО-	1021	04-	-a	•
									:	L	UP ID	MO-	1021	04.	- 3	(1005)
WI	ND FR	OM:	N	NE	Е	SE	S.)sw	W	NW		HT		MUIC	Н	EAVY
V	VEAT	HER:	SU	NNY	CLC	YOUN	RA	IN		?	TEN	IPERA	TURE:		٥.	
HYD	ROLO	GY/I	LEVEL	MEAS	UREM	ENTS (N	Vearest 0.0	1 ft)		[Product	Thickness]	[Water	Column)	iO.		intermite) Column x Gal/ft)
Da			îme	1	Bottom		roduct	_	Vater	DTP	-DIW	DIB	DTW		Volu	ime (gal)
10/2	D DH]4	1:32	24	.60	I		13	.80			10	.80	X 1		1.76
7	1		:					,						Х3		3.28
Gai/ft =	(dia./2) ²	x 0.163	1"-	0.041	2"-	0.163	3"-	0.367	4"=	0.653	6"=	1.469	10"-	4.080	12"=	5.875
§ METH	DDS: (A) S	ubmersi	ble Pump (E) Peristaltic	Pump (C) D	isposable Ba	iler (D) PVC/I	efion Baile	(E) Dedicat	ed Bailer (F	Dedicated 1	romp (G) Ot	her =			
GROU	JNDV	VATI	R SAN	IPLIN	G DAT	A (if prod	luct is dete	cted, do l	NOT sam	ple)		Sampl	e Depth			[vifused]
Bottle	Туре	I	Date	T	ime	Method ¹	Amount	& Volu	me mL	Pres	ervative	[circle]	Ice	Filter	pН	1
VOA	Glass	1 /	1		:		3		ml		HCI		YES	NO		
Ambe	Glass	10%	2(104	100	:00	B		250, 5	00,)L	(None	(HCI)	H ₂ SO ₄)	YES A	NO		V
White	Poly	1	j		:			250, 5	00, 1L		None		YES	NO	NA	
Yellow	v Poly	/	7_		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	/	• /		:			250, 5	00, 1L		NaOH		YES	NÔ		
Red To	al Poly	/	7	1	:	-	1	250(\$	00)1L		HNO.	2	YES	NO		
Red Dis	ss. Poly	1	1		:		1	250(5	00)1L		"HNO	7	(Yes)	YES		V
		1	1		:			250, 5	00,1L				YES			
		· To	tal Bottle	s (includ	e duplicat	e count):	36	:						<u>-</u>		
	ВО	TTLE	TYPE	TYPICA	L ANALY	SIS ALLO	WED PER B	OTTLET	YPE (Ctrcl	e applicabl	e or write r	on-stands	rd analysi	s below)		
	VOA-C			(8260B)												
Analysis Allowed per Bottle Type	AMBER			(TPH-FIQ	(PAH)											
nalysis Allowed per Bottle Type	YELLOV WHITE							_								
Bot Sts	CREEN.			_												
Ana	REDTO		ıly	(As)	(Or) (O	u) .										
	RED DIS	SOLVEL) - Poly	Ri City	(Cr) (Cr)											
				\subseteq												
WATE			Y DA		Purge	Start Tir		9:13						let Dept		
Meas.	Meth	od ⁵	Purge	d (gal)	P	H	E Cond	l (µS)	Temp	္န		Diss O	(mg/l)	W	ater Qu	ality
4								,,	,,,	-,,,						
3.	В			4	6			39		08			25		1	
2	В		3.	6	6		23			08			24		-/-	
1	В		1.	8	6	.38	23	8	/8.	08		0.	22	Clear	/Col	ales
0		لــــــــــــــــــــــــــــــــــــــ	0.0			<u>. </u>			•						<u></u>	
[Casing]	[Select	A-G]	[Cumulati	ve Totals)					[Circle	mits)				(e	Clarity, Col	or)
												$\langle \bigcirc$	1			

SAMPLER: Tim Stone (PRINTED NAME)

	.0	A :								6650	SW Re	dwood	Lane, S	uite 11	0	
2	F	A	NC	H	OR	•					Port	land, C	R 9722	4		
LY	_7 E	NVII	RDNME	NTAL,	L.L.C	•			Office:	(50	3) 670-:	1108	Fax:	(5	03) 67(0-1128
PROJ	ECT N	IAM	E:	McCa	ll Oil					W	ELL ID:	m	W-6			
SITE	ADDI	RESS	:	Portla	ınd, OR					BLI	ND ID	МО-	10210	14-4	+	-
										D	UP ID					()
WI	ND FF	OM		NE	· E	SE	S	SW	(w)	NW		HT		NUIC	H	EAVY
V	VEAT.	HER	SU	YNN	CLC	DUDY	, RA	IN		?	TEN	IPERA	TURE:	(F) 6	<u> </u>	
HYD	ROLO	GY/	LEVEL	MEAS	UREM	ENTS (Vearest 0.0	1 ft)		[Product	Thickness)	[Water	Column)			date switel Column x Gal/ft]
Da	ate	7	lîme	DT-E	Bottom	DT-P	roduct	DT-V	Water	DTP	DTW	DIB	-DTW		Volu	ıme (gal)
10/2	\$ 104	10	:22	24	-50		•	15	.59		•	8	.91	X1		1.45
1	1		:		•		•		•		•			X3	- 2	t.36
Gal/ft =	(dia./2) ² :	× 0.163	1"=	0.041	2"-	0.163	3"=	0.367	4"=	0.653	6"=	1.469	10"-	4.080	12"-	5.875
							iler (D) PVC/I				Dedicated I					
							luct is dete						e Depth:			[vif med]
Bottle	Туре		Date	Ti	ime	Method ⁶	Amoun			Pres	rvative	(circle)	Ιœ	Filter	pН	1
VOA	Glass	101	21/04	Ш	:20	<u>B</u>	(3)		페)		Ha	<u>/</u>	(YES)			V
Amber	Glass				:		/	_	00) 1L	(None	(HCI)	H ₂ SO ₄)	(YES)	NO		V
White	Poly	/			:				00, 1L		None		YES	NO	NA	
Yellov	v Poly	/	<u> </u>		<u>: </u>				00, 1L		H ₂ 5O ₄		YES	NO		
Green		/			:				00, 1L		NaOH		YES	20	_,_	
Red To	al Poly				:				00)1L	(HNO.					V
Red Dis	s. Poly				:		-/		00)1L		(HNO,)		YES	(YES)		1/
		<u>·/</u>			:			250, 5	00, 1L				YES			
	· 				e duplicat		(9)									·
•	VOA-G	TTLE	TYPE	(8260B)	L ANALY	SIS ALLOV	WED PER B	OTTLET	YPE (Chrck	e applicable	or write r	on-stand	ard analysi	s below)		
ا م یا	AMBER			(TPH-FIQ	(PAH)											
Analysis Allowed per Boitte Type	WHITE				,,,,,,				-							
Is All	YELLOV	V - Poly														
ralys per B	GREEN.			d												
₹ -	RED TO			(As)	(0) (0	u)							•			
	RED DIS	SOLVEL)-ray	(48)	(Cr) (Cri)	-	·									
WATE	R OU	ALIT	Y DAT	Α	Purge S	Start Tir	ne: /	0:40)	•		Pump/	Bailer In	let Dept	h:	
Meas.	Meth					H	E Cond		Tem	°C		Diss O			ter Qu	ality
4					<u> </u>			V/					· /		Xu	
3	В		4.	5	6	46	UR	77	18.	57		7)	14	 -	-	
2	В			D		46	44		18.				15		-t	
1	В			5		43		33		73			17	eleas	/ Pad	orles
0			0.0		- V	7-2		'-		/_			'' 		100	Julia
[Casing]	[Select	A-G]	(Cumulativ	ve Totals)	· · · ·	L			[Circle	units]			<u>.</u>	[6	Carity, Col	or)
												~.	•			
								٠			_	11				

SAMPLER: Tim Stone (PRINTED NAME)

	0				~			-		6650	SW Red	lwood	Lane,	Suite 11	0	
4	* /	ΑI	VC	H	ЭR						Portl	and, O	R 9722	4		
V	> E	NVIR	ONME	NTAL,	L.L.C				Office:	(50	3) 670-1	108	Fax	: (5	03) 67	0-1128
PROJ	ECT N	IAMI	E:	McCa	ll Oil					W	ELL ID:	mu	V-12	2		*.****
SITE	ADDI	RESS:		Portla	nd, OR					BLI	ND ID:	MO-	1021	04-5		•
											UP ID					()
WI	ND FR	OM:	N	NE	E	SE	S.	SW/	W	NW	(LIG	HT	ME	DIUM	I	IEAVY
V	VEAT.	HER:	SU	VNY	CIC	YDDY	RA	IN		?	TEM	1PERA	TURE	F15	5.	
HYD	ROLO	GY/I	EVEL	MEAS	UREM	ENTS (Vearest 0.0	1 ft)		[Product	Thickness)	[Water	Column)	U In.	[Water	winte mutel Column x Gal/ft]
D۵	ite	I	ime	DT-B	ottom	DT-P	roduct	DT-V	<i>N</i> ater	DTP	DTW	DIB	DTW		Vol	ume (gal)
10/2	0 104	15	: 38	24	.02		+	17	.97			6	.85	X1		1.12
1	1		:				•				•] хз		3.35
Gal/ft =	(dia./2)2 :	× 0.163	1"-	0.041	2	0.163	3"-	0.367	4"=	0.653	6° =	1.469	10"-	4.080	12"=	5.875
METHO	DS: (A) S	ubmersil	de Pump (B	Peristaltis.	Pump (C) D	isposable Bat	(D) PVC/I	efion Beile	r (E) Dedicat	ed Beiler (F)	Dedicated P	ump (G) Of	her =			
GROU	JNDV	VATE	R SAN	PLIN(G DAT	A (if proc	luct is dete	cted, do	NOT sam	ple)		Sample	e Depth	:		[√ifused]
Bottle	Туре	Γ	Date	Ti	me	Method ^f	Amoun	& Volu	ime mL	Pres	ervative	[circle]	Ice	Filter	pН	1
VOA	Glass	LON	WI		:		3	40	ml		на		YES	NO		
Amber	Glass	10/	404	11	:59	В	7	250/5	00,)1L	(None)	(HCI)	H ₂ SO ₄)	(YES	NO		V
White	Poly	/	7					250, 5	00, 1L		None		YES	NO	NA	
Yellow	Poly	/	/		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	1	1		:			250, 5	00, 1L		NaOH		YES	NO		
Red Tot	al Poly	- 7	/	•	:		1	250/5	00,)1L		(HNO.)		(YES	NO		V
Red Dis	s. Poly	7	/	,			1	250,/5	00, IL		HNO ₃		(YES	(YES)		
		7	. /					250, 5	00, 1L				YES			
		To	tal Bottle	s (include	duplicat	e count):	(3)									
	ВО	TTLE 1	YPE	TYPICAL	ANALY	SIS ALLO	WEQ PER B	OTTLE T	YPE (Circle	e applicabl	e or wzite n	on-stands	rd analys	is below)		
. }	VOA-G	less		(8260B)												
9 Pd	AMBER	- Glass		(TPH-FIQ)	(PAH)											
Analysis Allowed per Bottle Type	WHITE-	Poly			<u></u>											
報報	YELLOY	<u>_</u>														
E 2	GREEN-			,												
ا ۵ ک	RED TO		<u> </u>	(As)	(0) (0	u)						 				
.	RED DES	SOLVED	- Poly	(M)	(Cr) (Cr)		• •									
WATE	R OU	ALIT	Y DAT	'A	Purge :	Start Tir	me: /	1:30)			Pump/I	Bailer Ir	let Dept	h:	
Meas.			Purge		P	H	E Cond		Temp	∞ ℃		Diss O ₂			ater Q	uality
4				<u> </u>				~~								
3	В		3.	6	6	.52	85	2	17.	55		n.	19		+	
2	В			4		52	85	3 1		55		0.	21		7	
1	В			2		48	83			50			45	Clear	stis	htyellow
0		$\neg \neg$	0.0	_					•	- - -				/	J	7
[Casing]	[Select.	A-G1	(Cumulati	ve Totals]					[Cirde	units)				ľ	Clarity, C	olor)

SAMPLER: Tim Stone (PRINTED NAME)

,	9	A	1/	1 1/	70					6650	SW Re		•		0	
		7)	1 C	H (كالر	•						-	R 97224			
	-7 6	NVIRO	NME	NTAL,	L.L.C.	·		···············	Office:	(50	3) 670-1		Fax:		03) 67()-1128
		IAME:		McCa							ELL ID:			ex-3		
SITE	ADDI	RESS:		Portla	nd, OR						ND ID:		10211	4-	<u> </u>	•
		,						,			UP ID:			:		(
	ND FF	· ·	Ŋ	NE	E	SE	S.	SW	W	NW		HT		MUIC		EAVY
7	WEAT	HER	SU	NNY	cro	DUDY	RA	ĪN_		?	TEN	1PERA	TURE	·15		
HYD	ROLO	GY/LE	VEL	MEAS	UREM	ENTS (Vearest 0.0	1 ft)		[Product	Thickness]	[Water	Column)	- 10+	[Water C	riate unitel Column x Gal/ft]
Di	ate	Tin	ne	DT-B	ottom	DT-P	roduct	DF	Water	DIP	-DTW	DIB	DTW		Volt	ıme (gal)
10/2	20 64	14:	55	23	.95			18	. [[-	5	.84	X 1		0.95
7	1	:					•		•		•			X 3		2.86
Gal/ft =	(dia./2) ²	0.163	1"=	0.041	2"-	0.163	3"=	0.367	4"	0.653	6"=	1.469	10"=	4.080	12"=	5.875
§ METH	ODS: (A) S	ubmersible	Pump (B)	Peristaltic	Pump (C) D	isposable Ba	iler (D) PVC/	Teflon Buile	r (E) Dedica	ed Beiler (F) Dedicated F	namb (C) Ot	her -			
GRO	UNDV	VATER	SAM	IPLIN(G DAT	A (if proc	luct is dete	ected, do	NOT sam	ple)		Sampl	e Depth			[√if used]
Bottle	Type	Da	te	Ti	me	Method ⁶	Amoun	t & Volu	me mL	Pres	ervative	(circle)	Ice	Filter	pН	- √
VOA	Glass	7	7		:		3	40	ml		HCI		YES	NO		
Ambe	r Glass	10/21	104	13	:50	B	2	250/6	00/AL)	None	MHCI)(I	H ₂ SO ₄)	(YES)	(NO)		V
White	e Poly	/	1		:	-1		250, 5	00, 1L		None		YES	NO	NA	
Yellov	w Poly	1	7		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	n Poly	1	7		:			250, 5	00, 1L		NaOH		YES	NO		
Red To	tal Poly	1	7		:				00)1L	1	HNO)	$\overline{}$	YES	NO		
	ss. Poly		7				1	250/5	00,)L	. >	HINO,	7	XYES)	X		7
			/					250, 5					YES			
·		Total	l Bottle	s (include	duplicat	e count):	4									·
	ВО	TILETY					WED PER E	OTTLET	YPE (Circl	e applicabl	e or write r	on-standr	rd analysi	s below)		
1 1	VOA-G	lass		(8260B)	6										-	
B 8	AMBER	· Gas		(TPH-FIQ)	(PAH))										
₹ E	WHITE	Poly														
いまま		/ - Poly														
Analysis Allowed per Bottle Type	GREEN			-	10 10											
< "	 	FAL - Poly SOLVED - I		(As)) (As))	(Cr) (Cu)	Ψ				· ·						
				"	/> ()		·									
WATI	ER OU	ALITY	DAT	Α	Purge :	Start Tir	me:	2:10)			Pump/	Bailer In	let Dept	h:	
Meas.	Meth		Purgeo			H	E Cond	i (μS)	Tem	℃		Diss O ₂			ater Qu	ality
4								" -								
3	В		3.	0	6	. 33	67	77	18.	64		n.	54		1	
2	В		2.		6	34	64	9	18.	58		h.	59			
1	В.		1.	_	6	35	67	7	18	53			04	Clear	tolor	Ress
0	<u> </u>		0.0				- /	- 					- 			
[Casing]	[Select	A-G] [C	Cumulativ						[Circle	urd ta)				[C	Jarity, Col	(OT)
						,										
									•							

SAMPLER: Tim Stone

(PRINTED NAME)

8	۶,	AI	VC	H	OR					6650	•		Lane, : R 9722	Suite 11 4	0	
Y	-77 8	NVIR	ONME	NTAL,	L.L.C	•			Office:	(50	3) 670-1	108	Fax	: (5	603) 670)-1128
PROJ	ECT N	IAMI	3:	McCa	11 Oi1					W	ELL ID:	mi	11-8	3		
SITE				Portla	nd, OR					BLI	ND ID:	MO-	10210	4-8		-
)	D	UP ID	\equiv				(
WI	ND FR	ROM:	N	NE	E	SE	S	SW	w	NW	LIG	HT	ME	DIUM	H	EAVY
	VEAT:			NNY	\ ac	UDY	RA	IN	1	?	TEN	IPERA	TURE	(1)5	5.	
TIVIN	DOI O	CVII		TIBAC	TIDES (ENTTE A	Vearest 0.0			Product	Thickness)		Column]		de amenda	riete unitel Column x Gel/fi
niu. Da			ime	T	OKEM.		vearest 0.0 roduct		Vater		DTW		-DTW	7		me (gal)
						D1-1	Todiuci		.35		DIV	7.		1 X1	_	70%
FUI d	0104	10	:07	d 7	.83		•	AU	.25		•	-6	.48	4	<u> </u>	7.00
		<u></u>	<u>: </u>	<u> </u>			15		 .		•		T	X 3		2.1/
	(dia./2) ²		1"-	0.041	2"=	0.163	3"=	0.367	4"=	0.653	6" =	1.469	10"=	4.080	12" =	5.875
						<u> </u>	ller (D) PVC/I				Dedicated P					[√ifused]
				7			luct is dete						e Depth			<u> </u>
Bottle			ate		me		Amount			Pres	rvative	(circle)	Iœ	Filter	pΗ	<u> </u>
VOA		1012	21104	/5	:00	B	(3)			_	Ha		YES	NO)	V
Amber	Glass				:		2	250,(3	(J1)	None	(HCI)	1 ₂ SO ₄)	(YES)	NO)		V
White	Poly			<u> </u>	:			250, 5	00, 1L		None		YES	NO	NA	
Yellow	v Poly	1	1		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	1	_/_		:			250, 5	00, 1L		NaOH		YES	NO		
Red Tot	al Poly	1	1		:		/	250,5	00)1L	. (HNO ₃		YES	NO		V
Red Dis	s. Poly	1	7		:		1	250/5	00,)IL		HNO3)		YES	(YES)		
		1	.	· · · · · ·	:			250, 5	00.1L				YES	-		
		To	tal Bottle	s (includ	e dumlicat	e count):	77		<u></u>	·· ········	···········		L	<u></u>		
	ВО	TILET					WED-PER B	OTTLE T	YPE (Circle	applicable	or write n	on-stands	ard analys	is below)		
	VOA-C	lass.		(82608)						*4					· · · · · · · · · · · · · · · · · · ·	
B B	AMBER	- Class		(THI-FIQ	PAHY)										
호드	WHITE	- Poly														
Analysis Allowed per Bottle Type	YELLOY															
er B	CREEN			\odot	~	— —										
⋜≞∣	_	TAL - Pol	_	(As)	(CO)(CO)	\	· · · · ·							-		
ŀ	KED DE	SOLVED	-rary	(As))			·									
WATE	ROII	ALIT	Y DA7	ГА	Purce	Start Ti	me: 1	4:05				Pump/	Bailer Ir	ılet Dept	h	
Meas.	Meth			d (gal)		H	E Cond		Temp	°C			(mg/l)		ater Qu	ality
4	MEIL	1	- w. 50	~ \5ªL)		"	L COM	· (~~/]					(6/-)		and Qu	-41.y
	В		- 2	2		2.7	/ 1	. 	14	9/2		<u></u>	20	alla.	1/11	Corles
3				3		. 32	60			96			28			
2	В			2		. 31	60			99			28	sugn	CKOU	dy tente
1	В			./	6	.31	59	8	15.	06		0.	34	sugh	Cloudy	ton
0			0.0													
[Casing]	[Select	A-G)	(Cumulati	ve Totals)					[Ctrcle	mits)				[Clarity, Col	or)

SAMPLER: Tim Stone

(PRINTED NAME)

	&	٨١		`LJ/	70					6650			•	Suite 11	0	
			く		ノバ	•			010	,		•	OR 9722			
	-7	. R V I I	KUNME	NTAL,	L. L. C	•			Office:		3) 670-1		Fax:	(5	03) 67	0-1128
PROJ				McCa							ELL ID:					
SITE.	ADDI	RESS	<u>: </u>	Portla	nd, OR								1021	04-	7	
				1						-	UP ID		·			()
	ND FF			NE	E	SE	S'	SW	W	NW		HT)		DIUM	H	EAVY
V	WEAT	HER:	SU	NNY		YYOUC	RA RA	IN	<u> </u>	?	TEN	TPERA	TURE:	°F 5	<i>y</i> .	riste maital
HYD	ROLC	GY/I	LEVEL	MEAS	UREM	ENTS (Vearest 0.0			(Product	Thickness)	[Water	Cohamn]	•	[Water (Cohumn x Gal/ft]
Da	ate	7	ime		ottom	DT-P	roduct	DT-V	Vater	DTP	DTW	DIB	-DTW	j	Vol	ime (gal)
1012	0 104	15	5:15	30	.0			24	.40			5	.60	X 1		0.91
1	1		:						•		•			X 3		2.74
Gal/ft =	(dia./2) ²	× 0.163	1"-	0.041	2*-	0.163	3"=	0.367	4" =	0.653	6" =	1.469	10"=	4.080	12"=	5.875
							ller (D) PVC/				Dedicated P					
GRO	UNDV	VATE	R SAN	IPLIN	G DAT	A (if proc	luct is dete	ected, do l	NOT sam	ple)		Sampl	e Depth			[vifued]
Bottle	Туре	I	Date		me	Method ¹	Amoun	t & Volu	me mL	Pres	ervative	[circle]	Iœ	Filter	pН	✓
VOA	Glass	10%	21/04	16	:00	B	(3)	(40	ml)		(HCI)	(YES)	NO.)	1/
Amber	r Glass	/	1		:		\mathcal{A}	250,5	00/1L)	(None	(HCI)	H ₂ SO ₄)	(YES)	NO)		
White	Poly	/	1					250, 5	00, 1L		None		YES	NO	NA	
Yellov	v Poly	/	1_					250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	1	1_		3			250, 5	00, 1L		NaOH		YES	NO		
Red To	tal Poly	1	Ī				. 1	250(5	00)1L		(HNO.)		YES	NO		V
Red Dis	ss. Poly	1	7				_1	250/5	00)1L	(HNO ₃)	(YES)	(YES)		V
		1	1					250, 5	00, 1L				YES			
	•	To	tal Bottle	s (include	duplicat	te count):	7				_ ·					
	BC	TTLE	ГҮРЕ	_	ANALY	SIS ALLO	WED PER B	OTTLE T	YPE (Circl	e applicabl	e or write r	on-stand	ard analysi	s below)		
	VOA-G			(EZGER)		·										
8 ed X	AMBER		((TPH-FIQ)	(PAH)											
Analysis Allowed per Bottle Type	YELLOV	<u> </u>														
	GREEN			_												
A P		TAL - Po	alty	(44)	(co)	u))										
	RED DES	SOLVED	- Poly	(M)		7										
					$\frac{1}{2}$			4 . 4								
			Y DAT			Start Ti		5:10						let Dept		
Meas.	Meth	od 5	Purge	d (gal)	P	H	E Cond	i (μS)	Temp	° ℃		Diss O	2 (mg/l)	W	ater Qu	ality
4						<u></u> _			•				·			
3	В		3.			. 55		87		06			23		I_	
2	В	`	2.	0		.54	8			07			34		<u></u>	
1	В		1.	0	6	.59	10	5/	/5.	12		0.	40	Clean	/colo	rles
0			0.0]								
[Casing]	[Select	A-G)	(Camulati	ve Totals]					(Orde	urits)				ſ	Clarity, Co	lori

SAMPLER: Tim Stone (PRINTED NAME)

SIGNATURE) STORE

4	2	A	NC	H	OR					6650		lwood and, O	-	Suite 11 4	0	
Y	-77 E	NVII	RONME	NTAL.	L.L.G	•			Office:	(50	3) 670-1	108	Fax	: (5	03) 670	-1128
PROJ	ECT N	AM	E:	McCa	11 Oi1					W	ELL ID:	Mu	1-14			
SITE	ADDI	RESS	:	Portla	nd, OR					BLI	ND ID:	MO- /	1021	04 -	10	-
										D	UP ID:					()
WI	ND FR	OM	: N	NE	E	SE	S.	SW	(w)	NW	LIG	нт /	MEI	MUIC	Н	EAVY
V	VEAT.	HER	SUI	NNY	KIC	OUDY)	RA	IN .		?	TEN	(PERA	TURE	°F 50		
HVD	ROI O	CV	EVEL	MEAS	TIPEME	ENTS	Vearest 0.0	1 4\		Product	Thickness)	(Water	Cohamn)	iO.	Nater C	ate unitel olumn x Gal/ft)
Da			lime		Bottom		roduct		Water		-DTW		ÐTW	1		me (gal)
	0/01		5:12		.45				.54				.91	X 1	7	.27
1012	1). 100	2 /	• 1 0	—	•	ناها	7		-	75	-/1_	X3	$\frac{2}{3}$.80
C=164 =	/ (dia./2) ² :	.0162	1"-	0.041	2"=	0.163	3"-	0.367	4"-	0.653	6" =	1.469	10"=	4.080	12"	5.875
							_				Dedicated P			2000	12 -	3.8/3
							luct is dete]		e Depth	<u> </u>		[√if used]
Bottle			Date		me	Method 4					ervati <u>ve</u>		Ice	Filter	рΗ	1
VOA			21/04		:00	P	/3)		ml		Ha	-	/YES	NO)	911	
Amber		ויטו	alion				0		00/1L)	None	(IDH)		YES)	NO		
White	-	',	- ', -	 	:		<u> </u>		00, 1L	(140118	None	ا روسيد	YES	NO	NTA	
Yellov		 ;	1					⊢ ∸	00, 1L				YES	NO	NA	
		 ,	1		:	<u> </u>					H ₂ SO ₄			-		
Green		/		<u> </u>	:				00, 1L		NaOH		YES	NO		
Red To					:		Į.		00)1L		'HNO		YES	NO)		
Red Dis	s. Poly		/		:		/		00)1L	(HNO ₃)	YES	(YES)		
			/		:		<u>a</u>	250, 5	00, 1L				YES	<u> </u>		
					e duplicat		(7)	· .			•					
		TILE	TYPE		L ANALY	SIS ALLOV	WED PER B	OTTLET	YPE (Circle	e applicable	e or write n	on-stands	rd analys	is below)		
	VOA - G			(8260B) (TPH-FIQ	Vaus											
§ ₹	WHITE-			(IFF-FIQ	(FAG)	<u>, </u>		· .								
Analysis Allowed per Bottle Type	YELLOW	<u> </u>			-	· · · · · · · · · · · · · · · · · · ·										
8 3 S	GREEN-	<u> </u>														
A B	RED TO	FAL - Po	aly /	(As)	/ ray to	4)	 									
	RED DIS	SOLVE	- Poly	(As)	(G)(Q)											
	R QU	ALII	Y DAT	'A	Purge S	Start Tir	ne:	6:05				Pump/l	Bailer Ir	let Dept	h:	
Meas.	Meth	od [§]	Purge		p.	Н	E Conc	l (μS)	Temp	℃		Diss O ₂	(mg/l)	W	eter Qua	lity
4																
3	В		6.	9	6.	39	70	クス	16.	05		0.	2/	Cles	1/co	College
2	В		4.	6	6.	.35	69	35	16.	04		0.	26	Eleo	· /Co	Corles
1	В		2.		6.	32	68		16:	00		0.	34	Alich	tolou	Le local
0			0.0	<u> </u>										Dark	Pert !	Punk
(Casing)	[Select	A-G]	[Cumulativ	ve Totals]					[Circle:	units)			1	[Clarity, Cold	*1 p/
SAMP	LER: 1									/		The same				
	, 0	PRINT	ED NAME)					(SIGNATU	KE) /V		•			

	ANCHOR 6650 SW Redwood Lane, Suite 110 Portland, OR 97224															
			YC		ブバ				Office:	· /=^:					'00\	0.1105
	TOTAL	14 7 7		34.6	1.01	<u> </u>			Omce:		3) 670-1		Fax:		03) 67	0-1128
	ECT N			McCa							ELL ID:					
SILE	ADDR	(ESS	:	Portia	nd, OR						ND ID: UP ID:	MU-	10 ddC	14-1		
TAZT	ND FR	OM.	N	NE	Е	SE	S.	sw	V w	NW	LIG	LIT	MOT	DIUM	- / :	TAVE V
	WEAT!			NNY		YQUO	RA	<u> </u>	<u> </u>	1 NW				(°F)5		EAVY_)
									<u></u>	<u> </u>			(rie state	riate regital
							Vearest 0.0				[hickness]		Column)	1		Column x Gal/ft]
	ate		ime		ottom	DT-P	roduct		Vater	DTP-	DIW		DIW		Voi	me (gal)
10/2	0 /04	15	:15	35	20		-	20	.50			14	• /	X1	6	1.40
			:				•	<u> </u>	•					X3		7.18
	(dia./2)2 x		1"=	0,841	2"=	0.163	3"-	0.367	4"-	0.653	6"=	1.469	10"=	4.080	12"-	5.875
							ilez (D) PVC/				Dedicated P				——	[√ifused]
							luct is dete					-	e Depth			<u> </u>
===	Type		Date		ne	Method •	Amoun		_	Prese	rvative	(ctrcle)	Ice	Filter	pΗ	1
	Glass	1010	<u> 22 104</u>	10:	00	0	(3)	4 0		-	HCI			NO		-
	r Glass			-	<u> </u>		43		90	(None)	(HCI)(I	12501)	YES	NO		1
White				<u> </u>				250, 5			None		YES	NO	NA	
Yellov				<u> </u>				—— <u> </u>	00, 1L		H ₂ SO ₄		YES	NO		
Greer				<u> </u>					00, 1L		NaOH		YES	NO		
Red To	tal Poly			:			/	250,6			ANO,		YES	NO	,	
Red Di	ss. Poly			-				250,6			HNO.		YES	YES		1
				<u> </u>				250, 5	00,1L				YES	i	<u>.</u>	
		To	tal Bottle	s (include			9									
		TILE 1	YPE		ANALY	SIS ALLOV	WED PER B	OTTLE T	YPE (Circle	applicable	or write n	on-standa	rd analyst	s below)		
٠,	VOA - G			(B260B)	TOUR !									-		
\$ £	WHITE-		-		<u> </u>											
Analysts Allowed per Bottle Type	YELLOW							-								
돌전	GREEN-	Poly			de											
₹ =	KED TO		<u> </u>			2)										
	RED DISS	OLVED	- Poly	(4)			·							·		
TAT A TY	POL	ATT	Y DA'I	74	Decree	Start Tir		9.00				D //	2-11 7-1	I-4 D4	L.	
Meas.	Meth	_	Purge			H	E Cond		Temp	°C		Diss O ₂		let Dept		-12-
4	Metri	<u> </u>	rurge	I (gai)			E COIL	((113)	remp	, ,		DISS O2	<u>(πβλή)</u>	777	ater Qu	anty
3	В		7		1/2	60	124	1/2	14	44		<u>~</u>	37		4	
2	В		IL.	8	9	60	124		10.	1/2		<u>v.</u>	27		+-	
1	В		4	$\frac{v}{v}$	<u> </u>	61	<u> </u>		<u> 10 ·</u>	7.3		<u> </u>	T/	10	10.0	rless
0			0.0	2	0	61	123	7	/6.	43		<u> </u>	56	clear	/cocc	euss !
[Casing]	[Select A	\-G}	[Camulati			<u>' </u>			[Circle t	arits)				I	Jarity, Col	
	of extra bottles for lab QC.															
		*	epu	a por	NUS	201 10	wy	U.				~ 4				
										1						
SAMP	LER: 7	im S	itone							//	المريم	TAK	Ì			
	_		D NAME)			(5	SIGNATUR	<u>(E)</u>							

Γ,	<u>e</u>	<u> </u>	1/	·H()D					6650			-	Suite 11	0	
			YC	. [7]	ノバ	•			O(6			land, O	_			
				HIAL,		•			Office:		3) 670-1		Fax	: (5	03) 67()-1128
PROJ				McCa							ELL ID:					
SITE	ADDI	RESS	:	Portla	nd, OR								102a	04-1	<u>え</u>	•
					,						UP ID:					
	ND FF			NE	E	SE	S	sw	W	NW		HT		DIUM		EAVY
V	VEAT	HER:	SU	NNY (CLC	OUDY)	RA	IN		?	TEN	IPERA	TURE	(°F)52		
HYD	ROLC	GY/I	LEVEL	MEAS	UREM	ENTS (Vearest 0.0	1 ft)		[Product	Thickness]	[Water	Column)		Water C	late write) Johnnen x Gal/ft]
Da		T -	îme		ottom		roduct		Vater	DTP	-DTW	DTB-	DTW]	Volu	me (gal)
1010	0 104	13	:45	24	.10		-	15	.13			B	.97	X 1		1.46
1	1	 ' '	:	121				· · · · ·				-		хз		1.39
Go1/ft =	(dia./2) ²	x 0.163	1"=	0.041/	2	0.163	3"=	0.367	4"-	0.653	6"=	1.469	10"=	4.080	12" =	5.875
	<u> </u>		<u> </u>				iler (D) PVC/									3.073
							luct is dete						Depth			[√if used]
Bottle		T	Date	T	me		Amoun				erv <u>ati</u> ye		Ice	Filter	рΗ	7
VOA					15	A	(3)		ml /	1163	HO	(arue)	YES	NO)	
Amber		101	<u> </u>	115	.12_	<i>P</i>	(4)	-	00)1L	/NI	V(HCI)/I	7 607	YES	100	,	
		1		ļ						(14086		12504)	YES			
White		 - /	<u> </u>	 	<u> </u>	<u> </u>		250, 500, 1L None 250, 500, 1L H ₂ SO ₄						NO	NA	
Yellow	Poly				:								YES	NO		
Green	Poly	/			:				250,500,1L NaOH YE 250,500,1L HNO YE					NO		
Red Tot	al Poly	/					1				(HNO)		(YES)	(NO)		_/ /
Red Dis	s. Poly	/			:		1	ع ,250	00)1L	<u> </u>	(FINO)		WES)	∕ ₩s)	_	
		1	7					250, 5	00, 1L				EX(
		To	tal Bottle	s (includ	duplicat	e count):	6									
	ВС	TTLE 7	YPE	TYPICA	LANALY	SIS ALLO	VED PER B	OTTLE T	YPE (Circle	applicable	or write n	on-standa	rd analys	is below)		
	VOA-C	les	((8260B)	>											
Analysis Allowed per Bottle Type	AMBER	- Class		(IPH-FIQ	(PAH)											
M Ty	WHITE															
sts /	YELLOV														···	
a ady	GREEN	<u>_</u>		\bigcirc	60. 40		_									· ·
₹ -		TAL - Po	<u> </u>	(ABY	(Cr) (Cr)	2)							-	,		
	KED DIS	SOLVEL)-ruy /	(As))	(4) (4)		•	,						· · · · · · · · · · · · · · · · · · ·		
WATE	R OU	ALIT	Y DA	ra l	Purge	Start Tir	ne:	0:20				Pump/E	Bailer In	let Dept	h:	
Meas.			Purge			H	E Cond		Temp	°C		Diss O ₂	-		iter Qu	ality
4	17400												\- /	***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
3	В		11	6	4.	78	21	5	10	56			25	eller	1000	Vou
	В			5	$-\frac{\pi}{\mu}$	79	30									
2	В		3.	5	7	19			19.56 0.29 clear/slight							
1	Б				4.	17	30	5	<u> 7.</u>	24		0.	22	slyhte	<u>xoud</u>	g/yella
0 [Costoral	Select	l	0.0			·			(Circle:			<u> </u>	i		· · · · ·	
[Casing]	[Select	wol	(Constant)	ve Totals}					[Circle:	ngoj				le	Jarity, Col	or j

SAMPLER: Tim Stone

(PRINTED NAME)

PROJECT NAME: McCall Oil WELL ID: MO - (03 204 - 3 204	1 4	Q	A 1								6650	SW Re	dwood	Lane,	Suite 11	.0	
PROJECT NAME: McCall Oil WILL ID: M(U) - 1/3 Coll Oil WILL ID: M(U) - 1/3	1		4	NC		ンド	•							R 9722	4		
SITE ADDRESS: Portland, OR BLIND ID: MO 103 204 13 14 (305)	- X		NVIR	DNME	NTAL.	L.L.C.				Office:	(50	3) 670-1	108	Fax	(5	03) 67	0-1128
WIND FROM: N NE S.R. S. S.W. W. NW LIGHT (#265) WHATHER: SUNNY CLOUDY RAIN 7 TEMPERATURES 1/2-3 HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) Product Holders (1.01 ft) P	PROJ	ECT N	IAMI	B:	McCa	il Oil					W	ELL ID:	Mu	0-1			
WIND FROM: N NE	SITE	ADDI	RESS:		Portla	ind, OR					BLI	ND ID:	МО-	1022	04-1	3	-
WEATHER: SUNNY CLOUDY RAIN												UP ID:	MO-	-1022	04-1	4	(1205)
Product Thickness Product Thickness Product Thickness Product Thickness Product Thickness Product Time DT-Bottom DT-Product DT-DTW DTB-DTW Volume (gal)	WI	ND FR	OM:	N	NE		_	S.	SW	W) NW	LIC	HT	MEI	DIUM	H	EAVY
Product Products Product Produ	7	WEAT	HER:	SUI	YNY	CIC	YOU	RA	IN (?	TEN	IPERA	TURE		3.	
Date Time DT-Bottom DT-Product DT-Water DTP-DTW DTB-DTW Volume (gal)	HYD	ROLO	GY/L	EVEL	MEAS	UREM	ENTS (Vearest 0.0	1 ft)		(Product	Thickness)	[Water	Column)	· in		
										Water	DTP	DTW	DTB	-DTW]	Volu	ime (gal)
	10.12	10 104	1.3	:36	19	. 95		•	16	.96		•	1	.99	X 1		0.49
SMTHOUSE (A) Summerable Pump (B) Periodalts' Ramp (C) Desposed Baller (B) Dedicated Baller (B) Dedicated Pump (G) Other— CROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Nit used] Bottle Type Date	/	/		:		•		•				•			ХЗ		1.46
Sample Depth: Niture	Gal/ft -	(dia./2) ²	0.163	1"=	0.041	2"=	0.163	3"-	0.367	4"-	0.653	6" -	1.469	10"=	4.080	12°=	5.875
Bottle Type Date Time Method Amount & Volume, ml. Preservative (ends) Ice Filter pH Volume, ml.	§ METH	OD& (A)S	ubmersil	de Pump (B) Peristaltic	Sump (C) D	spossible Ba	iler (D) PVC/	Teflon Beile	r (E) Dedicat	ed Bailer (F	Dedicated P	ramb (C) Of	her =			
VOA Glass 10 20 04 2 : 00 8 3 40 ml HC YES NO	GROI	UNDW	ATE	R SAN	IPLIN	G DAT	A (if proc	luct is dete	cted, do	NOT sam	ple)		Sampl	e Depth	:		[Vtf used]
Amber Glass	Bottle	Туре	D	ate	T	ime	Method ^f	Amoun	& Volu	me.mL	Pres	ervative	[circle]	Ice	Filter	pН	1
White Poly	VOA	Glass	106	22104	12	:00	В	(3)	40	페		Ha		YES/	(NO)		
Yellow Poly	Ambe	r Glass		1		:		1	250/5	00)1L	(None	(HCI)	H ₂ SO ₂)	YES	NO		
Companies Comp	White	e Poły	/	1		:			250, 5	00, 1L		None		YES	NO	NA	
Red Total Poly	Yellov	w Poly	1	1_		:	, _		250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Red Diss. Poly	Green	Poly	1	1		:			250, 5	00, 1L		NaOH		YES	NO		
Total Bottles (include duplicate count): Total Bottles (include duplicate count): Total Bottles (include d	Red To	tal Poly	1	1		:		1						(YES)	(NO)		V
Total Bottles (include duplicate count): BOTTLE TYPE TYPICAL ANALYSIS ALLOWED FER BOTTLE TYPE (Circle applicable or write non-standard analysis below)	Red Di	ss. Poly	1	7		:		1	250/5	00, 1L		HNO	,	(YES)	(YES)		1/
BOTTLE TYPE TYPICAL ANALYSIS ALLOWED FER BÖTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass AMBER - Glass (FFH-FFQ) (PAH) WHITE - Poly YELLOW - Poly GREEN - Poly RED TOTAL - Poly RED TOTAL - Poly (As) (GC) RED DISSOLVED - Poly (As) (GC) RED DISSOLVED - Poly (As) (GC) (GC) RED SERVED - Poly (As) (GC) (G		- ']	7	1		:			250, 5	00, 1L	•			YES			
BOTTLE TYPE TYPICAL ANALYSIS ALLOWED FER BÖTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass AMBER - Glass (FFH-FFQ) (PAH) WHITE - Poly YELLOW - Poly GREEN - Poly RED TOTAL - Poly RED TOTAL - Poly (As) (GC) RED DISSOLVED - Poly (As) (GC) RED DISSOLVED - Poly (As) (GC) (GC) RED SERVED - Poly (As) (GC) (G			To	tal Bottle	s (includ	e duplicat	e count):	15	2								
AMBER-Glass		ВО	TTLE T	YPE	TYPICA	L ANALY:	SIS ALLO	WED PER B	OTTLET	YPE (Circle	e applicabl	e or write n	on-stands	urd analys	s below)		
WATER QUALITY DATA Purge Start Time: (: 30 Pump/Bailer Inlet Depth:				(←											
WATER QUALITY DATA Purge Start Time: (: 30 Pump/Bailer Inlet Depth:	\$ 8.			(1	(TPH-FIQ	(PAH)					-						
WATER QUALITY DATA Purge Start Time: (: 30 Pump/Bailer Inlet Depth:	용물																
WATER QUALITY DATA Purge Start Time: (: 30 Pump/Bailer Inlet Depth:	Bg ts							·									
WATER QUALITY DATA Purge Start Time: (:30 Pump/Bailer Inlet Depth: Meas. Method ⁵ Purged (gal) PH E Cond (μS) Temp °C Diss O ₂ (mg/l) Water Quality 3 B .5	E 8			у	(As)	(4)10)										
Meas. Method f Purged (gal) PH E Cond (μS) Temp °C Diss O ₂ (mg/l) Water Quality 3 B 1.5 0.60 [43 17.6/ 0.23 † 2 B 1.0 (0.65 [46 17.62 0.35 1/ 1 B 0.5 0.60 174 17.57 0.34 Clear /Colorless 0 0.00 	1	RED DIS	SOLVED	- Poly	(As)	(G)(G))					= =					
Meas. Method f Purged (gal) PH E Cond (μS) Temp °C Diss O ₂ (mg/l) Water Quality 3 B 1.5 0.60 [43 17.6/ 0.23 † 2 B 1.0 (0.65 [46 17.62 0.35 1/ 1 B 0.5 0.60 174 17.57 0.34 Clear /Colorless 0 0.00 																	
4	WATI	_															
3 B 1.5 6.66 [43 17.6] 2 B 1.0 6.65 [46 17.62 0.25] 1 B 0.5 6.60 [174 17.57 0.34 Clear Colorless 0 0.00 .	Meas.	Meth	od ⁸	Purgeo	i (gal)	p.	н	E Cond	i (μS)	Temp	℃		Diss O	(mg/l)	W	ater Qu	ality
2 B 1.0 (0.65 146 17.62 0.25) 1 B 0.5 6.60 1174 17.57 0.34 Clear Colorless 0 0.00 .	4																
1 B 0.5 6.60 1174 17.57 0.34 Clear Roborless 0 0.00	3	В				0.				17.			<u> </u>				
0 0.00 .	2	В			_	6	65									_1/	
	1	В		0.	5	6.	60	10	14	17.	57		٥.	34	Cles	n/Co	loclass
[Casing] [Select A-G] [Cumulative Totals] [Circle units] [Circle units]										:							
	[Casing]	[Select	A-G]	[Cimulath	ve Totals]					[Circle	urits)				ľ	Clarity, Col	lor) .
4																	, •

SAMPLER: Tim Stone

(PRINTED NAME)

SITE ADDRESS: Portland, OR BLIND ID: MO- /0 2 2 DUP ID:	: (503) 67	0-1128												
PROJECT NAME: McCall Oil WELL ID: MW - 3 SITE ADDRESS: Portland, OR BLIND ID: MO- /0 2 2 DUP ID:)	0-1128												
SITE ADDRESS: Portland, OR BLIND ID: MO- /0 2 2 DUP ID:	PROJECT NAME: McCall Oil WELL ID: MW-3													
SITE ADDRESS: Portland, OR BLIND ID: MO- /0 2 2 DUP ID:														
DUP ID:	204-15													
		()												
WIND FROM: N NE E SE S SW W NW LIGHT ME	DIUM I	IEAVY												
WEATHER: SUNNY CLOUDY RAIN ? TEMPERATURE	°F53 .													
HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column]	Marie annous	riate vesite) Column x Gal/ft)												
Date Time DT-Bottom DT-Product DP-Water DTP-DTW DTB-DTW	Vol	ume (gal)												
10120104 13:31 26.95 16.43 10.52	X1	7.71												
	Х3	5 14												
Gal/ft = (dia_/2) ² × 0.163 1" = 0.041 2" = 0.163 3" = 0.367 4" = 0.653 6" = 1.469 10" =	4.080 12" =	5,875												
§ METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other =														
GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth	<u> </u>	[√if used]												
Bottle Type Date Time Method Amount & Volume mL Preservative [circle] Ice	Filter pH	1												
VOA Glass /0/22/04 /2:55 /8 (3) (40 ml) (HCI) YES)NO													
Amber Glass / / : / 250/500,1L (None) (HCI) (H2SO4) YES	NO)	0												
White Poly / / : 250, 500, 1L None YES	NO NA													
Yellow Poly / / : 250, 500, 1L H ₂ SO ₄ YES	NO													
Green Poly / / : 250, 500, 1L NaOH YES	NO													
Red Total Poly / / : / 250/500 1L /ANO. /YES	NO													
Red Diss. Poly / / : / 250/500, L / HNO ₃ / YES	YES	1												
250,500,1L YES														
Total Bottles (include duplicate count):														
BOTTLE TYPE DESAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis	is below)													
VOA - Glass (B24005)														
AMBER - Class (TPH-FIQ) (PAH)														
AMBER - Class (TPH-FRO) (PAH) WHITE - Poly YELLOW - Poly GREEN - Poly RED TOTAL - Poly (A) (CP) (CP)														
YELLOW- Poly														
GREEN - Poly RED TOTAL - Poly (A) (GY) (GY) (GY)														
RED DISSOLVED - Poly (Ab) (Cg (Cu))														
WATER QUALITY DATA Purge Start Time: 12:10 Pump/Bailer Is	ilet Depth:													
Meas. Method ⁶ Purged (gal) PH E Cond (μS) Temp °C Diss O ₂ (mg/l)	Water Qu	ality												
4 5 6.0 6.38 925 77.30 0.32	T													
3 B 5.4 6.38 453 11.49 0.33	•													
2 B 3.6 6.36 1076 17.31 0.50														
1 B 1.8 6.33 1072 17.31 0.82	Clear / Cot	aless												
0 0.00 .														
[Casing] [Select A-G] [Cumulative Totals] [Circle units]	(Clarity, Co	lor)												

SAMPLER: Tim Stone

(PRINTED NAME)

																
	Q	A	1/	1 1/					•	6650	SW Re				.0	
16		AI	NC	H	ノド	•							R 9722	4		
	-7) E	NVIF	N M E	NTAL,	L.L.C	•	<u> </u>		Office:	(50	3) 670-1	1108	Fax:	(5	03) 670)-1128
PROJ	ECT N	IAMI	E:	McCa	11 Oi1					W	ELL ID:	mu	1-9			
SITE	ADDI	RESS	:	Portla	nd, OR					BLI	ND ID	МО-	1020	204-	-16	-
						•					UP ID					.(
WI	ND FF	OM:	N	NE	E	SE	S.	SW/	W) NW	LIC	HT /	MEI	DIUM)	Н	EAVY
1	VEAT:	HER:	SU	NNY	Jac	DUDY	RA	IN		?	TEN	APERA	TURE	7°F 5	3.	
נוערו	ח זחם	CVI	HVEI	MEAC	IDEM	ENTS	Vearest 0.0	1 4)		Product	Thickness]	(Water	Column)	101	rie steeres (Water C	date moitel Column x Gal/ftl
Di	_		ime		ottom		roduct		Water		-DTW	,	DTW	1		me (gal)
	20104		:00		.03			1	.90				.13	X1		1.16
1010	10104	 '	•	E	· <u>U</u>			 ' '	•10			 	·/ <u>·</u>	Х3		3.49
G-1#1-	/ (dia./2) ² :	. 0 162	1"-	0.041	2"-	0.163	3"-	0.367	4"-	0.653	6"=	1.469	10"-	4.080	12"=	5.875
					1		iler (D) PVC/		<u> 1 - </u>				1	4.000	12 -	3.873
							fuct is dete				,		e Depth	:		[√ifused]
Bottle	_		Date		me		Amoun				ervative	*	Ice	Filter	pН	1
VOA			2004		:	Bu	3		ml	- 110	на	ferreal	YES	NO	711	
Ambe		_	12/04		:45	B	,		00, IL	/None	(HCI)	H-SO ₄)	YES	NO)	V
White		η ο ο ο Ι Ι	7		: :	<i>D</i>			00, 1L	(2.10.22	None	1-20-0	YES	NO	NA	
Yellov		,			<u>. </u>	 			00, 1L		H ₂ SO ₄		YES	NO		
Green		/	-/								NaOH		YES	NO	:_	
					:		250, 500, 1L / 250, 600, 1L				MNO ₃)		(YES)			
Red To			 -					_	00,1L		/HNO.)			(NO)		1
Red Di	s. Foly				<u> </u>				_		TIVOS		YES	YES		
<u> </u>				<u> </u>	<u> </u>			250, 5	00, 1L				YES			
						e count):	(3)						.			
	VOA-G	TTLE T	XPE	(8260B)	LANALI	SIS ALLU	Wed-Per B	OTTLE	YPE (CIRCLE	e appacab	e or write r	ion-stands	ird analys	s Delow)		
20	AMBER			(TPH-FIQ)	(PAH)											
ğç	WHITE		$\overline{}$		/				•							
Analysis Allowed per Bottle Type	YELLOV	V - Poly														
88	GREEN-	Poly														
ا ۽ ک		TAL - Po		(As)	(0) (0	u)										
	RED DIS	SOLVED	- Poly /	(As))	(Cr) (Cri)		<u>.</u>	····								
TAY A TY	ווס מי	ATIT	Y DAT	r _A	Durge	Start Ti	ma: I	2.00	=			Press /	Bailer In	let Dept	L .	
Meas.	Meth		Purge			H	E Cond	3:05	Temp	· °C		Diss O			ater Qu	-1:
Wieas.	Meth	00	-	r (Sar)	F		E COIR	ι (μο)	rem	,		DISS O	(TIRST)	***	ater Qu	anty
	В		2	_	- /2	25	4	(a 1	10	60		<u>, v</u>	27		-	
2	В	-+	<u></u>	6	<u> </u>	35				69		<u> </u>	31		+	
					<u> 9</u>	29	43	20	18.	68 73				00	1/2	
1	В	` 		2	<u> </u>	.25	<u> </u>	38	13.	13		/ ·	01	Clear	1Col	orless
(Casing)	[Select	A-G1	0.0 [Cumulati			<u> </u>			[Circle 1	unita)		•			Clarity, Col	or)
·	(-week	<u>u</u> j	,						(-ment)	1				ť		,
								•	•		•					
)			

SAMPLER: Tim Stone

(PRINTED NAME)

V	٩									//=^	-			2 1. 4.		
V	A	A	\	'H (6650	SW Red		•		10	
		7	NC	ירו.	ノバ	•						and, O				
	-7 E	NVII	RONME	NTAL,	L.L.C.	•			Office:	<u> </u>	3) 670-1		Fax			0-1128
PROJ.	ECT N	IAM	E:	McCa	11 Oil					W	ELL ID:	EX	-41	MW	-2/)
SITE.	ADDE	RESS	:	Portla	nd, OR					BLI	ND ID:	МО-	102	204	-7	7 -
										D	UP ID:					
WI	ND FR	OM:	N	NE	E	SE	S'	SW) w	NW	LIG	HT	MEI	DIUM	10	HEAVY /
V	VEAT!	HER:	SU	NNY	a	YQU	RA	IN-	1	?	TEM	IPERA	TURE	°F5	3.	
HVD.	ROLO	GY/I	EVEL	MEAS	UREM	ENTS O	Vearest 0.0	1 #\		(Product	Thickness]	[Water	Column]	in	rrie arevre [Water	Column x Gal/ft]
Da			lime	1	ottom	T	roduct		Water		DTW		DTW	1		ume (gal)
10/7	0 104	12	3:06	27	30			16	.55			10	. 75	$1_{\mathbf{X}}$		1.72
1012	1	1.1	•	 ^ `	<u> بر.</u>		<u> </u>	10	<u>۔ ۔ ۔</u>			10.	· /,)	1 xs		J
C-1/6-	/ (dia./2) ² >	. 0 163	1"-	0.041	2"=	0.163	3"=	0.367	4"-	0.653	6" =	1.469	10"-	4.080	12"-	<u>5 · / 6</u> 5.875
							iler (D) PVC/I							4.000	1 12 -	3.8/3
							luct is dete						e Depth			[vifused]
Bottle			Date		me		Amount				ervative		Ice	Filter	рН	1
VOA						Mediod	- X		ml)	11030	Hall	(circie)	YES	NO	i pri	1 V
		10 /	22/04		: 30	<u> </u>	(3/		~_/_	07.	كرحميذ				1	
Amber			- 		:				00,)1L	(None)	(HCI) II	12504)	(YES)	NO		1 0
White					:	-			00, 1L		None		YES	NO	NA	
Yellow		/			:				00, 1L		H ₂ SO ₄		YES	NO		
Green									00, 1L		NaOH YES					
	tal Poly / / : 2									ANO3) YI				10	רו	
Red Tot	al Poly				•			250/15	00)1L	/	A THOS			7		1 V /
		'	1		:		1		00/1L 00/1L		ANO,		(YES)	MES .		
		1	/		:		1	250,					-			V
		/ / To	/ / otal Bottle		e duplicat	e count):		250,	00,1L				(YES)			V
	s. Poly	/ / To		s (include	e duplicat		WED PER B	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-standa	(YES) YES	AS .		
	s. Poly	TILE 7		s (include	e duplicat		1 WEST PERF	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-standa	(YES) YES	AS .		
Red Dis	BO VOA - G	TTLE 7 lass - Glass		s (include	e duplicat) WED PER S	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-stands	(YES) YES	AS .		
Red Dis	BO VOA - GAMBER - WHITE -	TTLE 7 lass Glass Poly		s (include TYPICA (82608)	e duplicat		WEST PERS	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-standa	(YES) YES	AS .		
Red Dis	BO VOA - G AMBER - WHITE - YELLOW	TTLE 7 lass - Glass - Poly - Poly		s (include TYPICA (82608)	e duplicat		/ WEDD PERS	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-stands	(YES) YES	AS .		
Red Dis	BO VOA - C AMBER WHITE YELLOW GREEN	lass Glass Poly Poly Poly	TYPE (s (include TYPICA (82608) (TPH-FIO)	e duplicat L ANALYS (PAH)	SIS ALLO	WED FER E	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-stands	(YES) YES	AS .		
Red Dis	BOO VOA - GE AMBER - WHITE - YELLOW GREEN - RED TOT	TTLE 7 lass - Glass - Poly / - Poly - Poly - Poly	rype (s (include TYPICA) (B260B) (IPH-FIO)	e duplicat L ANALYS (PAH)	SIS ALLO	WED PER S	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-stands	(YES) YES	AS .		
Red Dis	BO VOA - C AMBER WHITE YELLOW GREEN	TTLE 7 lass - Glass - Poly / - Poly - Poly - Poly	rype (s (include TYPICA (82608) (TPH-FIO)	e duplicat L ANALYS (PAH)	SIS ALLO	WED PER'S	250, 5 250, 5	00, 1L 00, 1L	e applicable	ANO,	on-stands	(YES) YES	AS .		
Analysis Allowed Par Portie Type Per Bottle Type	BO VOA - G AMBER - WHITE - YELLOW GREEN - RED TOT	TTLE Taless - Glass - Poly - Poly - Poly - Poly - Poly - SOLVEI	ty ()	s (include TYPICA) (6260B) (TPH-FIO) (Au)	e duplicat L ANALYS (PAH) (Cr) (Cl) (Cu)	SIS ALLO		250, 5 250, 5 OTTLE T	00, 1L 00, 1L YPE (Circle	e applicable	e or write n		YES YES	is below)	th:	
A Analysis Allowed per Bottle Type	BO VOA - G AMBER- WHITE - YELLOW GREEN - RED TOT RED DISS	TTLE 7 lass - Class - Poly /- Poly Poly (AL - Poly AL - Poly	ty (P-Poly (S (include DYFICA) (A2) (A2)	E duplicat LANALYS (PAH) (C) (Q) (C) (Q)	SIS ALLO	ne: /:	250, 5 250, 5 OTTLE T	00, 1L 00, 1L YPE (Circle		e or write n	Pump/f	YES YES and analys	is below)		v.ality
Analysis Allowed Der Bottle Type Weas:	BO VOA - G AMBER - WHITE - YELLOW GREEN - RED TOT	TTLE 7 lass - Class - Poly /- Poly Poly (AL - Poly AL - Poly	ty (P-Poly (s (include TYPICA) (6260B) (TPH-FIO) (Au)	E duplicat LANALYS (PAH) (C) (Q) (C) (Q)	Start Ti		250, 5 250, 5 OTTLE T	00, 1L 00, 1L YPE (Circle		e or write n		YES YES and analys	is below)	th:	vality
A Analysis Allowed Per Bottle Type Meas. 4	BOO VOA - GE AMBER - WHITE - YELLOW GREEN - RED TOT RED DISS R QU. Meth	TTLE 7 lass - Class - Poly /- Poly Poly (AL - Poly AL - Poly	dy (P-Poly (P-	s (include E260B) (Ap) (Ap) (Ap) (Ap) (Ap) (Ap)	E duplicat LANALY (PAH) (C) (Q) (C) (Qu) Purge S	a) Start Tir	me: /	250, β 250, 5 0TTLE T	OO, IL OO, IL YPE (Circle Temp) °C	e or write n	Pump/i Diss O ₂	YES YES ard analyses are analys	is below)		vality (Pal as C
pewolls skylend Annual State Property of the P	BO VOA - G AMBER- WHITE- YELLOW GREEN - RED TOT RED DES	TTLE 7 lass - Class - Poly /- Poly Poly (AL - Poly AL - Poly	thy (- Poly (- Y DA1 - Purgee	(Mg) (Ag) (Ag) (Ag) (Ag) (Ag) (Ag)	e duplicat LANALYS (CA) (CA) (CA) (CA) Purge S	Start Tit	me: [250, 5 250, 5 OTTLE T	OD, IL OO, IL YPE (Circle	.°C	e or write n	Pump/i Diss O ₂	YES YES and analysis ard analysis (mg/l)	is below)		Colorle d'actor
Ped Discovery Propert	BO VOA - CO AMBER - WHITE - YELLOW GREEN - RED TOT RED DISS	TTLE 7 lass - Class - Poly /- Poly Poly (AL - Poly AL - Poly	type ((chy (- Poly (- Y DA1 - Purgee - 5	(Ap) (Ap) (Ap) (Ap) (Ap) (Ap) (Ap) (Ap)	CC) (C) (C) (C) (C) (C) (C) (C) (C) (C)	Start Tir H	me: [:	250, 5 250, 5 0TTLE T	00,1L 00, 1L YPE (Circle Temp	06 67	e or write n	Pump/i Diss O ₂	Pressourd analyse and analyse	is below)		Lality Colorlas
WATE Meas. 4	BO VOA - G AMBER- WHITE- YELLOW GREEN - RED TOT RED DES	TTLE 7 lass - Class - Poly /- Poly Poly (AL - Poly AL - Poly	type ((chy (- Poly (- Y DA1 - Purgee - 5	(Ag) (Ag) (Ag) (Ag) (Ag) (Ag) (Ag) (Ag)	CC) (C) (C) (C) (C) (C) (C) (C) (C) (C)	Start Tit	me: [250, 5 250, 5 0TTLE T	OD, IL OO, IL YPE (Circle	06 67	e or write n	Pump/i Diss O ₂	YES YES and analysis ard analysis (mg/l)	is below)		Colorles Locles

(PRINTED NAME)

	9	<u> </u>		1 1/	<u> </u>			· ·		6650	SW Re	dwood	Lane,	Suite 11	10	
8		AI	NC	.H(ЭR						Port	land, C	R 9722	4		
Y	_7 E	NVIR	ONME	NTAL.	L.L.C				Office:	(50	3) 670-3	1108	Fax	: (5	503) 67	70-1128
PROI	ECT N	AMI	3 :	McCa	ll Oil					W	ELL ID	1/1	1-15		<u> </u>	
	ADDE			_	nd, OR						ND ID			2016-	- 18	
											UP ID		() or o	104	- 4.4	
WT	ND FR	OM:	N	NE	E	SE	S	sw	I/w	NW		HT	ME	DIUM		IEAVY
	WEAT			NNY		ACOU.		JN		?			-	(P) F)	2	IIIA I
					\leftarrow				ــــــ		124	AL LIKE	CRE		<u> </u>	refate radital
HYD	ROLO						Vearest 0.0				Thickness]		Column)	7		Column x Gal/f
	ate		ime		ottom	DT-P	roduct	DT.	Water	DTP-	DTW	DIB	DTW	1		ume (gal)
10/2	0 64	15	: 30	24	·40c		-	12	<u>.47</u>				<u>.93</u>] X1		1.94
1	1		:	ļ	• `		•	<u> </u>	•		•			X 3		5.83
Gal/ft =	(dia./2)2 >	0.163	1"=	0.041/	2	0.16	3"=	0.367	4" =	0.653	6"=	1.469	10"-	4.080	12"=	5.875
§ METH	ODS (A)S	ubmensib	le Pump (B)) Peristaltie	Pump (C) D	grossbie Be	iler (D) PVC/	Teflon Baile	r (E) Dedica	ed Bailer (F)	Dedicated I	ramp (G) O	her =			
GRO	UNDW	ATE	R SAM	IPLIN	G DAT	A (if proc	luct is dete	ected, do	NOT sam	ple)		Sampl	e Depth	נ		[/ if used]
Bottle	Туре	D	ate	Ti	me	Method ^f	Amoun	t & Vol	me mL	Prese	ervative	[circle]	Jos-	Filter	pН	1
VOA		10/2	2/04	15	:30	В	(3)		ml)		HCI)	YES	//ye	7	
Ambe		<u> </u>	1	 '''	:	- 2	2		000211)	(None)	THO)	H-SO-1	THE STATE OF THE S	NO	 	17
White		 ;	',	 	<u>:</u>				500, 1L	(1	None	-200	YES	NO	NA	
		',	',				-							 	144	
Yellov		/,			:				00, 1L		H ₂ SO ₄		YES	NO	<u> </u>	
Green			<u></u>		<u>: </u>				600, 1L		NaOH	\ 	YES	NO		
Red To	al Poly	/_	/		:			250, 5	00, 1L	/	HNO	<u> </u>	YES	(NO)		1//
Red Dia	ss. Poly		1		:		- 1	250, 3	00, 1L	>	41100,)	YES	AB.		
		1	1		:		(250, 5	00, 1L				YES			
		To	al Bottle	s (includ	e duplicat	e count):	(7)									
	ВО	TILET	YPE	TYPICA	L ANALY	SIS ALLOV	WED PER I	OTTLET	YPE (Chro	applicable	or write r	on-stand	rd analys	is below)		
i	VOA - G	lass		(8260B)												
₩ £	AMBER-	Glass		(TPH-FIQ	(PAH))										
Analysis Allowed per Bottle Type	WHITE-	<u> </u>	9													
調意	YELLOW	<u>_</u>														
夏草	GREEN-															·
₹ "	RED TO			(AZ)	(0) (0	"										
1	KADIAS	OLVED	- (1	(As))	(Cr) (Cr)		·									
WATE	ROII	AIIT	Y DAT	-Δ	Purce (Start Tir	ne: 1	4:44				Dimm/	Railor Iv	let Dept		
	20				p.			7.72		. OC					=	
Meas.	Meth	oa -	Purgeo	ı (gai)	ν.		E Cond	ı (μο)	Tem	, -C		Diss O	(mg/1)	W	ater Q	шцу
4						-	160	70	1-7	11.7			are	n n	· · ·	, , ,
3	В		6.		6.	50	4	20	1 <i>}</i> -:	41,		<u> </u>	24	Ula	rai f	Colorles
2	В		4.	0	10.	50	43	8	11.	41		υ.	<i>35</i>]	Cles	e / co	Colless
1	В		٦.	0	6.	50	Ut3	1	1349.	4		D.	34	Mich	et cl	aids/s
0			0.0	ю										7		11.
[Casing]	[Select	A-G]	(Cumulativ	ve Totals]					[Circle	mite)				- (Carity, Co	alor)
						<i>,</i> ,					س.	_(

SAMPLER: Tim Stone (PRINTED NAME)

	Analytical CHAIN OI																										
	Services ^{mc.}		13	17 South 13	th Ave. • Ke	lso. WA	98626	(360)	577-722	22 • ((800) 6	95-722	22x07 ·	• FAX	(360)	636-10	68	P	AGE			OF.			_ CO	C #	
PROJECT NAME	McCall	0	il					$\overline{-}$			7	T_D	7	7	7	<u> </u>	SISTACI SISTACI	7	7	7	7	1. /		10	Τ,	T_{I}	TT
PROJECT MANAG	SER JOHN	Re	: AJA)A				\neg		13	<u> </u>	BIEX		1684 0.5	5 /		915	/			/:		<i>{</i>	\$ \$			
COMPANY/ADDR					PORTL	ANI	2.06	7 <i>8</i>		18				8	?/	Q_{α}	<u> </u>	DK	n/a	Heak-Chim		: 88:		$\mathbb{P}/$	1	\$	/ /
							7	7.₹		88	i/ §		00	/*	/ 8				 §	1/ 8	7\8°	3/F. S	g :	$\langle \langle \langle \rangle \rangle$		7	/ /
CITY/STATE/ZIP				·				3			20				جُ ا	\$	8/~		18/		88		ð,	10	\%\ \%\	/ /	/ /
E-MAIL ADDRESS	ENDAG!	gnic	HO	UENU.	com		\square	EH OF CONTAINERS			THE REPORT OF THE PARTY OF THE	Chief Fig. 886 below)	Oil & Charles Same		V.	THO SOLID STATES		Metals, Oct.				70x 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٦/ ت	6)/	*/		/
503-6	570 -HO8	<u> </u>		6	10-112	8	_/ ½		180					X .		8/8		47/5	Seales S		8/0	70 X 9020	?/;		<i>:/</i>	/	
SAMPLER'S SIGN	= lose		```	,			<u></u>] 🕈		# 8		78		\$\\ \text{\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\$\frac{1	\$\ightarrow\text{8}\ightarrow\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٦٥	//\\ \			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3/ 8		,\\0			DEMARKS
	PLE I/D.		ATE /	TIME	LAB I.D.	MATRI)	<u> </u>		<u> </u>	7.9	74.0		<u> </u>	4	148	105	19/	150	70	19	<u> </u>	/~/	<u> </u>			<u> </u>	REMARKS
MO-107	7104-1	19	/2 Voy	0853		H, C				X												igspace	Δ.	X			
	1 2			1000			3																X	X			
1	- 3			1005			3	發															X	X			
-	-4			1120			6			X													X	X			
-	-5			1159		П	13																X	V			
-	6			1250			*6										Y						Ŷ	文			
-	-7	-		1350		 	4									Н	\overrightarrow{V}				-		$\frac{4}{X}$	₩			
		Н	-	1500		\vdash	17		- 1	V							♦	$\overline{\nabla}$				1	Ϋ́				
-	-8	Н		e**		╂	7			÷		_					\	\(\)			 	-	✧	 	 	 '	
-	-9	4		1600	 	-	+ <u>-</u>			X.	<u> </u>	_				-	X	X			<u> </u>		Ç	<u> </u>		<u> </u>	<u> </u>
TRIP	BLANK-1	Ц		1700			17				Ļ	L .					Χ	ĻX_		Ĺ.,	<u> </u>		Д.	<u> </u>	L		<u></u>
REPOR	T REQUIREM	ENT	S	P.O. #	DICE INFOR	IMATIC	N .	i .	Which !		_						~ ~										
	outine Report: N		lod	Bili To:				To	tal Metai	is: Ai	Ø	Sb B	a Be	B Ca	Cd	∞ (70	Fe	Pb A	Ag M	in Mo	Ni i	C Ag	Na	Se S	ir Ti	Sn V Zn Hg
	ank, Surrogate, quired	, as									\sim						\smile ι	,							Se S	3r Tl	Sn V Zn Hg
l V	•	. MS	D as	TUDNAT	OUND DE				<u>ICATE</u>							DURE	: Al	< CA	WI	NO	RTHM	/EST	ОТН	ER:		_(CIR	ICLE ONE)
								SPE	CIAL IN							. /		1	a5								
III. Data Validation Report 5 Day									*	Ex	TRF	1 Do	ale	ها- ن	η φ	ic (i	3015	+ #	HHS	,							
(includes all raw data) X Standard (10-15 working days)							g days)	l																			
IV. CLP Deliverable Report Provide FAX Results																											
V. EDD								İ				*															
Requested Report Date							<u> </u>				-																
10-12-04/0600 REC						EIVED	BT:						RE	LINQU	ISHE	DBY:						RE	:CEIV	ED BY	':		
Signature C Date/Time/ Signature						— D	ate/Tim	18		.	Sign	nature	·		- De	ate/Tin	18			Signa	ture			Date	/Time		
Printed N	Printed Name Firm Printed Name							— _F	im			-	Prin	ted N	ame		- FI	rm	~,		1	Printe	d Na	me		Firm	<u>. </u>

Columbia Analytical Services MC

Services NC. n Employee - Owned Company	1317 South 13th	Ave. • Kelso, WA 98626	• (360) 577-7222 • (800) 6	695-7222x07 • FAX (36	60) 636-1068	PAGE/	_ OF CO	C #							
PROJECT NAME / Call (Ack				12/10	BISIA _[]	777	1 10/8	1777							
PROJECT MANAGER JOHN ROW	DA	· ·			\$		1								
HNE HOR ENU	1.660							\sim / / /							
<u></u>					1 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			r/ /							
STY/STATE/ZIP POINTLAND	,OP	97224	8 8 8 8 8 A			The state of the s	6 18 18 18 18 18 18 18 18 18 18 18 18 18	/ / /							
PHONE \$ 503 -670 - 408	FAXO -7.0	1.1128	5 38 18 .					//							
SAMPLEN'S SIGNATURE	1670	1	Sent of the sent o	1	808 18 18 18 18 18 18 18 18 18 18 18 18 18			/ /							
8AMPLE1.D. DATE	TIME	LAB I.D. MATRIX	[] [3 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		विष्ठिति है।	₹ 8 8 8	8/2/14/14/	/ REMARKS							
110-107204-11 1/21	y 1000	H20 9	/ X		TXI		XX								
1-1-12 1	1115	16	X												
- 13	1200	16	X												
14	1205	16	T X		+++5	} 									
15	1255	116			++) 	 								
Ma	1345	- 13			+++	\	 								
- 17	1430	i b		╁╌┼╼┼╌	+-+-	+++	 								
18	1530			 			 	 							
TRIP 2	1.73C	1 1 2		 	 		1 1 1 - - - - - - - 								
TRIPA		- * \^		 			- - 								
	INVOI	CE INFORMATION		<u> </u>				<u> </u>							
REPORT REQUIREMENTS	P.O. #		Circle which metals are to be analyzed: Total Metals: Al As Sb Ba Be B Ca Cd Co (Cr) Cu Fe Pb Ma Mn Mo Ni K Aa Na Se Sr Ti Sn V Zn i												
I. Routine Report: Method Blank, Surrogate, as	Bill To: _	·	Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn												
required															
II. Report Dup., MS, MSD a	STURNARC	OUND REQUIREMENT	*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ONE) S SPECIAL INSTRUCTIONS/COMMENTS:												
required III. Data Validation Report	24 hr		.,,	extra QC	1 HA C	EID & DEL	1/ -								
(includes all raw data)	5 Day	y dard (10-15 working days)	* 4	extra 40	DOCCES TO	<i>Γ</i> Ψ • <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i> <i>Γ</i>	τ,								
IV. CLP Deliverable Report	1 1	ide FAX Results													
V. EDD			.				- •								
OSI MANAGES SY		uested Report Date		<u>-</u>											
RELINQUISHED BY	: 5 04 /0 100	REC	EIVED BY:	F	RELINQUISHED E	BY:	RECEIV	ED BY:							
Signature Date/Ti	me PDX	Signature	Date/Time	Signature	Date/	Time	Signature	Date/Time							
Printed Name Firm		Printed Name	Firm	Printed Nam	e Firm		Printed Name	Firm							

Columbia Analytical	
Analytical Services **	ì

Services NC. An Employee - Owned Company	1317 South 13	ith Ave. • Ke	iso, WA	98626 •	(360)	577-72	22 •	(800) (395-722	22x07	₹ FAX	(360)	636-10	168	P	AGE			ÓF			CO	C # <u></u>	
PROJECT NAME /// (a// 0//		, i . - -		•	``	-		7	7 .		•	7	7		7	7	7	7	7	7	7	<i>/</i> 6.	19	\&\ / /
PROJECT NUMBER		\neg		3	1		<i>[%]</i>	/ /	ļo 1	′ /	8151AC	/ /	/ /	' /	/ /	א אים	5 /		18/	3/	1: 4/9			
PROJECT MANAGER JOHN KENT		7.				<i>E</i> /\	WY	\ \langle \{ \text{\chi} \chi_{\text{\chi}} \end{aligned}	ģ /		6/	· /·	*/	_/	_ /-		ÿ /	8	5/	Ø.\\\\	[3			
COMPANY/ADDRESS 50 SIU KED		OF CONTAINERS	广麓	100 X68 00X	\ <u>\</u>			,	Constant Con			ג/ם	Ovanire Colomy Dissolved	Hex-Chin		₹ \$					7.87			
		7 ₹ .		88	Ĭ/ §	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			/ 8	185		OF ANTIS	8	/₺		3/2-8	7 8	13	$\chi_{\vec{k}}\chi$	Xr.	151			
CITY/STATE/ZEP PORTUNIO	\Box	\$						₹ _D	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	\$[]	8	12	å		38	\$ &	/ ₫/	15	1200 J	0/	_{\infty}/			
E-MAIL ADORESS	$\Box I$	S B		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	#3			§ <u>ङ्</u>		\$ Z		g_{ij}	15		O S	ंक्रे/	$\cap I$		\mathcal{X}	٠ / ي	16ENIZO J			
PHONE 15/3-670-1108		०-१/२८	<u> </u>	NUMBER		Wa.	Solution of	5 8 /\$		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			8/8	ית אריי	8/13		PHO SHA		70 × 07	ৡ /ৡ	\	3/		~/
SAMPLER'S SIGNATURE	me)			 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ė]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<u>}</u>			اَ فِي الْ	∦¥ ¥}\[ָ פיב		\$/ <i>\$</i>	/*	/*	13		,
SAMPLE I.D. DATE	TIME	LAB I,D.		7 ₹ ,		105		EC		/ <u>o</u>	\ \Z \\	16.8	O.E	<u>/ ©</u>	\ ₹9	<u></u>	<u> </u>	<u> </u>	/≥			<u>*</u>	<u>/*</u>	REMARKS
MO-110404 - CB 11/4/0	4 0745		5	2			<u>メ</u>	<u> </u>			Ŀ			X	_^			X		^	X	Х	Х	
																	**	ļ ļ						
». ·																100	eri E							
		Y 7											•											
		· · · · ·	<u> </u>	1		-	_	 				-												
			ļ.,	1		-												\vdash			<u> </u>			
			<u> </u>	igspace				<u> </u>										┝						
		<u> </u>	<u> </u>																					
a∰e		*							٠.							ويد						•		
						~ .										١.								
· 12 5			1																					
REPORT REQUIREMENTS	INV	DICE INFO	OITAMS	N	Circle	which	netals	are to	be ana	alvzed:														
.1.	P.O. #	 			Circle which metals are to be analyzed: Total Metals: Al & Sb Ba Be B Ca Cd Co Cri Cu Fe (Pb) Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V (Zn Hg														Sn V Zn Ha					
I. Routine Report: Method Blank, Surrogate, as	Bill To:	4.																						
required		, ' 			Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn H																			
II. Report Dup., MS, MSD as	TURNAL	ROUND RE	QUIREN	ENTS	*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER:(CIRCLE ONE) **INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER:(CIRCLE ONE)															OLL OILL)				
required24 hr48 hr.												a cat	L1 (62)]	16		160	. E	270	ی کا	o£				
III. Data Validation Report5 Day (includes all raw data)									٠٠.	P	ľ			, ,,]~) -	- , -		•				
Standard (10-15 working days)																	بمنجز							
V. EDD																								
V. LUU	R	equested Re	port Date																					
RELINQUISHED BY		IVED	BY:				RELINQUISHED I						BV.				RECEIVED BY:							
11/8/0	1-1900	1	٠.		T							ruit		,.OI JE	J D 1.						ne	.VEI 7 I	.J D 1	•
Signature Date/Tir			ature	, , ,	_ D	ate/Tir	ne		-	Slg	nature	•		De	te/fin	18			Signature				Date	Time
Printed Name Firm Printed Name					- F	lm		 ,	-	Printed Name Fin			im				Printed Name				Firm			

ATTACHMENT B

LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION

December 3, 2004

Service Request No: K2408430

John Renda Anchor Environmental 6650 SW Redwood Lane Suite 110 Portland, OR 97224

RE: McCall Oil and Chemical / 021062-02

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on October 25, 2004. For your reference, these analyses have been assigned our service request number K2408430.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281.

Respectfully submitted,

Columbia Analytical Services, Inc.

Abbie Spielman

Project Chemist

AS/jeb

Page 1 of

NELAP Accredited

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The oprrelation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic tingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Anchor Environmental

Service Request No.:

K2408430

Project:

McCall Oil

Date Received:

10/22/04

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Nine water samples were received for analysis at Columbia Analytical Services on 10/25/04. No discrepancies were noted upon initial sample inspection. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total and Dissolved Metals

No anomalies associated with the analysis of these samples were observed.

Fuel Identification and Quantification by EPA Method 8015B

Sample Notes and Discussion:

The Gasoline results are semi-quantitative. Results are expected to exhibit a low bias due to a potential loss of volatile compounds during the extraction process.

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Elevated Method Reporting Limits: A

Sample MO-102204-12 required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL3940: tert-Butylbenzene, 1. 2, 4-Trimethylbenzene, sec-Butylbenzene, 4-Isopropyltoluene, and n-Butylbenzene. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 11.0%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

იიი(5

Chain of Custody Documentation

Columbia Analytical Services Mc.
--

SR#:	K2408430	

An Employee - Ow	ervices **** ned Company		1317 South 13	th Ave. • Ke	lso, WA E	8626	(360)	577-722	2 • (800) 695	-7222x0	7 • FA	X (360)	636-10	68	P	AGE		<u> </u>	OF.			COC) #			
PROJECT NAME	McCall	ail	/				/			7	\overline{A}	\mathcal{T}	7	\mathcal{T}^{-}	10	7	Τ.	<i>T</i>	7	/	7	7	1.61				
PROJECT NUMBER							\neg		Ŋ	_ /	र्जे		101	/ /	BISIACI	/ /	′ /			_sì /	/	286	N/	_ /	/ 7		
PROJECT MANAGER JOHN RENDA												/ /	\g /	/	\ e	/		. /,	_ /-		3 /	હ /	D)		/ <u>/</u> 2		
COMPANY/ADDRES	CHOR						78		7 ος	Ĭ/ 0	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ /s			₹/.	BK	V.		7 4			Z/.	\$/~	√	000		
			,				7.₹		ESS		\$ 00	•	, ,	ير والج	DV. W.S.		8	\/ \	18	2/2 S	\$7 £	? / ડુ	1/6	Ϊ.	/ / -		
CITYSTATEZEP PORTLAND, OR 972Z4						18/			, S	Punt (FL)	翻查	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	9	H9/	18//	Hex Chican	18 4 18 18 18 18 18 18 18 18 18 18 18 18 18		\$ \\ \frac{4}{8} \\ \	$\langle \sigma_{ij} \rangle$		′ /				
E-MAIL ADDRESS			7			7	TOF CONTAINERS	o l	8/	3 8		155	1 %	\$ \		83.0 []	3 <i>≩1</i>	- 18		\ <u>@</u>	<u>``</u> [~ ,	M		/		
PHONE : 503	-670-1	1108	FAXIS G 7	0-1121		7,		Sample Children	°/d	3/8						શ્ \ફ		ֹפַ/ כ	`ĕ <i>\</i> 8	S/ 8		٧/ <i>,</i>	6 /	/	/		
SAMPLER'S SIGNA		5				MUMBER		NES	\$ 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28			g@/°	, ફ્રીફ્ર <u>ે</u>] \}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			N S S	N S		1/6	} %	\mathcal{N}	/	/		
SAMPL	.E.A.D.	DATE	TIME	LAB I.D.	MATRIX	∤ ₹		8°	28	£8	7 <u>7</u> 7	<i>્રિ</i> ઇ,	<i>క్డ్మ</i> శ్రీ	75 3	*/	/₹%	\ & \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹ ₽	/ Ø /	/ ^N	/ W	/ /	<i>'</i>	/ REMARKS		
10-1022	204-11	10/22/0	4 1000		4,0	9*	期後		X			1			X						X	V					
1 - 1	-12	1	1115		1	6			Y			T									Ý	V					
_	~13		1200			6			X			1				X					/``	Ŷ					
	-14		1205			6			۲Ì			1				Ý						X					
	-15		1255			6			\Diamond		\dashv	T				Ż						Ŷ					
	-16		1345			3						+	1								Y	\Rightarrow					
+					┼┼╴				abla			╁	┼								Ą	♦					
-	-17	┝┼	1430		\vdash	6		\vdash	싃		-		-			\vdash					>	H					
* - 1	-18	+	1530		₩.	1			싓		_	┿	┿	<u> </u>	X.	 					X	X			<u> </u>		
TRIP	2		1/			2			X_{\downarrow}																		
		·										L		L									l				
REPORT	PEOLIBEM	ENTS		ICE INFOR	RMATIO	V	Circle which metals are to be analyzed:																				
REPORT REQUIREMENTS P.O. # 1. Routine Report: Method Bill To:						Total Metals: Al (As) Sb Ba Be B Ca Cd Co (Fr) Co) Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg															Sn V Zn Ha						
	nk, Surrogate		Bill To:				Dissolved Metals: Al (As Sb Ba Be B Ca Cd Co (Cr) (Cu) Fe Pb Mg Mn Mo N! K Ag Na Se Sr Ti Sn V Zn Hg																				
	uired	-																									
II. Report Dup., MS, MSD as TURNAROUND REQUIREMENTS						*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ONE) 18 SPECIAL INSTRUCTIONS/COMMENTS:														CLE ONE)							
required24 hr48 hr.						SPE	CIVE IIÀ																				
III. Data Validation Report5 Day						* extra QC bottles for FIQ & PAKS																					
(includes all raw data) X Standard (10-15 working days)						l		1	4		7		_	_	•			•									
IV. CLP Deliverable ReportProvide FAX Results																											
V. EDD																											
Requested Report Date																											
RELINQUISHED BY:							EVED	BY: /	<u>_</u> ,	n	, [RELINQUISHED BY:										RE	CEIVE	D BY	:		
Signature Date/lime Signature							/ /L	126/	<u>94</u>	13/	W .	122-4				A P44											
TITE TONE PARTIE POX									ろ			ignatu				ite/Tim	19			Signature					Time		
Printed Name Firm Printed Name							F	inn			F	Printed Name					Firm					Printed Name Firm					

Columbia Analytical Services Inc. Cooler Receipt and Preservation Form

PC	NOBLL

Project/Client Hnch/	ir Env.	w	ork Order K24	o 8430	<u>}</u>	
Cooler received on 10-6	25-04 and op	nemed on 1525	OH by	Bu		
•		1 Front				YN
2. Were custody seals intac	et?					YN
3. Were signature and date	present on the custody	seals?				YN
4. Is the shipper's airbill a	vailable and filed? If no	o, record airbill number				-Y N
5. COC#		·				
Temperature of cooler	r(s) upon receipt: (°C)	<u> </u>	1.6	6-8		
Temperature Blank:	(°C)	0.3	N.P	1.9		· ·
Were samples hand deliv	ered on the same day as	s collection?				YN
· • • •	- ' ' '					(Y) N
7. Type of packing materia	l present ICE	dam insurt				_
	•					YN
9. Were all bottle labels co	mplete (i.e analysis, pre	servation, etc.)?			ي	YN
10. Did all bottle labels and	tags agree with custod	y papers?				YN
11. Were the correct types	of bottles used for the	e tests indicated?				YN
12. Were all of the preserve	Were custody seals on outside of coolers? If yes, how many and where? Were custody seals intact? Were signature and date present on the custody seals? Is the shipper's airbill available and filed? If no, record airbill number: COC# Temperature of cooler(s) upon receipt: (°C) Temperature Blank: (°C) Were samples hand delivered on the same day as collection? Were custody papers properly filled out (ink, signed, etc.)? Type of packing material present ICE + TOOM INSELT Did all bottles arrive in good condition (unbroken)? Were all bottle labels complete (i.e analysis, preservation, etc.)? Did all bottle labels and tags agree with custody papers? Were the correct types of bottles used for the tests indicated? Were all of the preserved bottles received at the lab with the appropriate pH? Were VOA vials checked for absence of air bubbles, and if present, noted below? Did the bottles originate from CAS/K or a branch laboratory? Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? Was C12/Res negative?		(Y) N			
13. Were VOA vials checke	ed for absence of air bub	bles, and if present, noted	l below?			Y N
14. Did the bottles originate	from CAS/K or a branc	ch laboratory?				Y N
15. Are CWA Microbiolog	y samples received wi	th >1/2 the 24hr. hold tir	me remaining fi	om collection?		YN
16. Was C12/Res negative?						YN
					_	
Explain any discrepancies:	·					
Explain any discrepancies:						
Explain any discrepancies:						
Explain any discrepancies:						
Explain any discrepancies:						
RESOLUTION:		ut of temperature:				
RESOLUTION: Samples that required pres	ervation or received o		Bottle Type		initials	
RESOLUTION: Samples that required pres	ervation or received o		Bottle Type		initials	
RESOLUTION: Samples that required pres	ervation or received o		Bottle Type		Initials	
RESOLUTION: Samples that required pres	ervation or received o		Bottle Type		initials	
RESOLUTION: Samples that required pres	ervation or received o		Bottle Type		Initials	
RESOLUTION: Samples that required pres	ervation or received o		Bottle Type		Initials	

Metals

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Project Name: McCall Oil and Chemical

Sample No.	Lab Sample ID.
MO-102204-11	K2408430-001
MO-102204-11 DISS	K2408430-001 DISS
MO-102204-11D	K2408430-001D
MO-102204-11 DISSD	K2408430-001D DISS
MO-102204-11S	K2408430-001S
MO-102204-11 DISSS	K2408430-001S DISS
MO-102204-12	K2408430-002
MO-102204-12	K2408430-002 DISS
MO-102204-13	K2408430-003
MO-102204-13	K2408430-003 DISS
MO-102204-14	K2408430-004
MO-102204-14	K2408430-004 DISS
MO-102204-15	K2408430-005
MO-102204-15	K2408430-005 DISS
MO-102204-16	K2408430-006
MO-102204-16	K2408430-006 DISS
MO-102204-17	K2408430-007
MO-102204-17	K2408430-007 DISS
MO-102204-18	K2408430-008
MO-102204-18	K2408430-008 DISS
Method Blank	K2408430-MB

Were	ICP interelement corrections applied?			Yes/No	YES	
Were	ICP background corrections applied?			Yes/No	YES	
	If yes-were raw data generated before application of background corrections?			Yes/No	NO	
Comm	ents:Total and Dissolved Metals					
						
						•
Signa	ature:	Date:	12/3/00	<u> </u>		_

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

Units: pG/L

Basis: NA

WATER

Sample Name: MO-102204-11 W

Lab Code: K2408430-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	٥
Arsenic	200.8	0.5	1	11/13/04	11/29/04	24.6		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

rioject name. Mccail oil and chemical

Units: pG/L

Basis: NA

Matrix: WATER

Sample Name: MO-102204-11 DISS

Lab Code: K2408430-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	c	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	19.5		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102204-12

Lab Code: K2408430-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	2.6		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Units: µG/L

Basis: NA

Matrix: WATER

Sample Name: MO-102204-12

Lab Code: K2408430-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	1.9		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client: McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102204-13 1/10/

Lab Code: K2408430-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.9		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.2	ט	
Copper	200.8	1.0	10	11/13/04	11/29/04	242		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

WATER

Units: µG/L

Basis: NA

Matrix:

Sample Name: MO-102204-13 MV

Lab Code: K2408430-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	11/13/04	11/29/04	1.0		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.2	ש	
Copper	200.8	1.0	10	11/13/04	11/29/04	250		

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: pG/L

Basis: NA

Lab Code: K2408430-004

Sample Name: MO-102204-14 MW. WY

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	11/13/04	11/29/04	1.0		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.2	ש	
Copper	200.8	1.0	10	11/13/04	11/29/04	245		

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Sample Name: MO-102204-14 MU W

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Units: µG/L

Basis: NA

WATER

Lab Code: K2408430-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.9		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.2	ប	
Copper	200.8	1.0	10	11/13/04	11/29/04	246	Π	

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102204-15 MW.

Lab Code: K2408430-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	48.8		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.5		
Copper	200.8	0.1	1	11/13/04	11/29/04	0.6		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix: WATER

Units: µG/L

Basis: NA

Sample Name: MO-102204-15 MW?

Lab Code: K2408430-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	49.1		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.2		
Copper	200.8	0.1	1	11/13/04	11/29/04	0.4		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102204-16 MV. 9

Lab Code: K2408430-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	28.5		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102204-16 (N)-7

Lab Code: K2408430-006 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	30.7		

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix: WATER

Units: pG/L

Basis: NA

Sample Name: MO-102204-17

Lab Code: K2408430-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	ō
Arsenic	200.8	0.5	1	11/13/04	11/29/04	63.9		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102204-17 (X-4) MW

Lab Code: K2408430-007 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	48.3		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

Units: pG/L

WATER

Basis: NA

Sample Name: MO-102204-18

Lab Code: K2408430-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	7.6		

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected: 10/22/04

Project Name: McCall Oil and Chemical

Date Received: 10/25/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102204-18 (W'\)

Lab Code: K2408430-008 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	6.2	П	

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Date Collected:

Project Name: McCall Oil and Chemical

Date Received:

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: Method Blank

Lab Code: K2408430-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.5	ซ	
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.2	U	
Copper	200.8	0.1	1	11/13/04	11/29/04	0.1	ŋ	

% Solids: 0.0

Comments:

- 5a -

SPIKE SAMPLE RECOVERY

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Units: pg/L

Project Name: McCall Oil and Chemical

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MO-102204-11 DISSS

Lab Code: K2408430-001S DISS

Analyte	Control Limit %R	Spike Result	Sample C	Spike Added	€R	Q	Method
Arsenic	70 - 130	38.2	19.5	20.0	94		200.8
Chromium	70 - 130	20.7	0.3	20.0	102		200.8
Copper	70 - 130	17.3	0.3	20.0	85		200.8

- 5a -

SPIKE SAMPLE RECOVERY

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil and Chemical

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MO-102204-11S

Lab Code: K2408430-001S

Analyte	Control Limit %R	Spike Result	Sample C	Spike Added	&R	Q	Method
Arsenic	70 - 130	43.7	24.6	20.0	96		200.8
Chromium	70 - 130	21.7	1.5	20.0	101		200.8
Copper	70 - 130	17.6	0.5	20.0	86		200.8

-6-

DUPLICATES

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil and Chemical

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name:MO-102204-11 DISSD

Lab Code: K2408430-001D DISS

Analyte	Control Limit(%)	Sample (S)	С	Duplicate (D) C	RPD	Q	Method
Arsenic	20	19.5		20.2	4		200.8
Chromium		0.3		0.3	2		200.8
Copper		0.3		0.3	8		200.8

METALS -6-

DUPLICATES

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil and Chemical

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name:MO-102204-11D

Lab Code: K2408430-001D

Analyte	Control Limit(%)	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	24.6		24.9		1		200.8
Chromium	20	1.5		1.7		15	-	200.8
Copper	i	0.5		0.5		4		200.8

-7-

LABORATORY CONTROL SAMPLE

Client:

McCall Oil

Service Request: K2408430

Project No.: 021062-02

Project Name: McCall Oil and Chemical

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aqueou	ıs ug/L			Soli	d (mg	(/kg)	
Analyte	True	Found	8R	True	Found	C	Limits	8R
Arsenic	20.0	19.7	99			11		1
Chromium	20.0	20.2	101			T		
Copper	20.0	20.0	100			T		

Fuel Identification Quantification EPA Method 8015

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102204-11

Lab Code:

K2408430-001

Units: ug/L Basis: NA

Level: Low

Extraction Method:

EPA 3510C

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	540	Y	100	. 1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	330	L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	81	42-124	11/03/04	Acceptable
o-Terphenyl	87	37-141	11/03/04	Acceptable
n-Triacontane	91	50-150	11/03/04	Acceptable

Comments:

Printed: 11/08/2004 12:46:07

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102204-12

K2408430-002

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

			Dilution	Date	Date	Extraction	•
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	210 Z	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	110 H	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	ND U	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	90	42-124	11/03/04	Acceptable	
o-Terphenyl	92	37-141	11/03/04	Acceptable	
n-Triacontane	94	50-150	11/03/04	Acceptable	•

Comments:

1 01 1

Page

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Lab Code:

MO-102204-13 K2408430-003

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	300	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	320	L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	68	42-124	11/03/04	Acceptable	
o-Terphenyl	89	37-141	11/03/04	Acceptable	
n-Triacontane	94	50-150	11/03/04	Acceptable	

Comments:

00036 Page 1 of 1

U:\Stealth\Crystal.rpt\Form lm.rpt

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102204-14

Lab Code:

K2408430-004

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C mw-1 Dup

Level: Low

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KW00416862	
Diesel Range Organics (DRO)	270	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	320	L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	64	42-124	11/03/04	Acceptable	
o-Terphenyl	84	37-141	11/03/04	Acceptable	
n-Triacontane	91	50-150	11/03/04	Acceptable	

Printed: 11/08/2004 12:46:11 U:\Stealth\Crystal.rpt\Form!m.rpt

Merged

Form 1A - Organic

Pag 00 0 3 7 1

SuperSet Reference: RR42771

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102204-15 K2408430-005

Units: ug/L

Extraction Method:

Basis: NA

Analysis Method:

EPA 3510C

8015M

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	150	Н	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	2400	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	540	L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	49	42-124	11/03/04	Acceptable	
o-Terphenyl	74	37-141	11/03/04	Acceptable	•
n-Triacontane	79	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:46:12

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102204-16 K2408430-006

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	130	Н	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	1100	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	510	L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	73	42-124	11/03/04	Acceptable	
o-Terphenyl	76	37-141	11/03/04	Acceptable	
n-Triacontane	81	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:46:14 U:\Stealth\Crystal.rpt\Formlm.rpt

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan Ex-4/ MW. 2

Sample Name:

MO-102204-17

Lab Code:

K2408430-007

EPA 3510C

Units: ug/L Basis: NA

Level: Low

Extraction Method: Analysis Method:

8015M

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	240 H	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	1700 Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	610 L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	77	42-124	11/03/04	Acceptable
o-Terphenyl	82	37-141	11/03/04	Acceptable
n-Triacontane	86	50-150	11/03/04	Acceptable

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102204-18

Lab Code:

MW-15 K2408430-008

Units: ug/L

Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	110	H	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	ND	U	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	90	42-124	11/03/04	Acceptable	
o-Terphenyl	94	37-141	11/03/04	Acceptable	
n-Triacontane	99	50-150	11/03/04	Acceptable	

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: NA

Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0416862-6

Units: ug/L.
Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

•				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	ı	10/28/04	11/03/04	KWC0416862	
Diesel Range Organics (DRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	ND	U	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	86	42-124	11/03/04	Acceptable
o-Terphenyl	93	37-141	11/03/04	Acceptable
n-Triacontane	97	50-150	11/03/04	Acceptable

Comments:

Printed: 11/08/2004 12:46:18

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR42771

Page 1 of 1

QA/QC Report

Client:

McCall Oil

Service Request: K2408430

Project: Sample Matrix: McCall Oil and Chemical/021062-02 Water

> **Surrogate Recovery Summary** Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: EPA 3510C

Units: PERCENT

Level: Low

Analysis Method: 8015M

Sample Name	Lab Code	Sur1	Sur2	Sur3
MO-102204-11	K2408430-001	81	87	91
MO-102204-12	K2408430-002	90	92	94
MO-102204-13	K2408430-003	68	89	94
MO-102204-14	K2408430-004	64	84	91
MO-102204-15	K2408430-005	49	74	79
MO-102204-16	K2408430-006	73	76	81
MO-102204-17	K2408430-007	77	82	86
MO-102204-18	K2408430-008	90	94	99
Method Blank	KWG0416862-6	86	93	97
MO-102204-11MS	KWG0416862-3	68	86	90
Lab Control Sample	KWG0416862-5	83	87	91
Duplicate Lab Control Sample	KWG0416862-7	87	88	91

Surrogate Recovery Control Limits (%)

Sur1 =	4-Bromofluorobenzene	42-124
Sur2 =	o-Terphenyl	37-141
Sur3 =	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/08/2004 12:46:23

U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR42771

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Extracted: 10/28/2004

Date Analyzed: 11/03/2004

Matrix Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102204-11

Lab Code:

K2408430-001

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

Extraction Lot: KWG0416862

MO-102204-11MS KWG0416862-3

	Sample		Aatrix Spike		%Rec
Analyte Name	Result	Result	Expected	%Rec	Limits
Diesel Range Organics (DRO)	540	3830	3200	103	54-161
Residual Range Organics (RRO)	330	1940	1600	100	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/08/2004 12:46:26

U:\Stealth\Crystal.rpt\Form3MS.rpt

Form 3A - Organic

Page SuperSet Reference: RR42771

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Result

3800

1740

Sample Matrix:

Water

Service Request: K2408430

Date Extracted: 10/28/2004

Date Analyzed: 11/03/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method:

EPA 3510C

Analysis Method:

Analyte Name

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

8015M

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0416862

Lab Control Sample KWG0416862-5

Duplicate Lab Control Sample

KWG0416862-7

Lab Control Spike **Duplicate Lab Control Spike** %Rec **RPD** Limits **RPD** Limit **Expected** %Rec %Rec Result **Expected** 3200 119 3780 3200 118 71-146 30 1600 1600 109 1710 107 53-143 2 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/08/2004 12:46:30 U:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

RR42771 POO 0 45 1

Volatile Organic Compounds EPA Method 8260B

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-11

K2408430-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

	•			Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Acetone	ND		20	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND.	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND		0.50	. 1	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroform	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Benzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Toluene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	

Comments:

Printed: 11/16/2004 09:29:51

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3 SuperSet Reference: RR43056

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

K2408430-001 WW. S

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 5030
Analysis Method:	8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Chlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND	Ų	0.50	1	11/04/04	11/04/04	KWG0417577	
Ethylbenzene	ИĎ	U	0.50	1	11/04/04	11/04/04	KWG0417577	
m,p-Xylenes	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
o-Xylene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Styrene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromoform	ND	บ	0.50	1	11/04/04	11/04/04	KWG0417577	
Isopropylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
n-Propylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
2-Chlorotoluene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
tert-Butylbenzene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichlorobenzene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
4-Isopropyltoluene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
n-Butylbenzene		U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichlorobenzene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trichlorobenzene		U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichlorobenzene		U	2.0	1	11/04/04	11/04/04	KWG0417577	
Naphthalene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Hexachlorobutadiene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-11

Lab Code:

K2408430-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
ibromofluoromethane	96	85-115	11/04/04	Acceptable	
Toluene-d8	95	86-114	11/04/04	Acceptable	
4-Bromofluorobenzene	97	72-115	11/04/04	Acceptable	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-12

Lab Code:

K2408430-002

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Ω	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	11000
Chloromethane	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Acetone	ND	U	50	2.5	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND	_	5.0	2.5	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	U	50	2.5	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Chloroform	ND	_	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	4.1	D	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	ND		1.3	2,5	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Benzene	ND	_	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	19	D	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
Dibromomethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	50	2.5	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
Toluene	ND	_	1.3	2.5	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane		U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND		50	2.5	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	

Comments:

U:\Stealth\Crystal.rpt\Form.lm.rpt

Merged

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-12

K2408430-002

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Level: Low

		_		Dilution	Date	Date	Extraction	. .
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	740		13	25	11/04/04	11/04/04	KWG0417577	
Dibromochloromethane	ND		1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
Chlorobenzene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Ethylbenzene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
m,p-Xylenes	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
o-Xylene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Styrene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Bromoform	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
Isopropylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichloropropane	ND	ับ	1.3	2.5	11/04/04	11/04/04	KWG0417577	 -
Bromobenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
n-Propylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
2-Chlorotoluene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
4-Chlorotoluene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
tert-Butylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,2,4-Trimethylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
sec-Butylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,3-Dichlorobenzene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
4-Isopropyltoluene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
n-Butylbenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,2-Dichlorobenzene	ND	U	1.3	2.5	11/04/04	11/04/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,2,4-Trichlorobenzene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichlorobenzene	ND	Ū	5.0	2.5	11/04/04	11/04/04	KWG0417577	
Naphthalene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	
Hexachlorobutadiene	ND	U	5.0	2.5	11/04/04	11/04/04	KWG0417577	

Comments:

00051

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-12

Lab Code:

K2408430-002

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	96	85-115	11/04/04	Acceptable
Toluene-d8	93	86-114	11/04/04	Acceptable
4-Bromofluorobenzene	93	72-115	11/04/04	Acceptable

Comments:

00052

Printed: 11/16/2004 09:29:54

U:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic Merged

Page 3 of 3

SuperSet Reference:

RR43056

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-13

Lab Code:

K2408430-003

mw -1

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Acetone	ND		20	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroform	0.87		0.50	1	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	· ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Benzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	0.67		0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromomethane	ND	U	0.50	1 -	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Toluene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND	_	20	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	

Comments:

Printed: 11/16/2004 09:29:58

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference:

RR43056

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-13

K2408430-003

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	2.8		0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Chlorobenzene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Ethylbenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
m,p-Xylenes	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
o-Xylene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Styrene	ND.	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromoform	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Isopropylbenzene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichloropropane	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
n-Propylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
2-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
tert-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	•
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
4-Isopropyltoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
n-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Naphthalene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Hexachlorobutadiene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-13

Units: ug/L Basis: NA

Lab Code:	K2408430-003

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	97	85-115	11/04/04	Acceptable	
Toluene-d8	91	86-114	11/04/04	Acceptable	
4-Bromofluorobenzene	95	72-115	11/04/04	Acceptable	

Comments:

Printed: 11/16/2004 09:29:58 U:\Stealth\Crystal.rpt\Formlm.rpt

Morgod

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-14

K2408430-004

MW-1 dup

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

Analysis Method:

8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Acetone	ND	ับ	20	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroform	0.88		0.50	1	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Benzene	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	0.65		0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromomethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Toluene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND	U	0.50	1 _	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	

Comments:

Printed: 11/16/2004 09:30:01 U:\Stealth\Crystal.rpt\Form1m.rpt

RR43056

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-14 K2408430-004

MM-1 gup

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	2.9		0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Chlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Ethylbenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
m,p-Xylenes	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
o-Xylene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Styrene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromoform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Isopropylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
n-Propylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
2-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
tert-Butylbenzene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
4-Isopropyltoluene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
n-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Naphthalene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Hexachlorobutadiene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	 -

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: 10/22/2004
Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-14

Lab Code:

K2408430-004

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	99	85-115	11/04/04	Acceptable
Toluene-d8	94	86-114	11/04/04	Acceptable
4-Bromofluorobenzene	94	72-115	11/04/04	Acceptable

Comments:

00058

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-15

K2408430-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Acetone	ND		20	1	11/04/04	11/04/04	KWG0417577	-
1,1-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
Chloroform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	· ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Benzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	ND	U	0.50	. 1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
Dibromomethane			0.50	1	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND		0,50	1	11/04/04	11/04/04	KWG0417577	
Toluene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)		U	20	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	

Comments:

00059

Printed: 11/16/2004 09:30:05

U:\Stealth\Crystal.rpt\Form1m.rpt Merged Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix: Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-15

K2408430-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	Extraction	•
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Chlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Ethylbenzene	ND	U_	0.50	1	11/04/04	11/04/04	KWG0417577	
m,p-Xylenes	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
o-Xylene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Styrene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromoform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Isopropylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichloropropane	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
n-Propylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
2-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
tert-Butylbenzene	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichlorobenzene	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417577	
4-Isopropyltoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
n-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Naphthalene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Hexachlorobutadiene	ND	Ü	2.0	1	11/04/04	11/04/04	KWG0417577	

Comments:

10060

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-15

K2408430-005

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	98	85-115	11/04/04	Acceptable	
Toluene-d8	94	86-114	11/04/04	Acceptable	
4-Bromofluorobenzene	100	72-115	11/04/04	Acceptable	

Comments:

Merged

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-17

Lab Code:

K2408430-007

Dibution

Dete

Basis: NA Level: Low

Units: ug/L

Extraction Method:	EPA 5030B
Analysis Method:	8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	_Note
Dichlorodifluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Acetone	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND		2.0	1	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	_	20	1	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroform	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Benzene	ND	_	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	20	1 _	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Toluene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND		20	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	

Comments:

Page 1 of 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 **Date Received:** 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-17

Lab Code:

K2408430-007

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Extraction **Analyte Name** MRL Factor Analyzed Result O Extracted Lot Note KWG0417577 Tetrachloroethene (PCE) 11/04/04 ND U 0.50 1 11/04/04 KWG0417577 Dibromochloromethane 11/04/04 11/04/04 ND U 0.50 1 1,2-Dibromoethane (EDB) KWG0417577 ND U 2.0 1 11/04/04 11/04/04 Chlorobenzene 0.50 11/04/04 11/04/04 KWG0417577 ND U 1 1,1,1,2-Tetrachloroethane ND U 0.50 1 11/04/04 11/04/04 KWG0417577 Ethvlbenzene ND U 0.50 1 11/04/04 11/04/04 KWG0417577 m.p-Xvlenes ND U 0.50 1 11/04/04 11/04/04 KWG0417577 o-Xylene ND U 0.50 11/04/04 11/04/04 KWG0417577 1 KWG0417577 Styrene ND U 0.50 1 11/04/04 11/04/04 Bromoform ND U 0.50 1 11/04/04 11/04/04 KWG0417577 KWG0417577 Isopropylbenzene ND U 20 1 11/04/04 11/04/04 KWG0417577 1,1,2,2-Tetrachloroethane ND U 0.50 11/04/04 11/04/04 1 1.2.3-Trichloropropane 0.50 ī KWG0417577 ND U 11/04/04 11/04/04 Bromobenzene ND U 2.0 1 11/04/04 11/04/04 KWG0417577 n-Propylbenzene KWG0417577 ND U 2.0 1 11/04/04 11/04/04 2-Chlorotoluene ND U 2.0 1 11/04/04 11/04/04 KWG0417577 4-Chlorotoluene 1 KWG0417577 ND U 2.0 11/04/04 11/04/04 1,3,5-Trimethylbenzene 2.0 11/04/04 11/04/04 KWG0417577 ND U 1 tert-Butylbenzene 2.0 KWG0417577 ND II 1 11/04/04 11/04/04 1,2,4-Trimethylbenzene 11/04/04 KWG0417577 ND U 2.0 1 11/04/04 KWG0417577 sec-Butylbenzene ND U 2.0 1 11/04/04 11/04/04 KWG0417577 1,3-Dichlorobenzene 0.50 11/04/04 ND U 1 11/04/04 4-Isopropyltoluene KWG0417577 ND U 2.0 1 11/04/04 11/04/04 KWG0417577 1,4-Dichlorobenzene ND U 0.50 1 11/04/04 11/04/04 n-Butylbenzene ND U 2.0 1 11/04/04 11/04/04 KWG0417577 1,2-Dichlorobenzene ND U 0.50 1 11/04/04 11/04/04 KWG0417577 1,2-Dibromo-3-chloropropane ND U 2.0 1 11/04/04 11/04/04 KWG0417577 1.2.4-Trichlorobenzene 2.0 11/04/04 11/04/04 KWG0417577 ND U 1 1,2,3-Trichlorobenzene 11/04/04 KWG0417577 ND U 2.0 1 11/04/04 Naphthalene KWG0417577 ND U 2.0 1 11/04/04 11/04/04 Hexachlorobutadiene 2.0 1 KWG0417577 ND U 11/04/04 11/04/04

Comments:

00063

Printed: 11/16/2004 09:30:08

U:\Stealth\Crystal.rpt\Form.lm.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference:

RR43056

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430
Date Collected: 10/22/2004
Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

MO-102204-17

Lab Code:

K2408430-007

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	97	85-115	11/04/04	Acceptable
Toluene-d8	94	86-114	11/04/04	Acceptable
4-Bromofluorobenzene	98	72-115	11/04/04	Acceptable

Comments:

Printed: 11/16/2004 09:30:08 U:\Stealth\Crystal.rpt\Formlm.rpt

Form 1A - Organic

Mergod

SuperSet Reference: RR43056

Page 3 of 3

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-18 K2408430-008

Units: ug/L Basis: NA

Extraction Method: Analysis Method:

EPA 5030B

8260B

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	_	0.50	I	11/04/04	11/04/04	KWG0417577	
Chloromethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroethane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Acetone	ND	บ	20	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Methylene Chloride	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
trans-1,2-Dichloroethene	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Butanone (MEK)	ND	Ū	20	1	11/04/04	11/04/04	KWG0417577	
2,2-Dichloropropane	ND		0.50	1	11/04/04	11/04/04	KWG0417577	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Chloroform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Carbon Tetrachloride	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND	U,	0.50	1	11/04/04	11/04/04	KWG0417577	
Benzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Trichloroethene (TCE)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromodichloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417577	
cis-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Toluene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,2-Trichloroethane	ND	U	0,50	1	11/04/04	11/04/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND	_	20	. 1	11/04/04	11/04/04	KWG0417577	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	

Comments:

Printed: 11/16/2004 09:30:11 U:\Stealth\Crystal.rpt\Form.lm.rpt

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix: Water Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Dilution

Date

Date

Sample Name: Lab Code:

MO-102204-18

K2408430-008

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Extraction

Analysis Method: 8260B

				Thinfilon	Date	Date	EXTRACTION	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417577	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Chlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Ethylbenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
m,p-Xylenes	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
o-Xylene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Styrene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromoform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Isopropylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
n-Propylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
2-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
tert-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,3-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
4-Isopropyltoluene	ND	U	2.0	· 1	11/04/04	11/04/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
n-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Naphthalene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	
Hexachlorobutadiene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417577	

Comments:

 $\underset{\text{Page}}{00066}_{\text{2 of 3}}$

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102204-18

K2408430-008

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	÷
Dibromofluoromethane	100	85-115	11/04/04	Acceptable	
Toluene-d8	93	86-114	11/04/04	Acceptable	
4-Bromofluorobenzene	93	72-115	11/04/04	Acceptable	

Comments:

Printed: 11/16/2004 09:30:11 U:\Stealth\Crystal.rpt\Form\lm.rpt

Form 1A - Organic

00067 Page 3 of 3

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

Trip 2

Lab Code:

K2408430-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	- 1	11/04/04	11/04/04	KWG0417645	
Chloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Vinyl Chloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromomethane	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417645	
Chloroethane	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Acetone	ND	U	20	1	11/04/04	11/04/04	KWG0417645	
1,1-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Methylene Chloride	ND	U	2.0	. 1	11/04/04	11/04/04	KWG0417645	
trans-1,2-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
1,1-Dichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
2-Butanone (MEK)	ND	U	20	1	11/04/04	11/04/04	KWG0417645	
2,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Chloroform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromochloromethane	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,1-Dichloropropene	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
Carbon Tetrachloride	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Benzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Trichloroethene (TCE)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromodichloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Dibromomethane	ND '		0.50	1	11/04/04	11/04/04	KWG0417645	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417645	
cis-1,3-Dichloropropene	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
Toluene	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,1,2-Trichloroethane	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
4-Methyl-2-pentanone (MIBK)		U	20	1	11/04/04	11/04/04	KWG0417645	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: 10/22/2004 Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

Trip 2

Lab Code:

K2408430-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417645	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
Chlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Ethylbenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
m,p-Xylenes	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
o-Xylene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Styrene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromoform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Isopropylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2,3-Trichloropropane	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
n-Propylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
2-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
tert-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,3-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
4-Isopropyltoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
n-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
Naphthalene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
Hexachlorobutadiene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	

Comments:

Printed: 11/16/2004 09:30:15 U:\Stealth\Crystal.rpt\Form\lm.rpt

Merged

Form 1A - Organic

Page 0 2 6 9 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Volatile Organic Compounds

Sample Name:

Trip 2

Lab Code:

K2408430-009

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	99	85-115	11/04/04	Acceptable
Toluene-d8	95	86-114	11/04/04	Acceptable
4-Bromofluorobenzene	101	72-115	11/04/04	Acceptable

Comments:

00070

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0417577-4

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Anna Barda Marina	7 1. 0	1001	Dilution	Date	Date	Extraction	N T-4-
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Chloromethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Vinyl Chloride	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Bromomethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Chloroethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Trichlorofluoromethane	ND U	0,50	1	11/03/04	11/03/04	KWG0417577	
Acetone	ND U	20	1	11/03/04	11/03/04	KWG0417577	
1,1-Dichloroethene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Carbon Disulfide	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Methylene Chloride	ND U	2.0	1	11/03/04	11/03/04	KWG0417577	
trans-1,2-Dichloroethene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,1-Dichloroethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
2-Butanone (MEK)	ND U	20	1	11/03/04	11/03/04	KWG0417577	
2,2-Dichloropropane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
cis-1,2-Dichloroethene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Chloroform	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Bromochloromethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,1,1-Trichloroethane (TCA)	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,1-Dichloropropene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Carbon Tetrachloride	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,2-Dichloroethane (EDC)	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Benzene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Trichloroethene (TCE)	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,2-Dichloropropane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Bromodichloromethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Dibromomethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
2-Hexanone	ND U	20	1	11/03/04	11/03/04	KWG0417577	
cis-1,3-Dichloropropene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
Toluene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
trans-1,3-Dichloropropene	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,1,2-Trichloroethane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	
4-Methyl-2-pentanone (MIBK)	ND U	20	1	11/03/04	11/03/04	KWG0417577	
1,3-Dichloropropane	ND U	0.50	1	11/03/04	11/03/04	KWG0417577	

Comments:

Printed: 11/16/2004 09:30:18

U:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Merged

Page 1 of 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0417577-4

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
Dibromochloromethane	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
Chlorobenzene	ND		0.50	1	11/03/04	11/03/04	KWG0417577	
1,1,1,2-Tetrachloroethane	ND		0.50	1	11/03/04	11/03/04	KWG0417577	
Ethylbenzene	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
m,p-Xylenes	ND		0.50	1	11/03/04	11/03/04	KWG0417577	
o-Xylene	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
Styrene	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
Bromoform	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
Isopropylbenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,2,3-Trichloropropane	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
Bromobenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
n-Propylbenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
2-Chlorotoluene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
4-Chlorotoluene	ND	_	2.0	1	11/03/04	11/03/04	KWG0417577	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
tert-Butylbenzene	ND		2.0	1	11/03/04	11/03/04	KWG0417577	
1,2,4-Trimethylbenzene	ND		2.0	1	11/03/04	11/03/04	KWG0417577	
sec-Butylbenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
1,3-Dichlorobenzene	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
4-Isopropyltoluene	ND	_	2.0	1	11/03/04	11/03/04	KWG0417577	
1,4-Dichlorobenzene	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
n-Butylbenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
1,2-Dichlorobenzene	ND	U	0.50	1	11/03/04	11/03/04	KWG0417577	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
1,2,4-Trichlorobenzene	ND		2.0	1	11/03/04	11/03/04	KWG0417577	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
Naphthalene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
Hexachlorobutadiene	ND	U	2.0	1	11/03/04	11/03/04	KWG0417577	
•								

Comments:

00072

Morgod

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code: KWG0417577-4

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	96	85-115	11/03/04	Acceptable
Toluene-d8	95	86-114	11/03/04	Acceptable
4-Bromofluorobenzene	95	72-115	11/03/04	Acceptable

Comments:

00073

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Date Collected: NA

Service Request: K2408430

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

Extraction Method: EPA 5030B

KWG0417645-4

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND		0.50	1	11/04/04	11/04/04	KWG0417645	11000
Chloromethane	ND		0.50	î	11/04/04	11/04/04	KWG0417645	
Vinyl Chloride	ND		0.50	î	11/04/04	11/04/04	KWG0417645	
Bromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Chloroethane	ND		0.50	ī	11/04/04	11/04/04	KWG0417645	
Trichlorofluoromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Acetone	ND	U	20	1	11/04/04	11/04/04	KWG0417645	
1,1-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Carbon Disulfide	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Methylene Chloride	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
trans-1,2-Dichloroethene	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
1,1-Dichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	_
2-Butanone (MEK)	ND	ับ	20	1	11/04/04	11/04/04	KWG0417645	
2,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Chloroform	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromochloromethane	ND		0.50	1	11/04/04	11/04/04	KWG0417645	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,1-Dichloropropene	ND	U	0,50	1	11/04/04	11/04/04	KWG0417645	
Carbon Tetrachloride	ND	U	0,50	. 1	11/04/04	11/04/04	KWG0417645	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Benzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	<u></u>
Trichloroethene (TCE)	ND		0.50	i	11/04/04	· 11/04/04	KWG0417645	
1,2-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromodichloromethane	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417645	
Dibromomethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
2-Hexanone	ND	U	20	1	11/04/04	11/04/04	KWG0417645	
cis-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Toluene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,1,2-Trichloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	11/04/04	11/04/04	KWG0417645	
1,3-Dichloropropane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	

Comments:

00074 1 of 3 Page

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix: Water Service Request: K2408430

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

KWG0417645-4

Analysis Method:

Extraction Method: EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q_	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Dibromochloromethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
Chlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Ethylbenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
m,p-Xylenes	ND	_	0.50	1	11/04/04	11/04/04	KWG0417645	
o-Xylene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Styrene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromoform	ND	Ū	0.50	1	11/04/04	11/04/04	KWG0417645	
Isopropylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2,3-Trichloropropane	ND	ับ	0.50	1	11/04/04	11/04/04	KWG0417645	
Bromobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
n-Propylbenzene	ND	U	2.0	. 1	11/04/04	11/04/04	KWG0417645	
2-Chlorotoluene	ND	Ū	2.0	1	11/04/04	11/04/04	KWG0417645	
4-Chlorotoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
tert-Butylbenzene	ND	Ū	2.0	1	11/04/04	11/04/04	KWG0417645	,,
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
sec-Butylbenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,3-Dichlorobenzene	ND	U	0,50	1	11/04/04	11/04/04	KWG0417645	
4-Isopropyltoluene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,4-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
n-Butylbenzene	ND	บ	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2-Dichlorobenzene	ND	U	0.50	1	11/04/04	11/04/04	KWG0417645	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
Naphthalene	· ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	
Hexachlorobutadiene	ND	U	2.0	1	11/04/04	11/04/04	KWG0417645	

Comments:

00075 Page 2 of 3

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

100

95

93

85-115

86-114

72-115

Water

Service Request: K2408430

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Date

Analyzed

11/04/04

11/04/04

11/04/04

Note

Acceptable

Acceptable

Acceptable

Sample Name: Lab Code:

Toluene-d8

Dibromofluoromethane

4-Bromofluorobenzene

Method Blank KWG0417645-4

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits
Part rogere Hame	/enct	LAIRIU

Comments:

Printed: 11/16/2004 09:30:22 U:\Stealth\Crystal.rpt\Formlm.rpt

Form 1A - Organic

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Service Request: K2408430

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
MO-102204-11	K2408430-001	96	95	97
MO-102204-12	K2408430-002	96	93	93
MO-102204-13	K2408430-003	97	91	95
MO-102204-14	K2408430-004	99	94	94
MO-102204-15	K2408430-005	98	94	100
MO-102204-17	K2408430-007	97	94	98
MO-102204-18	K2408430-008	100	93	93
Тгір 2	K2408430-009	99	95	101
Method Blank	KWG0417577-4	96	95	95
Method Blank	KWG0417645-4	100	95	93
MO-102204-11MS	KWG0417577-1	97	98	103
MO-102204-11DMS	KWG0417577-2	98	100	104
Lab Control Sample	KWG0417577-3	98	100	103
Lab Control Sample	KWG0417645-3	100	100	103

Surrogate Recovery Control Limits (%)

Surl =	Dibromofluoromethane	85-115
Sur2 =	Toluene-d8	86-114
Sur3 =	4-Bromofluorobenzene	72-115

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/16/2004 09:30:29 U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page

SuperSet Reference:

RR43056

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Extracted: 11/03/2004 **Date Analyzed: 11/03/2004**

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

MO-102204-11

Lab Code:

K2408430-001

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

Analysis Method:

Extraction Lot: KWG0417577

8260B

MO-102204-11DMS

MO-102204-11MS VWC0417577 1

VWC0417577 3

	Sample		VG0417577- Matrix Spike	<u> </u>		vG0417577-: cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected		Limits	RPD	Limit			
1,1-Dichloroethene	ND	11.4	10.0	114	11.5	10.0	115	66-147	0	30
Benzene	ND	9.79	10.0	98	9.69	10.0	97	81-130	1	30
Trichloroethene (TCE)	ND	10.4	10.0	104	10.3	10.0	103	63-138	1	30
Toluene	ND	9.66	10.0	97	9.48	10.0	95	76-130	2	30
Chlorobenzene	ND	10.6	10.0	106	10.4	10.0	104	77-123	2	30
1,2-Dichlorobenzene	ND	9.74	10.0	97	9.58	10.0	96	73-125	2	30
Naphthalene	ND	12.3	10.0	123	13.3	10.0	133	54-160	8	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00078

Printed: 11/16/2004 09:30:33 U:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of 1

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Service Request: K2408430 Date Extracted: 11/03/2004

Date Analyzed: 11/03/2004

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG0417577

Lab Control Sample KWG0417577-3

	Lab Control Spike			%Rec			
Analyte Name	Result	Expected	%Rec	Limits			
Dichlorodifluoromethane	9.91	10.0	99	52-179			
Chloromethane	7.92	10.0	79	58-129			
Vinyl Chloride	9.97	10.0	100	74-138			
Bromomethane	11.7	10.0	117	48-140			
Chloroethane	10.0	10.0	100	66-126			
richlorofluoromethane	9.54	10.0	95	69-129			
Acetone	44.4	50.0	89	68-140			
1-Dichloroethene	10.6	10.0	106	76-128			
arbon Disulfide	17.8	20.0	89	69-147		•	
fethylene Chloride	8.83	10.0	88	75-119			
ans-1,2-Dichloroethene	10.3	10.0	103	79-118			
1-Dichloroethane	9.56	10.0	96	76-120			
Butanone (MEK)	43.7	50.0	87	75-129			
2-Dichloropropane	10.8	10.0	108	60-142			
s-1,2-Dichloroethene	10.2	10.0	102	81-119			
hloroform	9.87	10.0	99	80-120	•		
romochloromethane	10.3	10.0	103	79-125			
1,1-Trichloroethane (TCA)	10.6	10.0	106	80-127			
1-Dichloropropene	9.41	10.0	94	79-128			
arbon Tetrachloride	11.3	10.0	113	76-137			
2-Dichloroethane (EDC)	8.98	10.0	90	76-125			
enzene	9.38	10.0	94	87-122			
richloroethene (TCE)	9.96	10.0	100	82-124			
2-Dichloropropane	9.23	10.0	92	80-117			
romodichloromethane	10.6	10.0	106	81-120			
ibromomethane	9.41	10.0	94	81-121			
Hexanone	44.6	50.0	89	65-135			
is-1,3-Dichloropropene	10.4	10.0	104	82-126			
oluene	9.11	10.0	91	84-120			
ans-1,3-Dichloropropene	10.1	10.0	101	76-116			
1,2-Trichloroethane	9.87	10.0	99	80-120			
Methyl-2-pentanone (MIBK)	44.7	50.0	89	69-134			
3-Dichloropropane	9.93	10.0	99	82-119			
etrachloroethene (PCE)	10.6	10.0	106	79-123			
Dibromochloromethane	10.8	10.0	108	78-121			
				· 			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00079

Printed: 11/16/2004 09:30:36 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 2

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430 Date Extracted: 11/03/2004

Date Analyzed: 11/03/2004

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0417577

Lab Control Sample KWG0417577-3

	Lab	%Rec		
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	10.5	10,0	105	78-121
Chlorobenzene	9.86	10.0	99	85-114
1,1,1,2-Tetrachloroethane	11.6	10.0	116	85-122
Ethylbenzene	10.7	10.0	107	89-124
m,p-Xylenes	21.9	20.0	110	89-126
o-Xylene	11.0	10.0	110	86-129
Styrene	11.0	10.0	110	90-130
Bromoform	12.0	10.0	120	80-126
Isopropylbenzene	10.0	10.0	100	76-127
1,1,2,2-Tetrachloroethane	8.98	10.0	90	66-127
1,2,3-Trichloropropane	9.10	10.0	91	76-125
Bromobenzene	10.4	10.0	104	84-121
n-Propyibenzene	10.6	10.0	106	83-134
2-Chlorotoluene	10.7	10.0	107	81-131
4-Chlorotoluene	10.3	10.0	103	80-129
1,3,5-Trimethylbenzene	11.4	10.0	114	85-131
tert-Butylbenzene	11.3	10.0	113	81-132
1,2,4-Trimethylbenzene	11.4	10.0	114	86-138
sec-Butylbenzene	11.5	10.0	115	82-137
1,3-Dichlorobenzene	9.74	10.0	97	85-119
4-Isopropyltoluene	11.1	10.0	111	78-131
1,4-Dichlorobenzene	9.58	10.0	96	83-116
n-Butylbenzene	10.9	10.0	109	73-138
1,2-Dichlorobenzene	9.33	10.0	93	82-117
1,2-Dibromo-3-chloropropane	10.8	10.0	108	66-123
1,2,4-Trichlorobenzene	9.71	10.0	97	74-136
1,2,3-Trichlorobenzene	10.2	10.0	102	72-137
Naphthalene	11.3	10.0	113	64-145
Hexachlorobutadiene	11.3	10.0	113	75-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00080

Printed: 11/16/2004 09:30:36 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 2 of 2

SuperSet Reference:

RR43056

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Extracted: 11/04/2004

Date Analyzed: 11/04/2004

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG0417645

Lab Control Sample KWG0417645-3 Yak Cantoni Calles

	Lab	Control Spik	e	%Rec	•
Analyte Name	Result	Expected	%Rec	Limits	
Dichlorodifluoromethane	9.47	10.0	95	52-179	<u></u>
Chloromethane	7.65	10.0	77	58-129	
Vinyl Chloride	9.96	10.0	100	74-138	
Bromomethane	11.5	10.0	115	48-140	
Chloroethane	10.1	10.0	101	66-126	
Frichlorofluoromethane	9.97	10.0	100	69-129	
Acetone	45.5	50.0	91	68-140	
,1-Dichloroethene	10.6	10.0	106	76-128	
Carbon Disulfide	17.8	20.0	89	69-147	
Methylene Chloride	9.01	10.0	90	75-119	
rans-1,2-Dichloroethene	10.2	10.0	102	79-118	
,1-Dichloroethane	9.46	10.0	95	76-120	
P-Butanone (MEK)	46.0	50.0	92	75-129	
2,2-Dichloropropane	10.9	10.0	109	60-142	
is-1,2-Dichloroethene	10.1	10.0	101	81-119	
Chloroform	10.1	10.0	101	80-120	,
Bromochloromethane	10.3	10.0	103	79-125	
,1,1-Trichloroethane (TCA)	11.1	10.0	111	80-127	
,1-Dichloropropene	9.69	10.0	97	79-128	
Carbon Tetrachloride	11.7	10.0	117	76-137	
,2-Dichloroethane (EDC)	9.13	10.0	91	76-125	
Benzene	9.25	10.0	93	87-122	
richloroethene (TCE)	9.99	10.0	100	82-124	
,2-Dichloropropane	9.05	10.0	91	80-117	
Bromodichloromethane	10.6	10.0	106	81-120	
Dibromomethane	9.52	10.0	95	81-121	
-Hexanone	44.9	50.0	90	65-135	
is-1,3-Dichloropropene	10.2	10.0	102	82-126	
Coluene	9.12	10.0	91	84-120	
rans-1,3-Dichloropropene	9.97	10.0	100	76-116	
,1,2-Trichloroethane	9.66	10.0	97	80-120	
-Methyl-2-pentanone (MIBK)	43.5	50.0	87	69-134	• •
,3-Dichloropropane	10.1	10.0	101	82- 119	
etrachloroethene (PCE)	10.7	10.0	107	79-123	
Dibromochloromethane	11.0	10.0	110	78-121	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00081

Printed: 11/16/2004 09:30:39 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

1 of 2 Page

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Date Extracted: 11/04/2004

Service Request: K2408430

Date Analyzed: 11/04/2004

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0417645

Lab Control Sample KWG0417645-3 Lab Control Spike

Lab	Control Spik	%Rec		
Result	Expected	%Rec	Limits	
10.1	10.0	101	78-121	
9.90	10.0	99	85-114	
11.6	10.0	116	85-122	
10.8	10.0	108	89-124	
21.9	20.0	110	89-126	
10.5	10.0	105	86-129	
11.0	10.0	110	90-130	
11.8	10.0	118	80-126	
10.0	10.0	100	<i>76</i> -12 <i>7</i>	
8.71	10.0	87	66-127	
9.09	10.0	91	76-125	
9.96	10.0	100	84-121	
10.2	10.0	102	83-134	
10.4	10.0	104	81-131	
10.0	10.0	100	80-129	
11.0	10.0	110	85-131	
10.8	10.0	108	81-132	
11.1	10.0	111	86-138	
11.1	10.0	111	82-137	
9.39	10.0	94	85-119	
10.7	10.0	107	78-131	
9.29	10.0	93	83-116	
10.4	10.0	104	73-138	
9.10	10.0	91	82-117	
9.54	10.0	95	66-123	
9.19	10.0	92	74-136	
9.58	10.0	96	72-137	
10.1	10.0	101	64-145	
11.4	10.0	114	75-130	
	Result 10.1 9.90 11.6 10.8 21.9 10.5 11.0 11.8 10.0 8.71 9.09 9.96 10.2 10.4 10.0 11.0 10.8 11.1 11.1 9.39 10.7 9.29 10.4 9.10 9.54 9.19 9.58 10.1	Result Expected 10.1 10.0 9.90 10.0 11.6 10.0 10.8 10.0 21.9 20.0 10.5 10.0 11.0 10.0 11.8 10.0 10.0 10.0 8.71 10.0 9.99 10.0 9.96 10.0 10.2 10.0 10.4 10.0 10.0 10.0 11.0 10.0 10.1 10.0 10.4 10.0 9.39 10.0 10.7 10.0 9.29 10.0 10.4 10.0 9.10 10.0 9.54 10.0 9.58 10.0 10.1 10.0	10.1 10.0 101 9.90 10.0 99 11.6 10.0 116 10.8 10.0 108 21.9 20.0 110 10.5 10.0 105 11.0 10.0 110 11.8 10.0 118 10.0 10.0 100 8.71 10.0 87 9.09 10.0 91 9.96 10.0 100 10.2 10.0 102 10.4 10.0 104 10.0 10.0 100 11.0 10.0 110 10.8 10.0 108 11.1 10.0 111 11.1 10.0 111 11.1 10.0 111 11.1 10.0 111 11.1 10.0 111 9.39 10.0 94 10.7 10.0 107 9.29 10.0 93 10.4 10.0 104 9.10 10.0 91 9.54 10.0 95 9.19 10.0 92 9.58 10.0 96 10.1 10.0 101	Result Expected %Rec Limits 10.1 10.0 101 78-121 9.90 10.0 99 85-114 11.6 10.0 116 85-122 10.8 10.0 108 89-124 21.9 20.0 110 89-126 10.5 10.0 105 86-129 11.0 10.0 110 90-130 11.8 10.0 118 80-126 10.0 10.0 100 76-127 8.71 10.0 87 66-127 9.09 10.0 91 76-125 9.96 10.0 100 84-121 10.2 10.0 102 83-134 10.4 10.0 104 81-131 10.0 10.0 100 80-129 11.0 10.0 100 80-129 11.0 10.0 100 80-129 11.0 10.0 100 80-129

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00082

Printed: 11/16/2004 09:30:39 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 2 of 2

SuperSet Reference: RR43056

Semi-Volatile Organic Compounds EPA Method 8270C

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102204-11 K2408430-001

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3520
Analysis Method:	8270C

A 1 4 N		_	1.007		Dilution	Date	Date	Extraction	. .
Analyte Name	Result		MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND	U	0.20	0.012	l	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	ND	U	0.20	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	U	0.20	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	ND	U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.20	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.20	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	Ü	0.20	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND	U	0.20	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	78	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	72	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	76	36-107	11/24/04	Acceptable	
Terphenyl-d14	99	38-148	11/24/04	Acceptable	

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102204-11 K2408430-001

Units: ug/L Basis: NA

Analyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

rinted: 11/30/2004 11:09:12

:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

00085 ge 2 of 2

Page

RR43514 SuperSet Reference:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430 Date Collected: 10/22/2004

Date Received: 10/25/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Lab Code:

MO-102204-18 K2408430-008 MW-15

Units: ug/L Basis: NA

Extraction Method:

EPA 3520

Level: Low

8270C **Analysis Method:**

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND		0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND		0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	ND	U	0.20	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	0.055	J	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	U	0.20	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	0.024	J	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.20	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	Ū	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.20	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND		0.20	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	77	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	76	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	74	36-107	11/24/04	Acceptable	
Terphenyl-d14	97	38-148	11/24/04	Acceptable	

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: 10/22/2004

Date Received: 10/25/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102204-18

K2408430-008

Units: ug/L Basis: NA

Analyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

rinted: 11/30/2004 11:09:16

:\Stealth\Crystal.rpt\Formlim.rpt

Merged

Form 1A - Organic

2 of 2 Page

SuperSet Reference: RR43514

Analytical Results

Client: Project: McCall Oil

Sample Matrix:

McCall Oil and Chemical/021062-02

Water

Service Request: K2408430

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank KWG0416820-3

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3520
Analysis Method:	8270C

			•		Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.19	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	ND	U	0.19	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.19	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	ND	U	0.19	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.19	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	Ū	0.19	0.013	1	10/27/04	11/24/04	KWG0416820	•
Pyrene	ND	U	0.19	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.19	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.19	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.19	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.19	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.19	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.19	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.19	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.19	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND	U	0.19	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	76	41-118	11/24/04	Acceptable
Nitrobenzene-d5	78	39-120	11/24/04	Acceptable
2-Fluorobiphenyl	70	36-107	11/24/04	Acceptable
Terphenyl-d14	95	38-148	11/24/04	Acceptable

Analytical Results

Client:

McCall Oil

Water

Project: Sample Matrix:

McCall Oil and Chemical/021062-02

Date Collected: NA

Service Request: K2408430

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG0416820-3

Units: ug/L Basis: NA

Analyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

rinted: 11/30/2004 11:09:20

\Stealth\Crystal.rpt\Formim.rpt

Merged

Form 1A - Organic

Page 2 of 2

RR43514 SuperSet Reference:

QA/QC Report

Client: Project: McCall Oil

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408430

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520

Analysis Method:

8270C

Units: PERCENT

Level: Low

Lab Code	Sur1	Sur2	<u>Sur3</u>	Sur4
K2408430-001	78	72	76	99
K2408430-008	77	76	74	97
KWG0416820-3	76	78	70	95
KWG0416820-1	83	82	71	88
KWG0416820-2	75	74	69	87
	K2408430-001 K2408430-008 KWG0416820-3 KWG0416820-1	K2408430-001 78 K2408430-008 77 KWG0416820-3 76 KWG0416820-1 83	K2408430-001 78 72 K2408430-008 77 76 KWG0416820-3 76 78 KWG0416820-1 83 82	K2408430-001 78 72 76 K2408430-008 77 76 74 KWG0416820-3 76 78 70 KWG0416820-1 83 82 71

Surrogate Recovery Control Limits (%)

Surl = Phenol-d6	41-118	
Sur2 = Nitrobenzene-d5	39-120	
Sur3 = 2-Fluorobiphenyl	36-107	•
Sur4 = Terphenyl-d14	38-148	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/30/2004 11:09:27 U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR43514

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix:

Water

McCall Oil and Chemical/021062-02

Service Request: K2408430 Date Extracted: 10/27/2004 Date Analyzed: 11/14/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG0416820

Extraction Method: EPA 3520 Analysis Method: 8270C

> Lab Control Sample KWG0416820-1

Duplicate Lab Control Sample KWG0416820-2

	Lab	Control Spike	e	Duplicate	e Lab Control	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1-Methylphenol	4.12	5.00	82	3.56	5.00	71	27-123	14	30
Naphthalene	3.51	5.00	70	3.24	5.00	65	27-116	8	30
2-Methylnaphthalene	3.27	5.00	65	3.06	5.00	61	22-106	6	30
Acenaphthylene	4.36	5.00	87	4.20	5.00	84	33-131	4	30
Acenaphthene	3.92	5.00	78	3.82	5.00	76	31-122	2	30
Dibenzofuran	4.00	5.00	80	3.86	5.00	7 7	31-119	4	30
Juorene	4.19	5.00	84	4.10	5.00	82	33-120	2	30
henanthrene	4.24	5.00	85	4.08	5.00	82	35-127	4	30
Anthracene	4.27	5.00	85	4.09	5.00	82	34-126	4	30
luoranthene	4.49	5.00	90	4.39	5.00	88	36-132	2	30
yrene	4.21	5.00	84	4.11	5.00	82	38-129	2	30
Butyl Benzyl Phthalate	4.87	5.00	97	4.82	5.00	96	50-128	1	30
Benz(a)anthracene	4.35	5.00	87	4.17	5.00	83	39-128	4	30
Chrysene	4.62	5.00	92	4.52	5.00	90	40-128	2	30
Di-n-octyl Phthalate	5.08	5.00	102	4.82	5.00	96	47-134	5	30
Benzo(b)fluoranthene	4.43	5.00	89	4.28	5.00	86	36-135	4	30
lenzo(k)fluoranthene	4.49	5.00	90	4.38	5.00	88	38-133	2	30
lenzo(a)pyrene	4.41	5.00	88	4.14	5.00	83	35-129	6	30
ndeno(1,2,3-cd)pyrene	4.49	5.00	90	4.31	5.00	86	37-133	4	30
Dibenz(a,h)anthracene	4.66	5.00	93	4.38	5.00	88	38-135	6	30
enzo(g,h,i)perylene	4.52	5.00	90	4.36	5.00	87	39-133	3	30

ssults flagged with an asterisk (*) indicate values outside control criteria.

recent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00091

December 3, 2004

Service Request No: K2408403

John Renda Anchor Environmental 6650 SW Redwood Lane Suite 110 Portland, OR 97224

RE: McCall Oil and Chemical / 021062-02

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on October 22, 2004. For your reference, these analyses have been assigned our service request number K2408403.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281.

Respectfully submitted,

Columbia Analytical Services, Inc.

Abbie Spielman

Project Chemist

AS/jeb

Page 1 of 97

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative
- * The duplicate analysis not within control limits. See case narrative,
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y
 The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

Client:

Anchor Environmental

Project:

McCall Oil

Sample Matrix: Water

Service Request No.:

K2408403

Date Received:

10/22/04

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Eleven water samples were received for analysis at Columbia Analytical Services on 10/22/04. Minor preservation discrepancies were noted upon initial sample inspection. Additional details about the exceptions are noted on the cooler receipt and preservation form included in this data package. These issues were resolved at the laboratory. All remaining samples were received in good condition and consistent with the accompanying chain of custody forms. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total and Dissolved Metals

No anomalies associated with the analysis of these samples were observed.

Fuel Identification and Quantification by EPA Method 8015B

Sample Notes and Discussion:

The Gasoline results are semi-quantitative. Results are expected to exhibit a low bias due to a potential loss of volatile compounds during the extraction process.

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

Elevated Method Reporting Limits:

Sample MO-102104-4 required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL3940: tert-Butylbenzene, 1, 2, 4-Trimethylbenzene, sec-Butylbenzene, 4-Isopropyltoluene, and n-Butylbenzene. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 11.0%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

Approved by Am April Date 18/3/04

00005

Chain of Custody Documentation

CHAIN OF CUSTODY

SR#:	K24	0	84	00
•				

An Employee . (Services NC. Dwned Company		13	17 South 13t	h Ave. • Ke	lso, WA	98626	• (360)	577-72	22 •	(800) 69	95-722	2x07	• FAX	(360) 6	336-10	68	P	AGE			OF.			_co	C #_	
PROJECT NAME	McCall	0	il	,							1		/	T	[/	[]	7	/ /		7	7	7	1,	\mathcal{T}	7	TE
PROJECT MANA		D.	FAIR	η Α				\dashv			\$_ /			1880			81514					S	s /	860	' /	' /	009
COMPANY/ADDI	ANCHO	R	<u> </u>	VV.	PORTL	ANI	o.oe	BEH OF CONTAINERS		18				8	Selection Company	<u></u>		SK	אנ	Hex-Camp			\$ \\ \frac{\partial \text{2}}{\partial \text{2}} \\ \partial \text	g/	/		/ /
							/	7 ₹		8				/_		8	Wisin.		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ É	200] }•`≨	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	$\sqrt[3]{G}$,	٠,	/ /
CITY/STATE/ZIP							/	/ ફ્રે			30		E 8		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	80/	80			Ž	38	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√δ,	0/4	200	/ /	. /
PHONE	ENDAG I	M C	HOL	LENU.	com		—/	9		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				\$ <u>#</u>	_ / \}	8/8		2018 10018 10018		- /	3~/c	हिं	0/	ら/	* /		
SAMPLER'S SIG	670 - HOR			6	10-112	8	ءُ /-	5 B	18			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ŧ/8,	T S S S S S S S S S S S S S S S S S S S		\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	110	Social So		Die Sind		10 x 8m	} \{		ং/	/	/
504	PLEND.	_	> ATE \	TIME	LAB I.D.	MATRIX	୷┋		188	82	1 2 8			78 }		8		### ### ##############################	\ \mathref{\bar{\pi}{\sigma}}	\ <u>₹</u> .5	1	7/8	/%	/ //		/	REMARKS
	0	_	2/4		LAB I.D.	16.0		55.4		X							-4						Y	Y		-	
-	2104-1	-	<i>-76</i>	1000		113.0	3			~					\dashv				_				*	X	\vdash		
	-3	_	\vdash	1005		 	3				╁	\dashv						\dashv					÷	Ϊ́			<u> </u>
1-	-4			-		┼-┼-	1			X	-												♦		-		
-	 	Н		1120			3	13.00			\vdash				\dashv			\dashv					$\frac{\wedge}{v}$	V			
H -	-5	Н	\vdash			╂╌╂╌	+-				\vdash		·-				$\overline{\mathbf{v}}$						♦	\	-		
	-6			1250		┼-┼-	*6				\vdash						Ž,				\vdash		Ŷ	ΙŽ			
-	-7	Ш		1350			4			•	1						X						X.	X	-	· · · · ·	
_	-8	Ц		1500		<u> </u>	17			X	 						X	X					X,	ļ			
<u> </u>	-9	Ц		1600			17			X	lacksquare				_		X	X					X				
y - ,	-10	Ц	7	1700		1	<u> 17</u>		L,	X	╙			<u> </u>			X	LX.				<u> </u>	X	<u>L_</u>	<u> </u>		
REPO	BLANK-/ RT REQUIREM	ENT	s	P.O. #	ICE INFOR	MATIO	N	1		_	June																
I. R	outine Report: I	Vieth	od	Bill To:				Total Metals: Al 😡 Sb Ba Be B Ca Cd Co 🕞 Cu) Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg																			
	ank, Surrogate	, as									_						_										Sn V Zn Hg
\/	quired		_					·IND	ICATE	STA	TE HY	DROC	ARBO	ON PI	ROCE	OURE	: AK	CA	WI	NO	RTHW	EST	ОТН	ER:			CLE ONE)
	eport Dup., MS equired	, MS	Das		OUND RE			SPE			UCTIO					,		1									
	ata Validation F	Repo	rt	24 i		48 hr.		1	*	E	TRA	Do	ttlo	is fo	r P	C ((3015	+ 7/	ahs)								
	ncludes all raw	-			ay ndard (10-15	i working	dava)	1																			
IV. C	LP Deliverable	Rep	ort	,,,	vide FAX Re		,,-,	ļ																			
V. E	DD			<u> </u>		<u>-</u>		l																			
				Re	quested Rep	ort Date																					
1.11	RELINQUISI			when	1 (h	1.6	RE#	FIVED	BY:	/ _{NT}	0 16	N)			REL	INQU	ISHE	D BY:						RE	CEIV	ED BY	:
Sign fur	Saule	Date	a/Time	4/0600	Sign	ature	<u> </u>	<u> </u>	ate/T		<u>ハ</u>		Sigi	nature)		Da	te/Tim	е		1	Signature			Date	Time	
Printed N	ame	Fim		DE-POK	Print	ed Nam	0		im	11			Prin	nted N	ame		Fi	m			\perp	Printe	d Na	me		Firm	

		/		ia Analytical Servi Receipt and Preser		PC		LOSIE
Pro	oject/Client Ancho	r- (x	necall	011)	Vork Order K24	· 89	103	
Со	oler received on 10°	12.04	and op	ened on 1000	0+ by_	DW		
1.	Were custody seals on ou		lers?	Front				Y
2	Were custody seals intact							YN
3.	Were signature and date p		e mstody s	reals?				X N
۶. 4.	Is the shipper's airbill av		•					Y
5.	COC#			, 100010 and out manifold.		·	•	1 1
•	Temperature of cooler(s) upon rec	eint: (°C)	1.2				
		(°C)	- -	1-0				
	Were samples hand delive	• •	ame day as	collection?				_ N
6.	Were custody papers prop		=					Y N
7.	Type of packing material	- 1			ts			
8.	Did all bottles arrive in							Y N
9.	Were all bottle labels com	plete (i.e ar	alysis, pres	servation, etc.)?				Y
10.	Did all bottle labels and	tags agree v	vith custody	papers?				N
11.	Were the correct types	of bottles u	sed for the	tests indicated?				Y) N
12.	Were all of the preserved	bottles rece	ived at the	lab with the appropriate	pH?			YN
13.	Were VOA vials checked	for absence	e of air bub	bles, and if present, not	ed below?			¥ N
14.	Did the bottles originate i	from CAS/K	C or a branc	h laboratory?	•			Y N
15.	Are CWA Microbiology	samples re	eceived wit	h >1/2 the 24hr. hold (ime remaining fi	rom collection?		YN
16.	Was C12/Res negative?							YN
Exp	olain any discrepancies:_							
								
_								
					· · · · · · · · · · · · · · · · · · ·	·		
RE	SOLUTION:						 	
San	nples that required preser	vation or r	eceived or	ut of temperature:				
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials	
24.0								OL MARCIAL
M	0 102104 1041	HNU3	/m/	A26032	50ml		(bu)	by coucep
								Mayor Du
 								
		1	1		1		1	

000(8

Metals

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Project Name: McCall Oil and Chemical

Sample No.	Lab Sample ID.		
MO-102104-1	K2408403-001		
MO-102104-1	K2408403-001 DISS		
MO-102104-2	K2408403-002		
MO-102104-2	K2408403-002 DISS		
MO-102104-3	K2408403-003		
MO-102104-3	K2408403-003 DISS		
MO-102104-4	K2408403-004		
MO-102104-4	K2408403-004 DISS		
MO-102104-5	K2408403-005		
MO-102104-5	K2408403-005 DISS	_	
MO-102104-6	K2408403-006		
MO-102104-6 DISS	K2408403-006 DISS		
MO-102104-6D	K2408403-006D		
MO-102104-6 DISSD	K2408403-006D DISS		
MO-102104-6S	K2408403-006S	_	
MO-102104-6 DISSS	K2408403-006S DISS		
MO-102104-7	K240B403-007		•
MO-102104-7	K2408403-007 DISS		
MO-102104-8	K2408403-008		
MO-102104-8	K2408403-008 DISS		
MO-102104-9	K2408403-009		
MO-102104-9	K2408403-009 DISS		
MO-102104-10	K2408403-010		
Were ICP interelement corrections applied?		— Yes/No	YES
		-	
Were ICP background corrections applied?		Yes/No	YES
If yes-were raw data generated before		· /··	170
application of background corrections?		Yes/No	NO
Comments: Total and Dissolved Metals			
			<u> </u>
			
	, ,		
Signature:	Date: 12/3/4		
, —			

- Cover Page INORGANIC ANALYSIS DATA PACKAGE

Client:		McCall	Oi]
Project	No.:	021062-	-02

Service Request: K2408403

Yes/No YES

Project Name: McCall Oil and Chemical

Were ICP interelement corrections applied?

Sample No.	Lab Sample ID.
MO-102104-10	K2408403-010 DISS
Method Blank	K2408403-MB

If y						
Here	ICP background corrections applied?		Yes/No	YES		
	If yes-were raw data generated before application of background corrections?	w data generated before Yes/No NO	мо			
Comm	ents: Total and Dissolved Metals		· · · · · · · · · · · · · · · · · · ·			
				 -		
				•		
• • • • • •				• • •		
signa	ature:	Date:				

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-1 MW.

Lab Code: K2408403-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	c	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	32.8		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix: WATER Units: µG/L

Basis: NA

Sample Name: MO-102104-1 100

Lab Code: K2408403-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	c	Ω
Arsenic	200.8	0.5	1	11/13/04	11/29/04	34.2		

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix: WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-2

Lab Code: K2408403-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result C	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.6	1

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-2 EX-1

Lab Code: K2408403-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.5	Ū	

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Units: µG/L

Basis: NA

Matrix:

WATER

Basis: I

Sample Name: MO-102104-3

Lab Code: K2408403-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	c	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.5	ט	

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

WATER

Units: µG/L

Basis: NA

Matrix:

Sample Name: MO-102104-3 € 1

Lab Code: K2408403-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.5	Ü	

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-4 110

Lab Code: K2408403-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	22.4		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-4 MN

Lab Code: K2408403-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	23.1		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

Units: µG/L

WATER

Basis: NA

Sample Name: MO-102104-5 My

Lab Code: K2408403-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	O	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	27.4		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102104-5 $M^{3-1/2}$

Lab Code: K2408403-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	28.2		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-6

Lab Code: K2408403-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Õ
Arsenic	200.8	0.5	1	11/13/04	11/29/04	64.6		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Sample Name: MO-102104-6 DISS

Units: µG/L

Basis: NA

Matrix:

WATER

Lab Code: K2408403-006 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	72.4		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102104-7

Lab Code: K2408403-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	2
Arsenic	200.8	0.5	1	11/13/04	11/29/04	90.0		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102104-7 ()

Lab Code: K2408403-007 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	õ
Arsenic	200.8	0.5	1	11/13/04	11/29/04	90.2		

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-8

Lab Code: K2408403-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	10.1	П	
Chromium	200.8	0.2	1	11/13/04	11/29/04	3.1		
Copper	200.8	0.1	1	11/13/04	11/29/04	3.8		

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

rioject Name: McCall Oli and Chemica.

Sample Name: MO-102104-8 10-102104-8

Units: µG/L

Basis: NA

Matrix: WATER

Lab Code: K2408403-008 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	10.3		
Chromium	200.8	0.2	1	11/13/04	11/29/04	1.0		
Copper	200.8	0.1	1	11/13/04	11/29/04	0.1	ש	

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102104-9 MW-7

Lab Code: K2408403-009

Analyte	Analysis Method	MRL	Dilution Date Date Factor Extracted Analyzed			Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	5.1	\sqcap	
Chromium	200.8	0.2	1	11/13/04	11/29/04	1.1		
Copper	200.8	0.1	1	11/13/04	11/29/04	0.1	מ	

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MO-102104-9 101

Lab Code: K2408403-009 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	ō
Arsenic	200.8	0.5	1	11/13/04	11/29/04	6.3	\vdash	
Chromium	200.8	0.2	1	11/13/04	11/29/04	1.1		
Copper	200.8	0.1	1	11/13/04	11/29/04	0.1	ט	

% Solids: 0.0

Comments: Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: MO-102104-10 MW//

Lab Code: K2408403-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	11/13/04	11/29/04	2.7		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.6		
Copper	200.8	0.1	1	11/13/04	11/29/04	2.4		

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected: 10/21/04

Project Name: McCall Oil and Chemical

Date Received: 10/22/04

Matrix:

WATER

Units: pG/L

Basis: NA

Lab Code: K2408403-010 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	1	11/13/04	11/29/04	1.5		
Chromium	200.8	0.2	1	11/13/04	11/29/04	0.5		
Copper	200.8	0.1	1	11/13/04	11/29/04	2.1		

% Solids: 0.0

Comments:

Dissolved Metals

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Date Collected:

Project Name: McCall Oil and Chemical

Date Received:

Matrix:

WATER

Units: pG/L

Basis: NA

Sample Name: Method Blank

Lab Code: K2408403-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Ω
Arsenic	200.8	0.5	1	11/13/04	11/29/04	0.5	Ū	
Chromium	200.8	0.2	1 .	11/13/04	11/29/04	0.2	Ū	
Copper	200.8	0.1	1	11/13/04	11/29/04	0.1	ט	

% Solids: 0.0

Comments:

METALS -5a-

SPIKE SAMPLE RECOVERY

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil and Chemical

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MO-102104-6 DISSS

Lab Code: K2408403-006S DISS

Analyte	Control Limit %R	Spike Result	Sample Result	С	Spike Added	&R	Q	Method
Arsenic	70 - 130	87.9	72.4		20.0	78		200.8
Chromium	70 - 130	21.9	1.0		20.0	105		200.8
Copper	70 - 130	18.4	0.1	ן ט	20.0	92		200.8

METALS - 5a -SPIKE SAMPLE RECOVERY

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil and Chemical

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MO-102104-6S

Lab Code: K2408403-006S

Analyte	Control Limit %R	Spike Result	Sample Result	Spike Added	€R	Q	Method
Arsenic	70 - 130	85.3	64.6	20.0	104		200.8
Chromium	70 - 130	21.9	1.0	20.0	105		200.8
Copper	70 - 130	18.5	0.1 0	20.0	93		200.8

-6-

DUPLICATES

Client:

Matrix:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Units: µg/L

Basis: NA

Project Name: McCall Oil and Chemical WATER

% Solids: 0.0

Sample Name:MO-102104-6 DISSD

Lab Code: K2408403-006D DISS

Analyte	Control Limit(%)	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic	20	72.4		73.1		1		200.8
Chromium		1.0		1.0		2		200.8
Copper		0.1	ט	0.1	Ū			200.8

-6-

DUPLICATES

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Units: µg/L

Project Name: McCall Oil and Chemical

Basis: NA

WATER

% Solids: 0.0

Sample Name:MO-102104-6D

Lab Code: K2408403-006D

Analyte	Control Limit(%)	Sample ((S)	C	Duplicate (D)	C	RPD	Q	Method
Arsenic	20		64.6		64.	7	0		200.8
Chromium			1.0		0.	9	4		200.8
Copper			0.1	ט	0.	1 ប			200.8

-7-

LABORATORY CONTROL SAMPLE

Client:

McCall Oil

Service Request: K2408403

Project No.: 021062-02

Project Name: McCall Oil and Chemical

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aqueou	ıs ug/L		Solid (mg/kg)						
Analyte	True	Found	8R	True	Found	C	Limits	€R		
Arsenic	20.0	20.1	101		1					
Chromium	20.0	20.1	101			T				
Copper	20.0	20.2	101							

Fuel Identification Quantification EPA Method 8015

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102104-1

MW-LO K2408403-001

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	650	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	310	L	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	66	42-124	11/03/04	Acceptable	
o-Terphenyl	87	37-141	11/03/04	Acceptable	
n-Triacontane	90	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:36:16

U:\Stealth\Crystal.rpt\Form1m.rpt

Margod

Form 1A - Organic

SuperSet Reference: RR42770

^003**9**

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102104-2

K2408403-002 EX-

Units: ug/L Basis: NA

Extraction Method: EPA 3510C

Level: Low

Analysis Method:

8015M

	•			Dilution	Date	Date	Extraction	
Analyte Name	Result	_Q_	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	-
Diesel Range Organics (DRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	ND	U	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	72	42-124	11/03/04	Acceptable	
o-Terphenyl	83	37-141	11/03/04	Acceptable	
n-Triacontane	87	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:36:19 U:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Service Request: K2408403 Date Collected: 10/21/2004

Sample Matrix:

Water

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102104-3

Units: ug/L

Lab Code:

K2408403-003

Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	270	0	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	·
4-Bromofluorobenzene	82	42-124	11/03/04	Acceptable	,
o-Terphenyl	87	37-141	11/03/04	Acceptable	
n-Triacontane	90	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:36:20

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102104-4

Lab Code:

K2408403-004

Mm-6

Units: ug/L

Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

A and to Warran	.	•	1.577.7	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	210	\mathbf{Y}	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	ND	U	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	80	42-124	11/03/04	Acceptable	
o-Terphenyl	83	37-141	11/03/04	Acceptable	
n-Triacontane	86	50-150	11/03/04	Acceptable	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102104-5

MW-12

Units: ug/L Basis: NA

Extraction Method:

K2408403-005

Level: Low

Analysis Method:

EPA 3510C 8015M

•				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	Ū	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	360	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	410	0	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	84	42-124	11/03/04	Acceptable	
o-Terphenyl	87	37-141	11/03/04	Acceptable	
n-Triacontane	90	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:36:23

U:\Stealth\Crystal.rpt\Form\lm.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR42770

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102104-6

Lab Code:

Analyte Name

K2408403-006

Result Q

ND U

160 Y

ND U

42-124

37-141

50-150

87

88

91

Units: ug/L

Extraction Method:

EPA 3510C

Basis: NA

Analysis Method:

Level: Low

KWG0416862

KWG0416862

Gasoline Range Organics (GRO)

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

4-Bromofluorobenzene

o-Terphenyl

n-Triacontane

8015M

Dilution	Date	Date	Extraction	
Factor	Extracted	Analyzed	Lot	Note
 1	10/28/04	11/03/04	KWG0416862	-

11/03/04

11/03/04

10/28/04

10/28/04

1

Acceptable

Acceptable

Acceptable

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	•	

11/03/04

11/03/04

11/03/04

MRL

100

100

250

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Date Collected: 10/21/2004

Service Request: K2408403

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102104-7

K2408403-007

Units: ug/L Basis: NA

Level: Low

Extraction Method:

EPA 3510C

Analysis Method:

8015M

			Dilution	Date	Date	Extraction	
Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
ND	U	100	1	10/28/04	11/03/04	KWG0416862	
ND	U	100	1	10/28/04	11/03/04	KWG0416862	
ND	U	250	1	10/28/04	11/03/04	KWG0416862	
	ND ND	Result Q ND U ND U ND U	ND U 100 ND U 100	Result Q MRL Factor ND U 100 1 ND U 100 1	Result Q MRL Factor Extracted ND U 100 1 10/28/04 ND U 100 1 10/28/04	Result Q MRL Factor Extracted Analyzed ND U 100 1 10/28/04 11/03/04 ND U 100 1 10/28/04 11/03/04	Result Q MRL Factor Extracted Analyzed Lot ND U 100 1 10/28/04 11/03/04 KWG0416862 ND U 100 1 10/28/04 11/03/04 KWG0416862

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	59	42-124	11/03/04	Acceptable
o-Terphenyl	79	37-141	11/03/04	Acceptable
n-Triacontane	81	50-150	11/03/04	Acceptable

Comments:

Printed: 11/08/2004 12:36:26

SuperSet Reference:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102104-8

Units: ug/L

K2408403-008

Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND	Ū	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	1300	Y	100	1	10/28/04	11/03/04	KWC0416862	
Residual Range Organics (RRO)	830	0	250	1	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	73	42-124	11/03/04	Acceptable
o-Terphenyl	85	37-141	11/03/04	Acceptable
n-Triacontane	89	50-150	11/03/04	Acceptable

Comments:

Printed: 11/08/2004 12:36:27 U:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code: MO-102104-9

K2408403-009

N. WM

Units: ug/L

Basis: NA

Extraction Method:

EPA 3510C

Analysis Method:

8015M

Level: Low

			Dilution	Date	Date	Extraction	
Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
ND	Ū	100	1	10/28/04	11/03/04	KWG0416862	
430	Y	100	1	10/28/04	11/03/04	KWG0416862	
ND	U	250	1	10/28/04	11/03/04	KWG0416862	
	ND 430	Result Q ND U 430 Y ND U	ND U 100 430 Y 100	Result Q MRL Factor ND U 100 1 430 Y 100 1	Result Q MRL Factor Extracted ND U 100 1 10/28/04 430 Y 100 1 10/28/04	Result Q MRL Factor Extracted Analyzed ND U 100 1 10/28/04 11/03/04 430 Y 100 1 10/28/04 11/03/04	Result Q MRL Factor Extracted Analyzed Lot ND U 100 1 10/28/04 11/03/04 KWG0416862 430 Y 100 1 10/28/04 11/03/04 KWG0416862

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	· .
4-Bromofluorobenzene	59	42-124	11/03/04	Acceptable	
o-Terphenyl	79	37-141	11/03/04	Acceptable	
n-Triacontane	84	50-150	11/03/04	Acceptable	

Comments:

Printed: 11/08/2004 12:36:28

SuperSet Reference:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004 Date Received: 10/22/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

MO-102104-10

K2408403-010

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND		100	1	10/28/04	11/03/04	KWG0416862	
• • • • •	-	-		1				
Diesel Range Organics (DRO)	430	Y	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	280	L	250	1 .	10/28/04	11/03/04	KWG0416862	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	80	42-124	11/03/04	Acceptable	
o-Terphenyl	82	37-141	11/03/04	Acceptable	
n-Triacontane	84	50-150	11/03/04	Acceptable	·

Comments:

Printed: 11/08/2004 12:36:30

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix: Water

Service Request: K2408403

Date Collected: NA Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name: Lab Code:

Method Blank

KWG0416862-6

Units: ug/L

Extraction Method: EPA 3510C

Basis: NA

Analysis Method:

8015M

Level: Low

		•		Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	10/28/04	11/03/04	KWG0416862	
Diesel Range Organics (DRO)	ND	U.	100	1	10/28/04	11/03/04	KWG0416862	
Residual Range Organics (RRO)	ND	U	250	1	10/28/04	11/03/04	KWG0416862	•

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	86	42-124	11/03/04	Acceptable
o-Terphenyl	93	37-141	11/03/04	Acceptable
n-Triacontane	97	50-150	11/03/04	Acceptable

Comments:

Printed: 11/08/2004 12:36:31

U:\Steakh\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 1 of 1

QA/QC Report

Client:

McCall Oil

McCall Oil and Chemical/021062-02

Project: Sample Matrix:

Water

Service Request: K2408403

Surrogate Recovery Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: Analysis Method:

EPA 3510C

8015M

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
MO-102104-1	K2408403-001	66	87	90
MO-102104-2	K2408403-002	72	83	87
MO-102104-3	K2408403-003	82	87	90
MO-102104-4	K2408403-004	80	83	86
MO-102104-5	K2408403-005	84	87	90
MO-102104-6	K2408403-006	87	88	91
MO-102104-7	K2408403-007	59	79	81
MO-102104-8	K2408403-008	73	85	89
MO-102104-9	K2408403-009	59	79	84
MO-102104-10	K2408403-010	80	82	84
Method Blank	KWG0416862-6	86	93	97
MO-102104-6MS	KWG0416862-1	56	84	91
Lab Control Sample	KWG0416862-5	83	87	91
Duplicate Lab Control Sample	KWG0416862-7	87	88	91

Surrogate Recovery Control Limits (%)

Surl =	4-Bromofluorobenzene	42-124
Sur2 =	o-Terphenyl	37-141
Sur3 =	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/08/2004 12:36:36 U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

20050

SuperSet Reference:

RR42770

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Extracted: 10/28/2004

Date Analyzed: 11/03/2004

Matrix Spike Summary

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-102104-6

Lab Code:

K2408403-006

Extraction Method: Analysis Method:

EPA 3510C

8015M

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0416862

MO-102104-6MS

KWG0416862-1

•	Sample	mple Matrix Spike						
Analyte Name	Result	Result	Expected	%Rec	%Rec Limits			
Diesel Range Organics (DRO)	160	3240	3200	96	54-161			
Residual Range Organics (RRO)	ND	1780	1600	112	70-130			

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable. Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00051

Printed: 11/08/2004 12:36:39 U:\Stealth\Crystal.rpt\Form3MS.rpt

Form 3A - Organic

1 of 1 Page

SuperSet Reference:

RR42770

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Extracted: 10/28/2004 Date Analyzed: 11/03/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method:

EPA 3510C

Analysis Method:

8015M

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0416862

Lab Control Sample KWG0416862-5

Duplicate Lab Control Sample

KWG0416862-7

Lab Control Spike **Duplicate Lab Control Spike** %Rec **RPD Analyte Name** %Rec %Rec Limits RPD Limit Result **Expected** Result Expected Diesel Range Organics (DRO) 3800 3200 119 3780 3200 118 71-146 0 30 Residual Range Organics (RRO) 1740 1600 1600 109 1710 107 53-143 2 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/08/2004 12:36:42 U:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

RR42770

Volatile Organic Compounds EPA Method 8260B

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Service Request: K2408403

Date Collected: 10/21/2004 Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-1 K2408403-001

MM-10

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method: 8260B

Trichloroethene (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Dibromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 20 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360					Dilution	Date	Date	Extraction	
Chloromethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Vinyl Chloride	Dichlorodifluoromethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromomethane		ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Chloroethane	Vinyl Chloride	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Trichlorofluoromethane		ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Acetone				0.50	1	11/01/04	11/01/04	KWG0417360	
1,1-Dichloroethene ND U 0,50 1 11/01/04 11/01/04 KWG0417360 Carbon Disulfide ND U 0,50 1 11/01/04 11/01/04 KWG0417360 Methylene Chloride ND U 2.0 1 11/01/04 11/01/04 KWG0417360 Tanas-1,2-Dichloroethene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Dichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Butanone (MEK) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromochloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Trichloropropene ND U 0.50	Trichlorofluoromethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Carbon Disulfide			-		1	11/01/04		KWG0417360	
Methylene Chloride ND U 2.0 1 11/01/04 11/01/04 KWG0417360 trans-1,2-Dichloroethene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Dichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Butanone (MEK) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Brothoroethene 0.69 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,2-Dichloroethene 0.69 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-1-Tichloroethane (TCA) ND U 0.50					_				
trans-1,2-Dichloroethene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Dichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Butanone (MEK) ND U 20 1 11/01/04 11/01/04 KWG0417360 2,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,2-Dichloroethene 0.69 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane (TCA) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane (TCA) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroformethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Chlorofo	Carbon Disulfide	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,1-Dichloroethane					1				
2-Butanone (MEK) ND U 20 1 11/01/04 11/01/04 KWG0417360 2,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,2-Dichloroethene 0.69 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromochloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,1-Trichloroethane (TCA) ND U 0.50 1 11/01/04 KWG0417360 1,1-Dichloropropene ND U 0.50 1 11/01/04 KWG0417360 1,1-Dichloropropene ND U 0.50 1 11/01/04 KWG0417360 1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 KWG0417360 1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 KWG0417360 Cricon Tetrachloride ND U 0.50 1 11/01/04 KWG0417360 1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethene (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethene (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 CHexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 CHexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360	•	ND	_		. 1	11/01/04			
2,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,2-Dichloroethene 0.69 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromochloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Trichloroethane (TCA) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Carbon Tetrachloride ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Carbon Tetrachloride ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethane (TCE) 1.7		ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
cis-1,2-Dichloroethene 0.69 0.50 1 11/01/04 11/01/04 KWG0417360 Chloroform ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromochloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Trichloroethane (TCA) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Carbon Tetrachloride ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethane (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Dibromodichloromethane <td< td=""><td></td><td>ND</td><td>U</td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>		ND	U		1				
Chloroform			U		1				
Bromochloromethane	cis-1,2-Dichloroethene	0.69		0.50	1	11/01/04	11/01/04	KWG0417360	
1,1,1-Trichloroethane (TCA) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Carbon Tetrachloride ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethene (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Dibromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND					1				
1,1-Dichloropropene			_	0.50	1	11/01/04	11/01/04	KWG0417360	
Carbon Tetrachloride ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethene (TCE) 1,7 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50	1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dichloroethane (EDC) ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Benzene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Trichloroethene (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Dibromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 <td></td> <td>ND</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		ND			1				
Benzene			_	0.50	1	11/01/04		KWG0417360	
Trichloroethene (TCE) 1.7 0.50 1 11/01/04 11/01/04 KWG0417360 1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Dibromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360	1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Bromodichloromethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Dibromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 0.50 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360	Benzene		U		1			-	
Bromodichloromethane					1	11/01/04		KWG0417360	
Dibromomethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 2-Hexanone ND U 20 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360	1,2-Dichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
2-Hexanone ND U 20 1 11/01/04 11/01/04 KWG0417360 cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360	Bromodichloromethane		_		1				
cis-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360		ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Toluene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 KWG0417360	2-Hexanone	ND	U	20	1	11/01/04	11/01/04	KWG0417360	
trans-1,3-Dichloropropene ND U 0.50 1 11/01/04 11/01/04 KWG0417360 1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360	cis-1,3-Dichloropropene			0.50	1			KWG0417360	
1,1,2-Trichloroethane ND U 0.50 1 11/01/04 11/01/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360				0.50	1			KWG0417360	
4-Methyl-2-pentanone (MIBK) ND U 20 1 11/01/04 11/01/04 KWG0417360		ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
	1,1,2-Trichloroethane		_		1				
1,3-Dichloropropane ND U 0.50 1 11/01/04 11/01/04 KWG0417360			-		1				
	1,3-Dichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	

 $000\overline{54}$

Printed: 11/11/2004 10:38:20 U:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

K2408403-001 MW

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Dibromochloromethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
Chlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Ethylbenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
m,p-Xylenes	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
o-Xylene	ND		0.50 .	1	11/01/04	11/01/04	KWG0417360	
Styrene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromoform	ND	Ū	0.50	1	11/01/04	11/01/04	KWG0417360	
Isopropylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2,3-Trichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromobenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
n-Propylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
2-Chlorotoluene	ND	Ü	2.0	1	11/01/04	11/01/04	KWG0417360	
4-Chlorotoluene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
tert-Butylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
sec-Butylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,3-Dichlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
4-Isopropyltoluene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
n-Butylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,2-Dichlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,2,3-Trichlorobenzene	ND	U	2.0	. 1	11/01/04	11/01/04	KWG0417360	
Naphthalene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
Hexachlorobutadiene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	

_		
Comm	ents:	

Analytical Results

Client:

McCall Oil

McCall Oil and Chemical/021062-02

Project: McCal Sample Matrix: Water Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code: MO-102104-1

K2408403-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	94	85-115	11/01/04	Acceptable	
Toluene-d8	96	86-114	.11/01/04	Acceptable	
4-Bromofluorobenzene	98	72-115	11/01/04	Acceptable	

Comments:

Printed: 11/11/2004 10:38:20 U:\Stealth\Crystal.rpt\Formlm.rpt

3.20

Form 1A - Organic

00056 Page 3 of 3

rSet Reference: RR42917

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004 Date Received: 10/22/2004

Volatile Organic Compounds

Dilution

Date

Date

Sample Name: Lab Code:

K2408403-004 MW-6

Units: ug/L Basis: NA

Level: Low

Extraction

Analysis Method:	8260B
Analyte Name	
Dichlorodifluorometh	ane

Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Chloromethane	ND	U	2,5	5	11/02/04	11/02/04	KWG0417360	
Vinyl Chloride	14	D	2.5	5	11/02/04	11/02/04	KWG0417360	
Bromomethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Chloroethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Trichlorofluoromethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Acetone	ND	U	100	5	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethene	3.4	D	2.5	5	11/02/04	11/02/04	KWG0417360	
Carbon Disulfide	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Methylene Chloride	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
trans-1,2-Dichloroethene	4.4	D	2.5	5	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethane	3.8	D	2.5	5	11/02/04	11/02/04	KWG0417360	
2-Butanone (MEK)	ND	U	100	5	11/02/04	11/02/04	KWG0417360	
2,2-Dichloropropane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
cis-1,2-Dichloroethene	780	D	25	50 .	11/02/04	11/02/04	KWG0417360	
Chloroform	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	.
Bromochloromethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
1,1,1-Trichloroethane (TCA)	6.4	D	2.5	5	11/02/04	11/02/04	KWG0417360	
1,1-Dichloropropene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Carbon Tetrachloride	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
1,2-Dichloroethane (EDC)	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Benzene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Trichloroethene (TCE)		D	2.5	5	11/02/04	11/02/04	KWG0417360	
1,2-Dichloropropane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Bromodichloromethane	ND	Ū	2.5	5	11/02/04	11/02/04	KWG0417360	
Dibromomethane	ND	Ü	2.5	5	11/02/04	11/02/04	KWG0417360	
2-Hexanone	ND	U	100	5	11/02/04	11/02/04	KWG0417360	
cis-1,3-Dichloropropene	ND	Ū	2.5	5	11/02/04	11/02/04	KWG0417360	
Toluene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
trans-1,3-Dichloropropene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
1,1,2-Trichloroethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
4-Methyl-2-pentanone (MIBK)	ND	U	100	5	11/02/04	11/02/04	KWG0417360	
1,3-Dichloropropane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name:

Lab Code:

MO-102104-4 PNW (

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

			,	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	62	D	2.5	5	11/02/04	11/02/04	KWG0417360	
Dibromochloromethane	ND		2.5	5	11/02/04	11/02/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
Chlorobenzene	ND		2.5	5	11/02/04	11/02/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND		2.5	5	11/02/04	11/02/04	KWG0417360	
Ethylbenzene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	_
m,p-Xylenes	ND		2.5	5	11/02/04	11/02/04	KWG0417360	
o-Xylene	ND		2.5	5	11/02/04	11/02/04	KWG0417360	
Styrene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Bromoform	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
Isopropylbenzene	ND		10	5	11/02/04	11/02/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichloropropane	ND		2,5	5	11/02/04	11/02/04	KWG0417360	
Bromobenzene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
n-Propylbenzene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
2-Chlorotoluene	ND		10	5	11/02/04	11/02/04	KWG0417360	
4-Chlorotoluene	ND		10	5	11/02/04	11/02/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
tert-Butylbenzene	ND		10	5	11/02/04	11/02/04	KWG0417360	
1,2,4-Trimethylbenzene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
sec-Butylbenzene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
1,3-Dichlorobenzene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
4-Isopropyltoluene	ND		10	5	11/02/04	11/02/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	2.5	5	11/02/04	11/02/04	KWG0417360	
n-Butylbenzene	ND	-	10	5	11/02/04	11/02/04	KWG0417360	
1,2-Dichlorobenzene	ND		2.5	5	11/02/04	11/02/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
1,2,4-Trichlorobenzene	ND		10	5	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichlorobenzene	ND		10	5	11/02/04	11/02/04	KWG0417360	
Naphthalene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
Hexachlorobutadiene	ND	U	10	5	11/02/04	11/02/04	KWG0417360	
			•					

SuperSet Reference: RR42917

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-4

K2408403-004

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	96	85-115	11/02/04	Acceptable	
Toluene-d8	98	86-114	11/02/04	Acceptable	
4-Bromofluorobenzene	97	72-115	11/02/04	Acceptable	

Comments:

00059 Page 3 of 3

Analytical Results

Client:

McCall Oil

Project:

Sample Matrix: Water

McCall Oil and Chemical/021062-02

Service Request: K2408403 Date Collected: 10/21/2004 Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name:

Lab Code:

MO-102104-8

K2408403-008

Units: ug/L Basis: NA

Level: Low

Extraction Method: EPA 5030B Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	Ū	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Vinyl Chloride	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromomethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Trichlorofluoromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Acetone	ND	U	20	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
Carbon Disulfide	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Methylene Chloride	ND	บ	2.0	. 1	11/02/04	11/02/04	KWG0417360	
trans-1,2-Dichloroethene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
2-Butanone (MEK)	ND	Ū	20	1	11/02/04	11/02/04	KWG0417360	
2,2-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
cis-1,2-Dichloroethene	1.2		0.50	1	11/02/04	11/02/04	KWG0417360	
Chloroform	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromochloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	*
Carbon Tetrachloride	ND	U	0,50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Benzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Trichloroethene (TCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromodichloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Dibromomethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
2-Hexanone	ND	U	20	1	11/02/04	11/02/04	KWG0417360	
cis-1,3-Dichloropropene	ND	ับ	0.50	1	11/02/04	11/02/04	KWG0417360	
Toluene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,2-Trichloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	11/02/04	11/02/04	KWG0417360	
1,3-Dichloropropane	ND	U	0.50	I	11/02/04	11/02/04	KWG0417360.	

Comments:

00060 Page 1 of 3

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-8

K2408403-008

Units: ug/L Basis: NA

Level: Low

Extraction Method: EPA 5030B Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Dibromochloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	2.0	1 -	11/02/04	11/02/04	KWG0417360	
Chlorobenzene	ND	บ	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Ethylbenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
m,p-Xylenes	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
o-Xylene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
Styrene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromoform	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Isopropylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichloropropane	ND	_	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromobenzene	ND	U	2.0	. 1	11/02/04	11/02/04	KWG0417360	
n-Propylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
2-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
4-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
tert-Butylbenzene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trimethylbenzene		U	2.0	1 .	11/02/04	11/02/04	KWG0417360	
sec-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3-Dichlorobenzene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
4-Isopropyltoluene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
n-Butylbenzene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichlorobenzene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trichlorobenzene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichlorobenzene		U	2.0	1	11/02/04	11/02/04	KWG0417360	
Naphthalene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Hexachlorobutadiene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix: Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-8

K2408403-008

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	95	85-115	11/02/04	Acceptable
Toluene-d8	98	86-114	11/02/04	Acceptable
4-Bromofluorobenzene	100	72-115	11/02/04	Acceptable

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-9

K2408403-009

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Dilution Date Date Extraction **Analyte Name** Result O MRL **Factor** Extracted Analyzed Lot Note KWG0417360 Dichlorodifluoromethane ND U 11/02/04 0.50 1 11/02/04 KWG0417360 Chloromethane ND U 0.50 11/02/04 11/02/04 1 KWG0417360 Vinyl Chloride 0,50 11/02/04 11/02/04 0.78 1 KWG0417360 **Bromomethane** 11/02/04 ND U 0.50 1 11/02/04 Chloroethane KWG0417360 ND U 0.50 1 11/02/04 11/02/04 Trichlorofluoromethane ND U 11/02/04 11/02/04 KWG0417360 0.50 1 11/02/04 KWG0417360 Acetone ND U 20 1 11/02/04 1,1-Dichloroethene ND U 0.50 1 11/02/04 11/02/04 KWG0417360 Carbon Disulfide ND U 0.50 1 11/02/04 11/02/04 KWG0417360 Methylene Chloride 11/02/04 KWG0417360 ND II 2.0 1 11/02/04 ND U trans-1,2-Dichloroethene 11/02/04 KWG0417360 0.50 11/02/04 1 1,1-Dichloroethane KWG0417360 ND U 0.50 1 11/02/04 11/02/04 2-Butanone (MEK) KWG0417360 ND U 20 1 11/02/04 11/02/04 2,2-Dichloropropane ND U 11/02/04 KWG0417360 0.50 1 11/02/04 cis-1,2-Dichloroethene 3.2 0.50 11/02/04 KWG0417360 1 11/02/04 ND U KWG0417360 Chloroform 0.50 ī 11/02/04 11/02/04 Bromochloromethane ND U 0.50 1 11/02/04 11/02/04 KWG0417360 1,1,1-Trichloroethane (TCA) ND U 0.50 1 11/02/04 11/02/04 KWG0417360 1.1-Dichloropropene KWG0417360 ND U 0.50 1 11/02/04 11/02/04 KWG0417360 Carbon Tetrachloride 0.50 11/02/04 ND U 1 11/02/04 1,2-Dichloroethane (EDC) KWG0417360 11/02/04 11/02/04 ND U 0.50 1 Benzene 11/02/04 KWG0417360 ND U 0.50 1 11/02/04 Trichloroethene (TCE) KWG0417360 ND U 0.50 1 11/02/04 11/02/04 1.2-Dichloropropane 0.50 11/02/04 KWG0417360 ND U 1 11/02/04 Bromodichloromethane 11/02/04 KWG0417360 ND U 0.50 1 11/02/04 Dibromomethane KWG0417360 ND U 0.50 1 11/02/04 11/02/04 2-Hexanone 11/02/04 KWG0417360 ND U 20 1 11/02/04 11/02/04 cis-1,3-Dichloropropene ND U 0.50 1 11/02/04 KWG0417360 Toluene 11/02/04 KWG0417360 ND U 0.50 1 11/02/04 trans-1,3-Dichloropropene ND U 0.50 11/02/04 11/02/04 KWG0417360 1 1,1,2-Trichloroethane ND U 0.50 ī 11/02/04 11/02/04 KWG0417360 4-Methyl-2-pentanone (MIBK) ND U 20 11/02/04 11/02/04 KWG0417360 1

Comments:

1,3-Dichloropropane

00063

ND U

0.50

KWG0417360

11/02/04

1

11/02/04

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-9 K2408403-009

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Dibromochloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Chlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Ethylbenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
m,p-Xylenes	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
o-Xylene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Styrene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromoform	ND	U	0.50	ì	11/02/04	11/02/04	KWG0417360	
Isopropylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
n-Propylbenzene	ND	U	2.0	. 1	11/02/04	11/02/04	KWG0417360	
2-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
4-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
tert-Butylbenzene	ND	U	2.0	. 1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trimethylbenzene	ND	_	2.0	1	11/02/04	11/02/04	KWG0417360	
sec-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
4-Isopropyltoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
n-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichlorobenzene	ND	_	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Naphthalene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Hexachlorobutadiene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	

Comments:

00064

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Collected: 10/21/2004 **Date Received:** 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code: MO-102104-9

K2408403-009

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	96	85-115	11/02/04	Acceptable	•
Toluene-d8	98	86-114	11/02/04	Acceptable	
4-Bromofluorobenzene	100	72-115	11/02/04	Acceptable	

Comments:

00065

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Service Request: K2408403 **Date Collected: 10/21/2004**

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-10

K2408403-010

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Vinyl Chloride	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromomethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Trichlorofluoromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Acetone	ND	U	20	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Carbon Disulfide	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Methylene Chloride	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
trans-1,2-Dichloroethene	ND	U	0,50	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
2-Butanone (MEK)	ND	บ	20	1	11/02/04	11/02/04	KWG0417360	
2,2-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
cis-1,2-Dichloroethene	1.0		0.50	1	11/02/04	11/02/04	KWG0417360	
Chloroform	ND	บ	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromochloromethane	ND	-	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1-Trichloroethane (TCA)	ND.	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Carbon Tetrachloride		U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Benzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Trichloroethene (TCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromodichloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Dibromomethane		U	0.50	1	11/02/04	11/02/04	KWG0417360	
2-Hexanone	ND	U	20	1	11/02/04	11/02/04	KWG0417360	
cis-1,3-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Toluene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,2-Trichloroethane	ND	_	0,50	1	11/02/04	11/02/04	KWG0417360	
4-Methyl-2-pentanone (MIBK)	ND		20	1	11/02/04	11/02/04	KWG0417360	
1,3-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	

Comments:

Printed: 11/11/2004 10:38:30

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

00066

SuperSet Reference:

Page 1 of 3 RR42917

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-10

K2408403-010

MW-14

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

EXILECTION MISMON:	CLW JOS
Analysis Method:	8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Dibromochloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Chlorobenzene	ND	υ	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Ethylbenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
m,p-Xylenes	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
o-Xylene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Styrene	ND	U	0,50	1	11/02/04	11/02/04	KWG0417360	
Bromoform	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Isopropylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
n-Propylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
2-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
4-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
tert-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trimethylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
sec-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
4-Isopropyltoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
n-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trichlorobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Naphthalene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Hexachlorobutadiene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-102104-10

K2408403-010

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	95	85-115	11/02/04	Acceptable
Toluene-d8	96	86-114	11/02/04	Acceptable
4-Bromofluorobenzene	99	72-115	11/02/04	Acceptable

Comments:

Printed: 11/11/2004 10:38:30 U:\Stealth\Crystal.rpt\Formlm.rpt

Form 1A - Organic

00068

3 of 3

SuperSet Reference: RR42917

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

Trip Blanks K2408403-011

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Vinyl Chloride	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromomethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Trichlorofluoromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Acetone	ND	-	20	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
Carbon Disulfide	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Methylene Chloride	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
trans-1,2-Dichloroethene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
2-Butanone (MEK)	ND		20	1	11/02/04	11/02/04	KWG0417360	
2,2-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Chloroform	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromochloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Carbon Tetrachloride	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Benzene		_	0.50	. 1	11/02/04	11/02/04	KWG0417360	
Trichloroethene (TCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromodichloromethane	ND		0.50	1	11/02/04	11/02/04	KWG0417360	-
Dibromomethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	•
2-Hexanone	ND	U	20	1	11/02/04	11/02/04	KWG0417360	
cis-1,3-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Toluene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,2-Trichloroethane	ND		0.50	1	11/02/04	11/02/04	KWG0417360	_
4-Methyl-2-pentanone (MIBK)		U	20	1	11/02/04	11/02/04	KWG0417360	
1,3-Dichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	

Comments:

Printed: 11/11/2004 10:38:33 U:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Page 1 of 3

SuperSet Reference:

RR42917

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name:

Trip Blanks

Lab Code:

K2408403-011

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q_	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Dibromochloromethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Chlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
Ethylbenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
m,p-Xylenes	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
o-Xylene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
Styrene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromoform	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Isopropylbenzene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichloropropane	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
Bromobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
n-Propylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
2-Chlorotoluene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
4-Chlorotoluene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	บ_	2.0	_1	11/02/04	11/02/04	KWG0417360	
tert-Butylbenzene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,2,4-Trimethylbenzene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
sec-Butylbenzene	ND	U_	2.0	_1	11/02/04	11/02/04	KWG0417360	
1,3-Dichlorobenzene	ND		0.50	1	11/02/04	11/02/04	KWG0417360	
4-Isopropyltoluene	ND		2.0	1	11/02/04	11/02/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
n-Butylbenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
1,2-Dichlorobenzene	ND	U	0.50	1	11/02/04	11/02/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	,
1,2,4-Trichlorobenzene	ND	บ	2,0	1	11/02/04	11/02/04	KWG0417360	
1,2,3-Trichlorobenzene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Naphthalene ·	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	
Hexachlorobutadiene	ND	U	2.0	1	11/02/04	11/02/04	KWG0417360	

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Volatile Organic Compounds

Sample Name: Lab Code:

Trip Blanks

K2408403-011

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	96	85-115	11/02/04	Acceptable	
Toluene-d8	98	86-114	11/02/04	Acceptable	
4-Bromofluorobenzene	97	72-115	11/02/04	Acceptable	•

Comments:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

trix: Water

Service Request: K2408403

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank KWG0417360-4

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	Ū	0.50	1	11/01/04	11/01/04	KWG0417360	
Chloromethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Vinyl Chloride	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	•
Bromomethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Chloroethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Trichlorofluoromethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Acetone	ND		20	1	11/01/04	11/01/04	KWG0417360	
1,1-Dichloroethene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Carbon Disulfide	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Methylene Chloride	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
trans-1,2-Dichloroethene	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
1,1-Dichloroethane	ND	U	0.50	1 '	11/01/04	11/01/04	KWG0417360	
2-Butanone (MEK)	ND	-	20	1	11/01/04	11/01/04	KWG0417360	
2,2-Dichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
cis-1,2-Dichloroethene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Chloroform	ND	-	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromochloromethane	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
1,1,1-Trichloroethane (TCA)	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
1,1-Dichloropropene	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
Carbon Tetrachloride	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Benzene	ND	_	0.50	1	11/01/04	11/01/04	KWG0417360	
Trichloroethene (TCE)	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromodichloromethane	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
Dibromomethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
2-Hexanone	ND	U	20	1	11/01/04	11/01/04	KWG0417360	
cis-1,3-Dichloropropene	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
Toluene	ND		0.50	1 .	11/01/04	11/01/04	KWG0417360	
trans-1,3-Dichloropropene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,1,2-Trichloroethane	ND	_	0.50	1	11/01/04	11/01/04	KWG0417360	
4-Methyl-2-pentanone (MIBK)	ND	_	20	1	11/01/04	11/01/04	KWG0417360	
1,3-Dichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	

Comments:

00072

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0417360-4

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Dibromochloromethane	ND	U	0,50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dibromoethane (EDB)	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
Chlorobenzene	ND	U	0,50	1	11/01/04	11/01/04	KWG0417360	
1,1,1,2-Tetrachloroethane	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
Ethylbenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
m,p-Xylenes	ND	_	0.50	1	11/01/04	11/01/04	KWG0417360	
o-Xylene	ND		0.50	1	11/01/04	11/01/04	KWG0417360	
Styrene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromoform	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Isopropylbenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2,3-Trichloropropane	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
Bromobenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
n-Propylbenzene	_ ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
2-Chlorotoluene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
4-Chlorotoluene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,3,5-Trimethylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
tert-Butylbenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
1,2,4-Trimethylbenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
sec-Butylbenzene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,3-Dichlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
4-Isopropyltoluene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
1,4-Dichlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
n-Butylbenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
1,2-Dichlorobenzene	ND	U	0.50	1	11/01/04	11/01/04	KWG0417360	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
1,2,4-Trichlorobenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
1,2,3-Trichlorobenzene	ND		2.0	1	11/01/04	11/01/04	KWG0417360	
	, ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	
Hexachlorobutadiene	ND	U	2.0	1	11/01/04	11/01/04	KWG0417360	

Comments:

Printed: 11/11/2004 10:38:35 U:\Stealth\Crystal.rpt\Form.lm.rpt

Marged

Form 1A - Organic

SuperSet Reference: RR42917

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

KWG0417360-4

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note .	
Dibromofluoromethane	97	85-115	11/01/04	Acceptable	
Toluene-d8	100	86-114	11/01/04	Acceptable	
4-Bromofluorobenzene	98	72-115	11/01/04	Acceptable	

Comments:

Printed: 11/11/2004 10:38:35

U:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

00074

SuperSet Reference: RR42917

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
MO-102104-1	K2408403-001	94	96	98
MO-102104-4	K2408403-004	96	98	97
MO-102104-8	K2408403-008	95	98	100
MO-102104-9	K2408403-009	96	98	100
MO-102104-10	K2408403-010	95	96	99
Trip Blanks	K2408403-011	96	98	97
Method Blank	KWG0417360-4	97	100	98
MO-102104-4MS	KWG0417360-1	98	99	101
MO-102104-4DMS	KWG0417360-2	96	100	100
Lab Control Sample	KWG0417360-3	96	101	102

Surrogate Recovery Control Limits (%)

Surl =	Dibromofluoromethane	85-115
Sur2 =	Toluene-d8	86-114
Sur3 =	4-Bromofluorobenzene	72-115

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/11/2004 10:38:41 U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

McCall Oil

Project:

Sample Matrix: Water

McCall Oil and Chemical/021062-02

Date Extracted: 11/02/2004

Service Request: K2408403

Date Analyzed: 11/02/2004

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

MO-102104-4

Lab Code:

K2408403-004

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Extraction Lot: KWG0417360

MO-102104-4MS KWG0417360-1

MO-102104-4DMS KWG0417360-2

	Sample		Matrix Spike		Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec			
1,1-Dichloroethene	3.4	538	500	107	536	500	106	66-147	0	30
Benzene	ND	493	500	99	497	500	99	81-130	1	30
Trichloroethene (TCE)	55	556	500	100	550	500	99	63-138	1	30
Toluene	ND	479	500	96	488	500	98	76-130	2	30
Chlorobenzene	ND	460	500	92	451	500	90	77-123	2	30
1,2-Dichlorobenzene	ND	463	500	93	504	500	101	73-125	9	30
Naphthalene	ND	464	500	93	496	500	99	54-160	7	30

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00076

Printed: 11/11/2004 10:38:45 U:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of 1

SuperSet Reference: RR42917

QA/QC Report

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Date Extracted: 11/01/2004

Service Request: K2408403

Date Analyzed: 11/01/2004

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG0417360

Lab Control Sample KWG0417360-3 Lab Control Spike

	Lab	Control Spik	<u> </u>	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Dichlorodifluoromethane	10.7	10.0	107	52-179
Chloromethane	9.84	10.0	98	58-129
Vinyl Chloride	9.85	10.0	99	74-138
Bromomethane	11.2	10.0	112	48-140
Chloroethane	9.78	10.0	98	66-126
Trichlorofluoromethane	8.60	10.0	86	69-129
Acetone	50.0	50.0	100	68-140
1,1-Dichloroethene	10.5	10.0	105	76-128
Carbon Disulfide	17.3	20.0	87	69-147
Methylene Chloride	9.56	10.0	96	75-119
trans-1,2-Dichloroethene	10.1	10.0	101	79-118
1,1-Dichloroethane	9.41	10.0	94	76-120
2-Butanone (MEK)	48.3	50.0	97	75-129
2,2-Dichloropropane	11.0	10.0	110	60-142
cis-1,2-Dichloroethene	10.2	10.0	102	81-119
Chloroform	9.38	10.0	94	80-120
Bromochloromethane	9.45	10.0	95	79-125
1,1,1-Trichloroethane (TCA)	9.85	10.0	99	80-127
1,1-Dichloropropene	9.95	10.0	100	79-128
Carbon Tetrachloride	10.2	10.0	102	76-137
1,2-Dichloroethane (EDC)	9.35	10.0	94	76-125
Benzene	9.86	10.0	99	87-122
Trichloroethene (TCE)	9.97	10.0	100	82-124
1,2-Dichloropropane	9.36	10.0	94	80-117
Bromodichloromethane	9.89	10.0	99	81-120
Dibromomethane	9.55	10.0	96	81-121
2-Hexanone	50.4	50.0	101	65-135
cis-1,3-Dichloropropene	10.8	10.0	108	82-126
Toluene	9.70	10.0	97	84-120
trans-1,3-Dichloropropene	9.66	10.0	97	76-116
1,1,2-Trichloroethane	9.91	10.0	99	80-120
4-Methyl-2-pentanone (MIBK)	51.1	50.0	102	69-134
1,3-Dichloropropane	10.2	10.0	102	82-119
Tetrachloroethene (PCE)	9.83	10.0	98	79-123
Dibromochloromethane	9.76	10.0	98	78-121

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/11/2004 10:38:48 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 2

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Extracted: 11/01/2004

Date Analyzed: 11/01/2004

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG0417360

Lab Control Sample KWG0417360-3

	Lab	Control Spik	£	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
1,2-Dibromoethane (EDB)	9.55	10.0	96	78-121	_
Chlorobenzene	9.21	10.0	92	85-114	
1,1,1,2-Tetrachloroethane	9.86	10.0	99	85-122	
Ethylbenzene	10.1	10.0	101	89-124	
m,p-Xylenes	20.2	20.0	101	89-126	
o-Xylene	10.7	10.0	107	86-129	
Styrene	10.5	10.0	105	90-130	
Bromoform	10.2	10.0	102	80-126	
Isopropylbenzene	9.19	10.0	92	76-127	•
1,1,2,2-Tetrachloroethane	10.3	10.0	103	66-127	
1,2,3-Trichloropropane	10.3	10.0	103	76-125	
Bromobenzene	10.5	10.0	105	84-121	
n-Propylbenzene	9.97	10.0	100	83-134	
2-Chlorotoluene	10.7	10.0	107	81-131	
4-Chlorotoluene	9.84	10.0	98	80-129	
1,3,5-Trimethylbenzene	10.2	10.0	102	85-131	
tert-Butylbenzene	9.84	10.0	98	81-132	
1,2,4-Trimethylbenzene	9.54	10.0	95	86-138	
sec-Butylbenzene	9.54	10.0	95	82-137	
1,3-Dichlorobenzene	10.2	10.0	102	85-119	
4-Isopropyltoluene	9.30	10.0	93	78-131	
1,4-Dichlorobenzene	9.17	10.0	92	83-116	
n-Butylbenzene	9.73	10.0	97	73-138	
1,2-Dichlorobenzene	9.98	10.0	100	82-117	
1,2-Dibromo-3-chloropropane	10.7	10.0	107	66-123	
1,2,4-Trichlorobenzene	10.7	10.0	107	74-136	
1,2,3-Trichlorobenzene	10.6	10.0	106	72-137	
Naphthalene	10.1	10.0	101	64-145	
Hexachlorobutadiene	9.67	10.0	97	75-130	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00078

Semi-Volatile Organic Compounds EPA Method 8270C

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004 Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-6 K2408403-006

Units: ug/L Basis: NA

Level: Low

Extraction N	lethod:	EPA	3520
Analysis Me	thod:	8270	С

				•	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	0.037	J	0.20	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	0.021	J	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	U	0.20	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	0.032	J	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.20	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.20	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND	U	0.20	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	73	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	64	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	75	36-107	11/24/04	Acceptable	
Terphenyl-d14	99	38-148	11/24/04	Acceptable	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: MO-102104-6

K2408403-006 ·

Units: ug/L Basis: NA

Analyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

00081

rinted: 11/30/2004 10:56:07

:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR43513

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004 Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-7

K2408403-007

Units: ug/L Basis: NA

Extraction Method:

EPA 3520

Level: Low

Analysis Method: 8270C

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.19	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	ND	U	0.19	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.19	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	0.016	J	0.19	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.19	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	U	0.19	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	0.030	J	0.19	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.19	0.026	· 1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.19	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.19	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.19	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.19	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.19	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.19	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.19	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND	U	0.19	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	80	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	84	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	78	36-107	11/24/04	Acceptable	
Terphenyl-d14	92	38-148	11/24/04	Acceptable	

Comments:

Merged

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-7 K2408403-007 Units: ug/L Basis: NA

Analyte Comments

I-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

rinted: 11/30/2004 10:56:13

:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR43513

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: MO-102104-8 K2408403-008 g.um

Units: ug/L Basis: NA

Extraction Method: Analysis Method:

EPA 3520 8270C Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND	U	0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	0.019	J	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	0.21		0.20	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	0.22		0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	0.22		0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	0.048	J	0.20	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	0.079	J	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.20	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.20	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND	U	0.20	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	78	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	76	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	78	36-107	11/24/04	Acceptable	
Terphenyl-d14	50	38-148	11/24/04	Acceptable	

Comments:

10084

Printed: 11/30/2004 10:56:17

 $U: \label{lem:condition} U: \label{lem:condi$

Merged

Form 1A - Organic

Page 1 of 2

SuperSet Reference: RR43513

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004 Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-8 K2408403-008 Units: ug/L Basis: NA

Analyte Comments

i-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

rinted: 11/30/2004 10:56:17 $: \label{lem:condition} $$ \S tealth \Crystal.rpt \Form \Im.rpt $$$

Merged

Form 1A - Organic

2 of 2 Page

RR43513 SuperSet Reference:

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-9 K2408403-009

Units: ug/L Basis: NA

Extraction Method: Analysis Method:

Benzo(g,h,i)perylene

EPA 3520 8270C

Level: Low

Analyte Name	Result	O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND		0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND		0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND		0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	0.032	J	0.20	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	ND	U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	U	0.20	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	ND	U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.20	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.20	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.20	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.20	0.031	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	74	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	63	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	75	36-107	11/24/04	Acceptable	
Terphenyl-d14	99	38-148	11/24/04	Acceptable	

0.017

10/27/04

11/24/04

KWG0416820

0.20

Comments:

Merged

ND U

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: ab Code:

MO-102104-9 K2408403-009 Units: ug/L Basis: NA

Inalyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

imments:

inted: 11/30/2004 10:56:21 Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR43513

Page 2 of 2

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403 Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-10 K2408403-010

Units: ug/L Basis: NA

Extraction Method:

EPA 3520

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND U	0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene	ND U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	ND U	0.20	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	ND U	0.20	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND U	0.20	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	ND U	0.20	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND U	0.20	0.026	1 .	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND U	0.20	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND U	0.20	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND U	0.20	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND U	0.20	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND U	0.20	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND U	0.20	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND U	0.20	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND U	0.20	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	. 77	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	78	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	76	36-107	11/24/04	Acceptable	
Terphenyl-d14	99	38-148	11/24/04	Acceptable	•

Comments:

00088 1 of 2

Page

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403

Date Collected: 10/21/2004

Date Received: 10/22/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-102104-10

Units: ug/L

K2408403-010

Basis: NA

Analyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

00089

rinted: 11/30/2004 10:56:25

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil and Chemical/021062-02

Water

Service Request: K2408403

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank KWG0416820-3

Extraction Method: EPA 3520

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND		0.48	0.051	1	10/27/04	11/24/04	KWG0416820	
Naphthalene			0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
2-Methylnaphthalene	ND		0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Acenaphthylene	ND	U	0.19	0.011	1	10/27/04	11/24/04	KWG0416820	
Acenaphthene	ND	U	0.19	0.0088	1	10/27/04	11/24/04	KWG0416820	
Dibenzofuran	ND	U	0.19	0.014	1	10/27/04	11/24/04	KWG0416820	
Fluorene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Phenanthrene	ND	U	0.19	0.011	1	10/27/04	11/24/04	KWG0416820	
Anthracene	ND	U	0.19	0.015	1	10/27/04	11/24/04	KWG0416820	
Fluoranthene	ND	U	0.19	0.013	1	10/27/04	11/24/04	KWG0416820	
Pyrene	ND	U	0.19	0.015	1	10/27/04	11/24/04	KWG0416820	
Butyl Benzyl Phthalate	ND	U	0.19	0.026	1	10/27/04	11/24/04	KWG0416820	
Benz(a)anthracene	ND	U	0.19	0.012	1	10/27/04	11/24/04	KWG0416820	
Chrysene	ND	U	0.19	0.014	1	10/27/04	11/24/04	KWG0416820	
Di-n-octyl Phthalate	ND	U	0.19	0.032	1	10/27/04	11/24/04	KWG0416820	
Benzo(b)fluoranthene	ND	U	0.19	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(k)fluoranthene	ND	U	0.19	0.020	1	10/27/04	11/24/04	KWG0416820	
Benzo(a)pyrene	ND	U	0.19	0.016	1	10/27/04	11/24/04	KWG0416820	
Indeno(1,2,3-cd)pyrene	ND	U	0.19	0.024	1	10/27/04	11/24/04	KWG0416820	
Dibenz(a,h)anthracene	ND	U	0.19	0.031	1	10/27/04	11/24/04	KWG0416820	
Benzo(g,h,i)perylene	ND	U	0.19	0.017	1	10/27/04	11/24/04	KWG0416820	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	76	41-118	11/24/04	Acceptable	
Nitrobenzene-d5	78	39-120	11/24/04	Acceptable	
2-Fluorobiphenyl	70	36-107	11/24/04	Acceptable	
Terphenyl-d14	95	38-148	11/24/04	Acceptable	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Service Request: K2408403

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: ab Code:

Method Blank

KWG0416820-3

Units: ug/L

Basis: NA

Inalyte Comments

-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

omments:

rinted: 11/30/2004 10:56:29 \Stealth\Crystal.rpt\Formlm.rpt

QA/QC Report

Client:

McCall Oil

McCall Oil and Chemical/021062-02

Project: Sample Matrix:

Water

Service Request: K2408403

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	<u>Sur4</u>
MO-102104-6	K2408403-006	73	64	75	99
MO-102104-7	K2408403-007	80	84	78	92
MO-102104-8	K2408403-008	78	76	78	50
MO-102104-9	K2408403-009	74	63	75	99
MO-102104-10	K2408403-010	77	78	76	99
Method Blank	KWG0416820-3	76	78	70	95
Lab Control Sample	KWG0416820-1	83	82	71	88
Duplicate Lab Control Sample	KWG0416820-2	75	74	69	87

Surrogate Recovery Control Limits (%)

Sur1 = Phenol-d6	41-118	-	
Sur2 = Nitrobenzene-d5	39-120		
Sur3 = 2-Fluorobiphenyl	36-107		•
Sur4 = Terphenyl-d14	38-148		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Form 2A - Organic

Printed: 11/30/2004 10:56:37 U:\Stealth\Crystal.rpt\Form2.rpt

SuperSet Reference: RR43513

1 of 1 Page

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil and Chemical/021062-02

Sample Matrix:

Water

Service Request: K2408403 Date Extracted: 10/27/2004

Date Analyzed: 11/14/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0416820

Lab Control Sample KWG0416820-1

Duplicate Lab Control Sample KWG0416820-2

		Control Spik			Lab Control		%Rec		RPD
Inalyte Name	Result	Expected %Rec Result Expected %Rec Limits	RPD	Limit					
-Methylphenol	4.12	5.00	82	3.56	5.00	71	27-123	14	30
Vaphthalene	3.51	5.00	70	3.24	5.00	65	27-116	8	30
-Methylnaphthalene	3.27	5.00	65	3.06	5.00	61	22-106	6	30
cenaphthylene	4.36	5.00	87	4.20	5.00	84	33-131	4	30
cenaphthene	3.92	5.00	78	3.82	5.00	76	31-122	2	30
Dibenzofuran	4.00	5.00	80	3.86	5.00	77	31-119	4	30
luorene	4.19	5.00	84	4.10	5.00	82	33-120	2	30
henanthrene	4.24	5.00	85	4.08	5.00	82	35-127	4	30
inthracene	4.27	5.00	85	4.09	5.00	82	34-126	4	30
luoranthene	4.49	5.00	90	4.39	5.00	88	36-132	2	30
yrene	4.21	5.00	84	4.11	5.00	82	38-129	2	30
utyl Benzyl Phthalate	4.87	5.00	97	4.82	5.00	96	50-128	1	30
enz(a)anthracene	4.35	5.00	87	4.17	5.00	83	39-128	4	30
hrysene	4.62	5.00	92	4.52	5.00	90	40-128	2	30
i-n-octyl Phthalate	5.08	5.00	102	4.82	5.00	96	47-134	5	30
enzo(b)fluoranthene	4.43	5.00	89	4.28	5.00	86	36-135	4	30
enzo(k)fluoranthene	4.49	5.00	90	4.38	5.00	88	38-133	2	30
enzo(a)pyrene	4.41	5.00	88	4.14	5.00	83	35-129	6	30
ideno(1,2,3-cd)pyrene	4.49	5.00	90	4.31	5.00	86	37-133	4	30
ibenz(a,h)anthracene	4.66	5.00	93	4.38	5.00	88	38-135	6	30
enzo(g,h,i)perylene	4.52	5.00	90	4.36	5.00	87	39-133	3	30

sults flagged with an asterisk (*) indicate values outside control criteria.

reent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

inted: 11/30/2004 10:56:41 Stealth\Crystal.rpt\Form3DLC.rpt

December 27, 2004

Service Request No: K2408877

John Renda Anchor Environmental 6650 SW Redwood Lane Suite 110 Portland, OR 97224

RE: McCall Oil/021062-02

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on November 8, 2004. For your reference, these analyses have been assigned our service request number K2408877.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281.

Respectfully submitted,

Columbia Analytical Services, Inc.

Abbie Spielman

Project Chemist

AS/di

Inorganic Data Qualifiers

- The result is an outlier. See case parrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- Y See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case parrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case parrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Case Narrative

Client:

Anchor Environmental

Project: McCall Oil

Sample Matrix: Sediment

Service Request No.:

K2408877

Date Received:

11/8/04

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

One sediment sample was received for analysis at Columbia Analytical Services on 11/8/04. No discrepancies were noted upon initial sample inspection. The sample was received in good condition and consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Fuel Identification and Quantification by EPA Method 8015

Sample Notes and Discussion:

The Gasoline results are semi-quantitative. Results are expected to exhibit a low bias due to a potential loss of volatile compounds during the extraction process.

Elevated Method Reporting Limits:

Sample MO-110404-CB was analyzed at a dilution due the sample matrix. The extract was highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. All reporting limits are adjusted accordingly.

Matrix Spike Recovery Exceptions:

The control criteria for matrix/duplicate matrix spike recovery of Residual Range Organics for sample MO-110404-CB is not applicable. The analyte concentration in the sample was higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

The duplicate matrix spike recovery of Diesel Range Organics for sample MO-110404-CB was outside control criteria due to matrix interferences. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

Volatile Organic Compounds by EPA Method 8260B

Surrogate Exceptions:

The control criteria were exceeded for the 4-Bromofluorobenzene surrogate in sample MO-110404-CBDMS due to matrix interferences. Due to the presence of non-target background components that prevented adequate resolution of the surrogate, accurate quantitation was not possible. No further corrective action was appropriate.

Annroyed by

Date

00005

Matrix Spike Recovery Exceptions:

The matrix spike/duplicate matrix spike recoveries of 1, 2-Dichlorobenzene, Naphthalene and Benzene for sample MO-110404-CB were outside control criteria due to matrix interferences. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Elevated Method Reporting Limits:

The reporting limits are elevated for sample MO-110404-CB. The sample extract could not be taken to the optimal final volume prior to instrumental analysis due to the sample matrix. The extract was highly colored and viscous, which indicated the need to perform further dilution prior to injection into the instrument. Clean up of the extract was performed within the scope of the method, but did not eliminate enough of the background components to prevent dilution. A semi-quantitative screen was performed prior to final analysis. The results of the screening indicated the need to perform a dilution.

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recoveries of 4-Methylphenol, Fluoranthene, Di-n-octyl Phthalate for sample MO-110404-CB are not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

The matrix spike/duplicate matrix spike recoveries of Pyrene, Butyl Benzyl Phthalate, Chrysene, Benzo(b)fluoranthene, Benz(a)anthracene, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene for sample MO-110404-CB were outside control criteria because of suspected matrix interference. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL4023: Hexachlorocyclopentadiene and 2, 4-Dinitrophenol. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 4.8%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

Approved by Ashi Ashi Date De

21/04

00006

Chain of Custody Documentation

Columbia Analytical Services Inc.

CHAIN OF CUSTODY

SR#:	K24088	77
_		$\overline{}$

An Employee - Owned Company	13	17 South 13	h Ave. • Ke	elso, WA 98	626 • (360) 577-	7222 •	(800) 6	95-722	22/07	FAX	(360) 6	36-10	68	77	WE_		<u>. </u>			_ 00	U #		
PROJECT NAME M. (20.)	OIL					7	5.3%	3	7~	ノベ	7	7	T^{-}	10	7	7	$\neg \tau$	T	7	7	7.	/ W	18/	/
PROJECT NUMBER	<u> </u>					7		1	/ 🛪	DO.	1 /	n /		81514	' /	/_		/ ,	h.		/ ሂ/	1	3 3	
PROJECT MANAGER	Dc. A					7 /		\$ /	E/A	WY/	' /¿	<u> </u>	_ /	13	/_	/	/	1921	(2)	200	\ \\$/	3/3	2/2/6	0
PROJECT MANAGER TO HILL COMPANY/ADDRESS	KEND!	4	44.			1 9 1	: /s	3 9/	7		/3	٠ / _/	\sim	$\vec{\omega}$	~/ * *	; /	101	W 8 1	Y [~/·	'K	4 /5	\$\ \\$\\ \\$\\ \\$	ב
6650SW	KEOK	100p 4	<u>). #//</u>				\\Z	Z/	민호	हें/रू		/ 3	ē/ ;	इं/इ	حد الإ	/8 /	\$	3\0\E	S/ 6	8/0	The state of the s	& >	7,8/ 3	000
					/	₹ /	/g	Ŷ/ §	ÿ/8_	7Ē.		/ \$	/# & &	1/2/4	NA NA	ਂਨੂੰ /	8/9	Blo.	} / S	?/.3	K	K.	141	5
CITY/STATE/ZIP PORTLA	Wh.	OR.	9722	4	7.	CONTAINERS	180	Sal	/8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Congeneral		/° /	5 /2	5 /.	Tex-Chrom []	8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40 X 165	12	7 5	/ ŭ/	₩,	
E-MAIL ADDRESS					$\neg \beta $	⁵ / ***	58		2 8	\$ 8	53/	0/3	8 <u>₹</u> /2	PAHS CHE CHANGE	Mells Shot Sing	[₹]			/ _ /	met	Street of the st	7-10-01	Wenzofueth	- 1
PHONE 503-670-110	~	FAX 7	0-1122	0	NUMBEROF	1 1		\$ 9 /2	عَ الْمُ	?S/ \$	\$ \!	~/\$	3/8		\$ [8]	8 / 🖂	150		□ 020g	.5/	Viv	신 (8	
SAMPLER'S SIGNATURE	# F	- 67	<u> -/ / / / / / / / / / / / / / / / / / /</u>		√ ¥			2/8	7/3	₹/5,	§/	E/8/	,/§	10		8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	* '	y\4	3/_	3/B	:/	- (
- Trolly	1-1100	ω			3	<i>[</i> €	છેં /ફેં	4/8°			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 S	15/2](₹	188	Sanios D			ار ا	ىد / ي	/	7	REMARK	, <u> </u>
SAMPLE I.D.	DATE	TIME	LAB I.D.	MAJRIX /		၂၀	128	y/ - C	$Z \subseteq Z \subseteq Z$	75	(Q X)	148/	05		<u>₹9</u>	0.7	<u> </u>	<u> </u>	1,5	/^	<u>/*</u>	<u>/*</u> /	NEMANN	.9
MO-110404 - CB	11/4/64	0 745		15 1	2		ΙX	ノメ	1	1		1	1	XI	X	1		XI	X	1 X	X	V		1
110 - 110 - 10 - 10	142/-1					\$14 15. 10 15.	+ * `	1						- ` `		_		1	1	 ´`	1			\neg
							.	↓								 			ļ	.				
	1			1 1	Š											ļ	1			l				- {
					ļ	34.2		 								$\neg \uparrow$	_	\top	1					
					0	187	4—	├ ──	_			_					-	-	├ ──	↓				
				1 1	3									1		1			•					1
					\$	1620.00 2012.00 2012.00	T																	
				1	- 10	353.6 34.0a	+	╀	_	\vdash		-+						-	4	┼─	 			
						45.5		<u> </u>												1	L _			
					7	er i		T																
				++	- 1	The same	+	╁─		_					-			+	+-	+-	╂──			
					9			<u> </u>											↓	<u> </u>	<u> </u>			
				1 1				1				1							1					
		INVC	ICE INFOR	MATTON		Circle whi	netal	a are to	he ana	ivzed:														
REPORT REQUIREM	EN18	P.O. # _			[Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo											4	1		
I. Routine Report: I		Bili To:			_ [Total M	etals: A	1 (Pa)	Sb B	a Be	ВСа	6	င္ (င	"(Cu)Fe F	ъ Mg	Mn	Mo Ni	K Ag) Na	Se S	ir TI S	Sn V (Zn) H	18
Blank, Surrogate	, as				_ {																		Sn V Zn ł	
required					 -	INDICA	RE STA	TE H	/DRO	CARR	ON PE	OCE	URF	· AK	CA	WI	NORTI	WEST	ОТН	(FR:		(CIR	CLE ONE)	\dashv
II. Report Dup., MS	, MSD as	TURNAR	OUND RE	QUIREME		SPECIAL							<u> </u>										01111/	
required		24		48 hr.	- 1	.79							,			_	_		٠,					
III. Data Validation F	Report	5D	· · · · · ·			****	ve A	bbie	S.	Ko	9	resti	ions	reg	ard	ing	82	70 L	st.					- 1
(includes all raw	data)		ay Indard (10-1	E working d	\					ν	ν	-		0										I
IV. CLP Deliverable	Report	•		=																				
- Floating Lay Legality																							ı	
V. EDD																								
Requested Report Date												_												
BELINQUIS	, ,	400		$\Delta \Omega$ '	RECEI	/ED BY:	I					REL	INQU	ISHE	BY:					RI	ECEIV	ED BY:		1
ر معالی تندار	11/8/04	- <i>1900</i>	\perp	WY	JV	1/18/		140	<i>O</i>															1
Signature (418)	Mate/Time	Q-BAV	SIST	abort	- 4	Date/			`	Sig	nature			Da	te/Time)		Sign	ature			Date/	Time	- Į
Printed Name	Firm	· Lup	I A	od Name		Firm	17		-	Prin	ted Na	me		Fir	m		_	Prin	ed Na	me		Firm		-
																		Printed Name Firm						

		Á		ia Analytical Servic Receipt and Preserv		PC	: 42		
Proje	ect/Client	Knous		_	ork Order K24	0	8877		
Cool	er received on ///s	1/07	and op	ened on 11/8/v	<u> </u>	- Ap			
1.	Were custody seals on our If yes, how many and		lers?	IF		,		Ø	N
2 1	Were custody seals intact			——————————————————————————————————————				9	N
	Were signature and date p		e custody	seals?				(Y)	N
	Is the shipper's airbill ave		_					Y	N
	COC#						•	•	• •
	Temperature of cooler(s	s) upon rec	eint: (°C)	2-9					
		(°C)	- - (•)	NIV					
	Vere samples hand deliver	` '	ame day as	collection?				_	_N_
	Were custody papers prop		•					<u>~</u>	N
	Type of packing material	•		MESH	·			•	
	Did all bottles arrive in s		•	*	*			Ø	N
	Were all bottle labels com	-	-	•			٠	B	N
10.	Did all bottle labels and	-						8	N
11.	Were the correct types (Ø	N
•	Were all of the preserved				pH?			<u> </u>	N
	Were VOA vials checked				-			¥	N
	Did the bottles originate f			•				Y	₫
	Are CWA Microbiology			_	me remaining fi	rom collection?		<u> - y</u>	— N -
	Was C12/Res negative?	•			• • • • • • • • • • • • • • • • • • • •			بود	N
	nin any discrepancies:								
RESC	DLUTION:	•							
Samp	les that required preser	vation or r	eceived o	ut of temperature:					
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials		
		 			1				
						,			
					-			٠	

PC AS

Total Solids

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Total Solids

Prep Method:

Analysis Method:

NONE 160.3M

Test Notes:

Service Request: K2408877

Units: PERCENT

Basis: Wet

Sample Name

Lab Code

Date Collected

Date Received

Date Analyzed

Result

Result Notes

K2408877-001

11/04/2004

11/08/2004

38.7

MO-110404-CB

11/11/2004

00011

Printed: 11/13/2004 11:30 U:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0418016

Page 1 of 1

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix: Sediment Service Request: K2408877

Date Collected: 11/04/2004

Date Received: 11/08/2004 Date Analyzed: 11/11/2004

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method: NONE

Units: PERCENT

Basis: Wet

Test Notes:

160.3M

Sample Name

Sample Result

Sample Result

Average

Relative Percent Result Difference Notes

MO-110404-CB

K2408877-001

Lab Code

38.7

39.2

Duplicate

39.0

1

00012

Printed: 11/13/2004 11:30 U:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0418016

Page 1 of 1

General Chemistry Parameters

Analytical Report

Client:

McCall Oil

Project Name:

McCall Oil

Project Number: 021062-02

Sample Matrix: SEDIMENT

Service Request: K2408877

Date Collected: 11/04/04

Date Received: 11/08/04

Carbon, Total Organic

Analysis Method ASTM D4129-98M

Test Notes:

Units: Percent

Basis: Dry

Sample Name	Lab Code	MRL	Dilution Factor	Date Analyzed	Result	Result Notes
MO-110404-CB Method Blank	K2408877-001 K2408877-MB	0.05 0.05	1 1	11/20/04 11/20/04	10.9 ND	

M

QA/QC Report

Client:

McCall Oil

Project Name: Project Number: 021062-02

McCall Oil

Sample Matrix:

SEDIMENT

Service Request: K2408877

Date Collected: 11/04/04

Date Received: 11/08/04

Date Extracted: NA

Date Analyzed: 11/20/04

Duplicate Summary Inorganic Parameters

Sample Name:

MO-110404-CB

Lab Code:

K2408877-001DUP

Test Notes:

Units: Percent

Basis: Dry

Duplicate Relative Analysis Sample Sample Percent Result Analyte Method MRL Result Result Average Difference Notes Carbon, Total Organic ASTM D4129-98M 0.05 10.9 10.3 10.6 6

M

QA/QC Report

Client:

McCall Oil

Project Name: Project Number: 021062-02

McCall Oil

Sample Matrix:

SEDIMENT

Service Request: K2408877

Date Collected: 11/04/04

Date Received: 11/08/04 Date Extracted: NA

Date Analyzed: 11/20/04

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

MO-110404-CB

Lab Code:

K2408877-001MS

Test Notes:

Units: Percent

Basis: Dry

CAS

Percent Spiked Recovery Spike Sample Percent Acceptance Result Analysis Sample Method Result Recovery Limits Analyte MRL Level Result Notes Carbon, Total Organic ASTM D4129-98M 0.05 16.5 10.9 27.7 102 75-125

M

QA/QC Report

Inorganic Parameters

Client:

McCall Oil

Project Name:

McCall Oil 021062-02

Project Number: Sample Matrix:

SEDIMENT

Service Request: K2408877

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 11/20/04

Laboratory Control Sample Summary

Sample Name:

Laboratory Control Sample

Lab Code:

K2408877-LCS

Units: Percent

Basis: Dry

Test Notes:

Analyte

Prep

Analysis Method

True Value Result Recovery

Recovery Percent Acceptance Result Limits **Notes**

CAS Percent

Carbon, Total Organic

None

Method

ASTM D4129-98M

0.75

0.73

97

85-115

M

Metals

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client: McCall Oil Project No.: 021062-02 Project Name: McCall Oil	Service Request: K2408877
Sample No. Batch QC Batch QC MO-110404-CB Method Blank	Lab Sample ID. K2408860-003D K2408860-003S K2408877-001 K2408877-MB
Were ICP interelement corrections applied?	Yes/No YES
Were ICP background corrections applied? If yes-were raw data generated before application of background corrections?	Yes/No YES Yes/No NO
Comments:	

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408877

Project No.: 021062-02

Date Collected: 11/04/04

Project Name: McCall Oil

Date Received: 11/08/04

Matrix: SEDIMENT

Units: MG/KG

Basis: Dry

Sample Name: MO-110404-CB

Lab Code: K2408877-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	õ
Arsenic	200.B	0.5	5	11/22/04	11/23/04	25.6	H	
Cadmium	200.8	0.05	5	11/22/04	11/23/04	1.90		
Chromium	6010B	1.9	2	11/22/04	11/30/04	189		
Copper	6010B	1.9	2	11/22/04	11/30/04	1360		
Lead	6010B	19	2	11/22/04	11/30/04	600		
Zinc	6010B	1.9	2	11/22/04	11/30/04	752		

% Solids: 38.7

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

McCall Oil

Service Request: K2408877

Project No.: 021062-02

Date Collected:

Project Name: McCall Oil

Date Received:

Matrix:

SEDIMENT

Units: MG/KG

Basis: Dry

Sample Name: Method Blank

Lab Code: K2408877-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Õ
Arsenic	200.8	0.5	5	11/22/04	11/23/04	0.5	ט	
Cadmium	200.8	0.05	5	11/22/04	11/23/04	0.05	ט	-
Chromium	6010B	2.0	2	11/22/04	11/30/04	2.0	U	
Copper	6010B	2.0	2	11/22/04	11/30/04	2.0	ט	
Lead	6010B	20	2	11/22/04	11/30/04	20	ט	
Zinc	6010B	2.0	2	11/22/04	11/30/04	2.0	ט	

% Solids: 100.0

Comments:

METALS - 5a -SPIKE SAMPLE RECOVERY

Client:

McCall Oil

Service Request: K2408877

Project No.: 021062-02

Units: mg/kg

Project Name: McCall Oil

Basis: Dry

Matrix:

SEDIMENT

% Solids: 40.7

Sample Name: Batch QC

Lab Code: K2408860-003S

Analyte	Control Limit %R	Spike Result	C	Sample Result	Spike Added	ŧR	Qi	Method
Arsenic	70 - 130	122		4.6	111	106		200.8
Cadmium	70 - 130	12.9		0.36	11.1	113		200.8
Chromium	54 - 149	70.9		26.2	44.5	100		6010B
Copper	62 - 145	88.1		34.2	55.6	97		6010B
Lead	55 - 150	126		22.2 0	111	114		6010B
Zinc	52 - 150	196		86.6	111	99		6010B

METALS -6-

DUPLICATES

Client:

McCall Oil

Service Request: K2408877

Project No.: 021062-02

Units: mg/kg

Project Name: McCall Oil

Basis: Dry

Matrix:

SEDIMENT

% Solids: 40.7

Sample Name:Batch QC

Lab Code: K2408860-003D

Analyte	Control Limit(%)	Sample (S)	С	Duplicate (D)	C	RPD	۵	Method
Arsenic	30	4.6		4.8		5		200.8
Cadmium	30	0.36		0.40		9		200.8
Chromium	30	26.2		27.2		4		6010B
Copper	30	34.2	Πi	33.9		1		6010B
Lead		22	ש	22	Ū	T		6010B
Zinc	30	86.6	i	86.6		이	T	6010B

-7-

LABORATORY CONTROL SAMPLE

Client:

McCall Oil

Service Request: K2408877

Project No.: 021062-02

Project Name: McCall Oil

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source: ERA Lot #246

Aqueous mg/L				Solid (mg/kg)									
Analyte	True	Found	%R	True	Found C	Limi	ts	€R					
Arsenic	1		ĺ	187	200	139	235	107					
Cadmium				67.9	73.4	52.0	83.6	108					
Chromium				143	143	114	171	100					
Copper				92.7	92.0	75.9	109	99					
Lead	1			119	119	90.9	148	100					
Zinc				273	276	211	335	101					

Fuel Identification Quantification EPA Method 8015

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: 11/04/2004

Date Received: 11/08/2004

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-110404-CB

Lab Code:

K2408877-001

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Dasis. Diy

Analysis Method:

FIQ

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	210	1	11/16/04	11/24/04	KWG0418317	
Diesel Range Organics (DRO)	1600	нЈ	210	1	11/16/04	11/24/04	KWG0418317	
Residual Range Organics (RRO)	8500	OJ	520	1	11/16/04	11/24/04	KWG0418317	
——————————————————————————————————————								

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	84	20-150	11/24/04	Acceptable
o-Terphenyl	102	50-150	11/24/04	Acceptable
n-Triacontane	108	50-150	11/24/04	Acceptable

Comments:

00026

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: NA Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0418317-4

ND U

Units: mg/Kg

Extraction Method:

EPA 3550B

Basis: Dry

Level: Low

KWG0418317

Analysis Method:

Residual Range Organics (RRO)

FIQ

Analyte Name	Result	Q	MRL _	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND	U	10	1	11/16/04	11/24/04	KWG0418317	
Diesel Range Organics (DRO)	ND	U	10	1	11/16/04	11/24/04	KWG0418317	

1

11/16/04

11/24/04

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	70	20-150	11/24/04	Acceptable	
o-Terphenyl	80	50-150	11/24/04	Acceptable	
n-Triacontane	. 82	50-150	11/24/04	Acceptable	

25

Comments:

Printed: 11/29/2004 14:37:56 U:\Stealth\Crystal.rpt\Form1m.rpt

QA/QC Report

Client:

McCall Oil

McCall Oil/021062-02

Project: Sample Matrix:

Sediment

Service Request: K2408877

Surrogate Recovery Summary

73

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

85

86

Extraction Method:

EPA 3550B

Analysis Method:

Lab Control Sample

FIQ

Units: PERCENT Level: Low

Sample Name Lab Code Sur1 Sur2 Sur3 MO-110404-CB 84 102 108 K2408877-001 70 80 82 Method Blank KWG0418317-4 MO-110404-CBMS KWG0418317-1 90 104 121 92 104 116 MO-110404-CBDMS KWG0418317-2

KWG0418317-3

Surrogate Recovery Control Limits (%)

Sur1 = 4-Bromofluorobenzene 20-150 Sur2 = o-Terphenyl50-150 Sur3 = n-Triacontane50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/29/2004 14:38:01

Form 2A - Organic

SuperSet Reference: RR43479 1 of 1

U:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Extracted: 11/16/2004

Date Analyzed: 11/24/2004

Matrix Spike/Duplicate Matrix Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MO-110404-CB

Lab Code:

K2408877-001

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

Extraction Lot: KWG0418317

Analysis Method:

FIQ

MO-110404-CBMS

KWG0418317-1

MO-110404-CBDMS KWG0418317-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	1600	3360	1280	139	3450	1280	146 *	19-145	3	40
Residual Range Organics (RRO)	8500	10300	638	282 #	10500	∞ 640	314 #	50-150	2	40

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the auftware using values in the calculation which have not been rounded.

1 of

SuperSet Reference:

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Extracted: 11/16/2004

Date Analyzed: 11/24/2004

Lab Control Spike Summary

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method:

EPA 3550B

Analysis Method:

FIQ

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0418317

Lab Control Sample KWG0418317-3

Lab Control Spike %Rec Limits **Analyte Name** Expected %Rec Result Diesel Range Organics (DRO) 359 320 19-145 112 Residual Range Organics (RRO) 171 160 107 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/29/2004 14:38:07 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page l of l

SuperSet Reference:

RR43479

Volatile Organic Compounds EPA Method 8260B

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877 Date Collected: 11/04/2004

Date Received: 11/08/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-110404-CB K2408877-001

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

A a lasta Nama	D14	^	MIDI	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	NT-4-
Analyte Name	Result	_	MRL				KWG0418311	Note
Dichlorodifluoromethane	ND		13	1	11/15/04	11/15/04	KWG0418311	
Chloromethane	ND		13	1	11/15/04	11/15/04		
Vinyl Chloride	ND_		13	1	11/15/04	11/15/04	KWG0418311	
Bromomethane	ND		13	1	11/15/04	11/15/04	KWG0418311	
Chloroethane	ND		13	1	11/15/04	11/15/04	KWG0418311	
Trichlorofluoromethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Acetone	150		51	1	11/15/04	11/15/04	KWG0418311	
1,1-Dichloroethene	ND		13	1	11/15/04	11/15/04	KWG0418311	
Carbon Disulfide	ND		13	1	11/15/04	11/15/04	KWG0418311	
Methylene Chloride	ND		26	1	11/15/04	11/15/04	KWG0418311	
trans-1,2-Dichloroethene	ND		13	1	11/15/04	11/15/04	KWG0418311	
1,1-Dichloroethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
2-Butanone (MEK)	61		51	1	11/15/04	11/15/04	KWG0418311	
2,2-Dichloropropane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
cis-1,2-Dichloroethene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Chloroform	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Bromochloromethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
1,1,1-Trichloroethane (TCA)	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
1,1-Dichloropropene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Carbon Tetrachloride	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
1,2-Dichloroethane (EDC)	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Benzene	ND	U	13 .	1	11/15/04	11/15/04	KWG0418311	
Trichloroethene (TCE)	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
1,2-Dichloropropane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Bromodichloromethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Dibromomethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
2-Hexanone	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
cis-1,3-Dichloropropene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Toluene	38		13	1	11/15/04	11/15/04	KWG0418311	
trans-1,3-Dichloropropene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
1,1,2-Trichloroethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
4-Methyl-2-pentanone (MIBK)	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
1,3-Dichloropropane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
Tetrachloroethene (PCE)	ND	Ū	13	1	11/15/04	11/15/04	KWG0418311	

Comments:

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Received: 11/08/2004

Date Collected: 11/04/2004

Volatile Organic Compounds

Sample Name:

MO-110404-CB

Lab Code:

K2408877-001

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
.,2-Dibromoethane (EDB)	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
Chlorobenzene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
.,1,1,2-Tetrachloroethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
3thylbenzene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
n,p-Xylenes	ND	U	. 13	1	11/15/04	11/15/04	KWG0418311	
⊢Xylene	ND	_	13	1	11/15/04	11/15/04	KWG0418311	
Styrene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
3romoform	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
sopropylbenzene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
,1,2,2-Tetrachloroethane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
,2,3-Trichloropropane	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
3romobenzene	ND		13	1	11/15/04	11/15/04	KWG0418311	
i-Propylbenzene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
-Chlorotoluene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
-Chlorotoluene		U	51	1	11/15/04	11/15/04	KWG0418311	
,3,5-Trimethylbenzene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
ert-Butylbenzene	ND		51	1	11/15/04	11/15/04	KWG0418311	
,2,4-Trimethylbenzene	ND		51	1	11/15/04	11/15/04	KWG0418311	
ec-Butylbenzene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
,3-Dichlorobenzene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
-Isopropyltoluene	ND		51	1	11/15/04	11/15/04	KWG0418311	
,4-Dichlorobenzene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
-Butylbenzene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
,2-Dichlorobenzene	ND	U	13	1	11/15/04	11/15/04	KWG0418311	
,2-Dibromo-3-chloropropane	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
,2,4-Trichlorobenzene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
,2,3-Trichlorobenzene	ND		51	1 .	11/15/04	11/15/04	KWG0418311	
Iaphthalene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	
lexachlorobutadiene	ND	U	51	1	11/15/04	11/15/04	KWG0418311	

omments:

00033

Analytical Results

Client:

McCall Oil

Project: Sample Matrix: McCall Oil/021062-02

Sediment

Service Request: K2408877

Date Collected: 11/04/2004

Date Received: 11/08/2004

Volatile Organic Compounds

Sample Name: Lab Code:

MO-110404-CB

K2408877-001

Units: ug/Kg Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	115	81-120	11/15/04	Acceptable
Toluene-d8	120	77-131	11/15/04	Acceptable
4-Bromofluorobenzene	108	74-116	11/15/04	Acceptable

Comments:

Printed: 11/22/2004 09:43:32

U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 3 of 3 SuperSet Reference:

RR43247

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: ab Code:

Method Blank

Extraction Method: EPA 5030A

KWG0418311-5

\nalysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	Ū	5.0	1	11/15/04	11/15/04	KWG0418311	
Chloromethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
/inyl Chloride	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
3romomethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
Chloroethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
richlorofluoromethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
Acetone	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
,1-Dichloroethene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
Carbon Disulfide	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
1ethylene Chloride	ND	U	10	1	11/15/04	11/15/04	KWG0418311	
ans-1,2-Dichloroethene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
,1-Dichloroethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
-Butanone (MEK)	ND		20	1	11/15/04	11/15/04	KWG0418311	
,2-Dichloropropane	ND	-	5.0	1	11/15/04	11/15/04	KWG0418311	
is-1,2-Dichloroethene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
'hloroform	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
romochloromethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
,1,1-Trichloroethane (TCA)	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
,1-Dichloropropene	ND	_	5.0	1	11/15/04	11/15/04	KWG0418311	
arbon Tetrachloride	ND		5.0	1	11/15/04	11/15/04	KWG0418311	
,2-Dichloroethane (EDC)	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
enzene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
richloroethene (TCE)	ND	-	5.0	1	11/15/04	11/15/04	KWG0418311	
,2-Dichloropropane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
romodichloromethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
ibromomethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
-Hexanone	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
is-1,3-Dichloropropene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
oluene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
ans-1,3-Dichloropropene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
,1,2-Trichloroethane	ND		5.0	1	11/15/04	11/15/04	KWG0418311	
Methyl-2-pentanone (MIBK)	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
,3-Dichloropropane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
etrachloroethene (PCE)	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	

omments:

rinted: 11/22/2004 09:43:35 \Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR43247

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0418311-5

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
1,2-Dibromoethane (EDB)	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
Chlorobenzene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
1,1,1,2-Tetrachloroethane	ND		5.0	1	11/15/04	11/15/04	KWG0418311	
Ethylbenzene	ND	U	5.0	1.	11/15/04	11/15/04	KWG0418311	
m,p-Xylenes	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
o-Xylene	ND		5.0	1	11/15/04	11/15/04	KWG0418311	
Styrene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
Bromoform	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
Isopropylbenzene	ND		20	1	11/15/04	11/15/04	KWG0418311	
1,1,2,2-Tetrachloroethane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
1,2,3-Trichloropropane	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
Bromobenzene	ND		5.0	1	11/15/04	11/15/04	KWG0418311	
n-Propylbenzene	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
2-Chlorotoluene	ND		20	1	11/15/04	11/15/04	KWG0418311	
4-Chlorotoluene	ND		20	1	11/15/04	11/15/04	KWG0418311	
1,3,5-Trimethylbenzene	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
tert-Butylbenzene	ND		20	1	11/15/04	11/15/04	KWG0418311	
1,2,4-Trimethylbenzene	ND		20	1	11/15/04	11/15/04	KWG0418311	
sec-Butylbenzene	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
1,3-Dichlorobenzene	ND		5.0	1	11/15/04	11/15/04	KWG0418311	
4-Isopropyltoluene	ND		20	1	11/15/04	11/15/04	KWG0418311	
1,4-Dichlorobenzene	ND.	U	5.0	1	11/15/04	11/15/04	KWG0418311	
n-Butylbenzene	ND		20	1	11/15/04	11/15/04	KWG0418311	
1,2-Dichlorobenzene	ND	U	5.0	1	11/15/04	11/15/04	KWG0418311	
1,2-Dibromo-3-chloropropane	ND	U	20	1	11/15/04	11/15/04	KWG0418311	
1,2,4-Trichlorobenzene	ND		20	1	11/15/04	11/15/04	KWG0418311	
1,2,3-Trichlorobenzene	ND		20	1	11/15/04	11/15/04	KWG0418311	
Naphthalene	ND ND	U	20	1	11/15/04	11/15/04	KWG0418311	
Hexachlorobutadiene	ND	U	20	1	11/15/04	11/15/04	KWG0418311	

Comments:

Printed: 11/22/2004 09:43:35

U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

00036

Page 2 of 3

SuperSet Reference: RR43247

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank

KWG0418311-5

Units: ug/Kg Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	116	81-120	11/15/04	Acceptable
Coluene-d8	120	77-131	11/15/04	Acceptable
-Bromofluorobenzene	113	74-116	11/15/04	Acceptable

omments:

00037

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030A

Units: PERCENT

Analysis Method:

8260B

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
MO-110404-CB	K2408877-001	115	120	108
Method Blank	KWG0418311-5	116	120	113
MO-110404-CBMS	KWG0418311-1	116	120	112
MO-110404-CBDMS	KWG0418311-2	113	121	118 *
Lab Control Sample	KWG0418311-3	110	118	112

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	81-120
Sur2 = Toluene-d8	77-131
Sur3 = 4-Bromofluorobenzene	74-116

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/22/2004 09:43:40 U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR43247

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877 Date Extracted: 11/15/2004

Date Analyzed: 11/15/2004

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

MO-110404-CB

_ab Code:

K2408877-001

Extraction Method: EPA 5030A **Analysis Method:**

8260B

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0418311

MO-110404-CBMS KWG0418311-1

MO-110404-CBDMS

KWG0418311-2

Analyte Name	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
,1-Dichloroethene	ND	68.4	126	. 54	64.2	128	50	46-128	6	40
Benzene	ND	57.5	126	46	53.8	128	42 *	45-129	7	40
'richloroethene (TCE)	ND	36.5	126	29	36.1	128	28	18-153	1	40
'oluene	38	78.7	1 26	33	81.2	128	34	31-136	3	40
'hlorobenzene	ND	24.1	126	19	22.7	128	18	17-130	6	40
,2-Dichlorobenzene	ND	10.0	126	8 *	8.33	128	7 *	10-127	18	40
laphthalene	ND	5.89	126	5 *	5.02	128	4 *	10-131	16	40

esults flagged with an asterisk (*) indicate values outside control criteria. sults flagged with a pound (#) indicate the control criteria is not applicable. recent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00039

QA/QC Report

Client: **Project:** McCall Oil

Sample Matrix:

McCall Oil/021062-02

Sediment

Service Request: K2408877 Date Extracted: 11/15/2004

Date Analyzed: 11/15/2004

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5030A

Analysis Method: 8260B Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0418311

Lab Control Sample KWG0418311-3

Analyte Name Result Expected %Rec Limits		Lab	Control Spike	e	%Rec			
Chloromethane	Analyte Name	Result	Expected	%Rec				
Vinyl Chloride 43.7 50.0 87 55-155 Bromomethane 40.1 50.0 80 37-145 Chloroethane 41.2 50.0 82 44-143 Trichlorofluromethane 42.2 50.0 84 55-134 Acetone 220 250 88 43-119 1,1-Dichloroethene 51.5 50.0 103 71-127 Carbon Disulfide 92.8 100 93 63-139 Methylene Chloride 49.6 50.0 99 70-127 trans-1,2-Dichloroethene 46.0 50.0 99 70-127 trans-1,2-Dichloroethane 48.1 50.0 96 66-120 2-Butanone (MEK) 263 250 105 37-137 2,2-Dichloropropane 47.8 50.0 96 68-132 cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 </td <td>Dichlorodifluoromethane</td> <td>52.1</td> <td>50.0</td> <td>104</td> <td>43-163</td> <td></td> <td></td> <td> </td>	Dichlorodifluoromethane	52.1	50.0	104	43-163			
Bromomethane 40.1 50.0 80 37-145 Chloroethane 41.2 50.0 82 44-143 Trichlorofluoromethane 42.2 50.0 84 55-134 Acetone 220 250 88 43-119 1,1-Dichloroethene 51.5 50.0 103 71-127 Carbon Disulfide 92.8 100 93 63-139 Methylene Chloride 49.6 50.0 99 70-127 Trichloroethane 48.1 50.0 96 66-120 22-Butanone (MEK) 263 250 105 37-137 22-Dichloroptopane 47.8 50.0 96 68-132 23-122 23-122 23-122 23-122 23-123	Chloromethane	43.8	50.0	88	51-147			
Chloroethane 41.2 50.0 82 44-143 Trichlorofluoromethane 42.2 50.0 84 55-134 Acetone 220 250 88 43-119 1,1-Dichloroethene 51.5 50.0 103 71-127 Carbon Disulfide 92.8 100 93 63-139 Methylene Chloride 49.6 50.0 99 70-127 trans-1,2-Dichloroethene 46.0 50.0 99 70-127 trans-1,2-Dichloroethane 48.1 50.0 96 66-120 2-Butanone (MEK) 263 250 105 37-137 2,2-Dichloropropane 47.8 50.0 96 68-122 2-Butanone (MEK) 263 250 103 72-122 Chloroform 47.8 50.0 96 68-132 cis-1,2-Dichloromethane 53.4 50.0 107 75-126 1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene	Vinyl Chloride	43.7	50.0	87	55-155			
Trichlorofluoromethane	Bromomethane	40.1	50.0	80	37-145			
Acetone 220 250 88 43-119 1,1-Dichloroethene 51.5 50.0 103 71-127 Carbon Disulfide 92.8 100 93 63-139 Methylene Chloride 49.6 50.0 99 70-127 trans-1,2-Dichloroethene 46.0 50.0 92 68-122 1,1-Dichloroethane 48.1 50.0 96 66-120 2-Butanone (MEK) 263 250 105 37-137 2,2-Dichloropropane 47.8 50.0 96 68-132 cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 50.0 107 75-126 1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Grichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 41.5 50.0 87 75-128 trans-1,3-Dichloropropane 47.1 50.0 94 77-118 L-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane (PCE) 41.5 50.0 99 77-119 Tetrachloroethene (PCE) 41.5 50.0 99 74-119	Chloroethane	41.2	50.0	82	44-143			
1,1-Dichloroethene 51.5 50.0 103 71-127 Carbon Disulfide 92.8 100 93 63-139 Methylene Chloride 49.6 50.0 99 70-127 trans-1,2-Dichloroethane 46.0 50.0 92 68-122 1,1-Dichloroethane 48.1 50.0 96 66-120 2-Butanone (MEK) 263 250 105 37-137 2,2-Dichloropropane 47.8 50.0 96 68-132 cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 50.0 107 75-126 1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Trichloroethene	Trichlorofluoromethane	42.2	50.0	84	55-134			
1,1-Dichloroethene	Acetone	220	250	88	43-119			
Methylene Chloride 49.6 50.0 99 70-127 trans-1,2-Dichloroethene 46.0 50.0 92 68-122 1,1-Dichloroethane 48.1 50.0 96 66-120 2-Butanone (MEK) 263 250 105 37-137 2,2-Dichloropropane 47.8 50.0 96 68-132 cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 50.0 107 75-126 1,1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 96 68-126 1,1-Dichloropropene 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Irichloroeth	1,1-Dichloroethene	51.5	50.0	103				
trans-1,2-Dichloroethene 46.0 50.0 92 68-122 1,1-Dichloroethane 48.1 50.0 96 66-120 2-Butanone (MEK) 263 250 105 37-137 2,2-Dichloropropane 47.8 50.0 96 68-132 cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 50.0 107 75-126 1,1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Trichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Fetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Carbon Disulfide	92.8	100	93	63-139			
1,1-Dichloroethane	Methylene Chloride	49.6	50.0	99	70-127			
1,1-Dichloroethane	trans-1,2-Dichloroethene	46.0	50.0	92	68-122			
2,2-Dichloropropane 47.8 50.0 96 68-132 cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 50.0 107 75-126 1,1-1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Trichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 51.6 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichlor	1,1-Dichloroethane	48.1						
cis-1,2-Dichloroethene 51.3 50.0 103 72-122 Chloroform 49.4 50.0 99 70-123 Bromochloromethane 53.4 50.0 107 75-126 1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Trichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 3-Dichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Toluene	2-Butanone (MEK)	263	250	105	37-137			
Cis-1,2-Dichloroethene	2,2-Dichloropropane	47.8	50.0	96	68-132			
Stromochloromethane 53.4 50.0 107 75-126	cis-1,2-Dichloroethene	51.3	50.0	103	72-122			
1,1,1-Trichloroethane (TCA) 47.8 50.0 96 68-126 1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Trichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Di	Chloroform	49.4	50.0	99	70-123			
1,1-Dichloropropene 43.3 50.0 87 70-127 Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 Benzene 49.7 50.0 99 78-124 Trichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Toluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Bromochloromethane	53.4	50.0	107	75-126			
Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 1,2-Dichloroethene (TCE) 47.3 50.0 99 78-124 1,2-Dichloropropane 50.0 50.0 100 69-123 1,2-Dichloropropane 50.3 50.0 101 67-129 1,2-Dichloromethane 50.3 50.0 101 67-129 1,2-Dichloropropane 50.0 105 74-124 1,2-Hexanone 183 250 73 60-124 1,2-Dichloropropene 51.6 50.0 103 73-127 1,3-Dichloropropene 41.5 50.0 97 75-128 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1,1,2-Dichloropropane 47.4 50.0 95 77-119 1,3-Dichloropropane 47.4 50.0 95 77-119 1,3-Dichloropropane 47.4 50.0 95 77-119 1,3-Dichloropropane 47.4 50.0 99 74-119	1,1,1-Trichloroethane (TCA)	47.8	50.0	96	68-126			
Carbon Tetrachloride 47.0 50.0 94 69-128 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 1,2-Dichloroethane (EDC) 48.6 50.0 97 63-129 1,2-Dichloroethene (TCE) 47.3 50.0 99 78-124 1,2-Dichloropropane 50.0 50.0 100 69-123 1,2-Dichloropropane 50.3 50.0 101 67-129 1,2-Dichloromethane 50.3 50.0 101 67-129 1,2-Dichloropropane 50.0 105 74-124 1,2-Hexanone 183 250 73 60-124 1,2-Dichloropropene 51.6 50.0 103 73-127 1,3-Dichloropropene 41.5 50.0 97 75-128 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1,1,2-Dichloropropane 47.4 50.0 95 77-119 1,3-Dichloropropane 47.4 50.0 95 77-119 1,3-Dichloropropane 47.4 50.0 95 77-119 1,3-Dichloropropane 47.4 50.0 99 74-119	1,1-Dichloropropene	43.3	50.0	87	70-127			
Benzene 49.7 50.0 99 78-124 Frichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Carbon Tetrachloride	47.0	50.0	94	69-128			
Benzene 49.7 50.0 99 78-124 Trichloroethene (TCE) 47.3 50.0 95 69-128 1,2-Dichloropropane 50.0 50.0 100 69-123 Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	1,2-Dichloroethane (EDC)	48.6	50.0	97	63-129			
1,2-Dichloropropane 50.0 50.0 100 69-123 3romodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 2-Hexanone 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 Frans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 4-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Fetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Benzene	49.7						
Bromodichloromethane 50.3 50.0 101 67-129 Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Trichloroethene (TCE)	47.3	50.0	95	69-128			
Dibromomethane 52.4 50.0 105 74-124 2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	1,2-Dichloropropane	50.0	50.0	100	69-123			
2-Hexanone 183 250 73 60-124 cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Fetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Bromodichloromethane	50.3	50.0	101	67-129			
cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 1,1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Dibromomethane	52.4	50.0	105	74-124			
cis-1,3-Dichloropropene 51.6 50.0 103 73-127 Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 i,1,2-Trichloroethane 47.1 50.0 94 77-118 i-Methyl-2-pentanone (MIBK) 262 250 105 55-136 i,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	2-Hexanone	183	250	73	60-124			
Foluene 48.7 50.0 97 75-128 rans-1,3-Dichloropropene 41.5 50.0 83 68-114 i,1,2-Trichloroethane 47.1 50.0 94 77-118 i-Methyl-2-pentanone (MIBK) 262 250 105 55-136 i,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	cis-1,3-Dichloropropene	51.6						
rans-1,3-Dichloropropene 41.5 50.0 83 68-114 i,1,2-Trichloroethane 47.1 50.0 94 77-118 i-Methyl-2-pentanone (MIBK) 262 250 105 55-136 i,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	Toluene							
1.1,2-Trichloroethane 47.1 50.0 94 77-118 1-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1.3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	trans-1,3-Dichloropropene							
H-Methyl-2-pentanone (MIBK) 262 250 105 55-136 1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	1,1,2-Trichloroethane							
1,3-Dichloropropane 47.4 50.0 95 77-119 Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	4-Methyl-2-pentanone (MIBK)							
Tetrachloroethene (PCE) 41.5 50.0 83 70-124 Dibromochloromethane 49.4 50.0 99 74-119	1,3-Dichloropropane							
Dibromochloromethane 49.4 50.0 99 74-119	Tetrachloroethene (PCE)							·
	Dibromochloromethane							
	1,2-Dibromoethane (EDB)							

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00040

Printed: 11/22/2004 09:43:46 U:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 2

SuperSet Reference: RR43247

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877 Date Extracted: 11/15/2004

Date Analyzed: 11/15/2004

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0418311

Lab Control Sample KWG0418311-3 Lab Control Spike

		%Rec		
Analyte Name	Result	Expected	%Rec	Limits
Chlorobenzene	45.3	50.0	91	76-119
1,1,1,2-Tetrachloroethane	47.3	50.0	95	76-122
Ethylbenzene	44.3	50.0	89	75-126
n,p-Xylenes	91.8	100	92	76-131
>-Xylene	45.0	50.0	90	76-128
Styrene	46.0	50.0	92	75-127
3romoform	49.7	50.0	99	72-121
sopropylbenzene	38.4	50.0	77	62-125
1,1,2,2-Tetrachloroethane	46.1	50.0	92	69-120
1,2,3-Trichloropropane	46.4	50.0	93	73-120
3romobenzene	46.1	50.0	92	75-127
1-Propylbenzene	39.8	50.0	80	70-131
?-Chlorotoluene	40.6	50.0	81	73-129
I-Chlorotoluene	38.4	50.0	77	70-128
,3,5-Trimethylbenzene	40.8	50.0	82	74-132
ert-Butylbenzene	42.1	50.0	84	68-131
.,2,4-Trimethylbenzene	43.6	50.0	87	76-137
ec-Butylbenzene	42.3	50.0	85	69-135
.,3-Dichlorobenzene	40.8	50.0	82	69-129
l-Isopropyltoluene	38.1	50.0	76	70-130
.,4-Dichlorobenzene	41.8	50.0	84	71-127
ı-Butylbenzene	38.0	50.0	76	66-140
,2-Dichlorobenzene	43.8	50.0	88	73-123
,2-Dibromo-3-chloropropane	46.0	50.0	92	66-120
,2,4-Trichlorobenzene	39.4	50.0	79	63-139
,2,3-Trichlorobenzene	44.2	50.0	88	67-137
Vaphthalene	46.9	50.0	94	69-134
Iexachlorobutadiene	40.3	50.0	81	58-132

'esults flagged with an asterisk (*) indicate values outside control criteria.

ercent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00041

rinted: 11/22/2004 09:43:46 1:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

2 of 2 Page

SuperSet Reference: RR43247

Semi-Volatile Organic Compounds EPA Method 8270C

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: 11/04/2004

Date Received: 11/08/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-110404-CB K2408877-001

Extraction Method: Analysis Method:

Benzo(g,h,i)perylene

EPA 3541 8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	3000 √D	260	75	2	11/18/04	12/15/04	KWG0418523	
Naphthalene	64 JD	260	34	2	11/18/04	12/15/04	KWG0418523	
2-Methylnaphthalene	NDIA	260	31	2	11/18/04	12/15/04	KWG0418523	
Acenaphthylene	ND JU	260	37	2	11/18/04	12/15/04	KWG0418523	
Acenaphthene	ND JU	260	26	2	11/18/04	12/15/04	KWG0418523	
Dibenzofuran	69 JD	260	34	2	11/18/04	12/15/04	KWG0418523	
Fluorene	72 JD	260	44	2	11/18/04	12/15/04	KWG0418523	
Phenanthrene	660 JD	260	34	2	11/18/04	12/15/04	KWG0418523	
Anthracene	140 JD	260	37	2	11/18/04	12/15/04	KWG0418523	
Fluoranthene	1400 JD	260	57	2	11/18/04	12/15/04	KWG0418523	
Pyrene	1200 JD	260	34	2	11/18/04	12/15/04	KWG0418523	
Butyl Benzyl Phthalate	930 D	260	39	2	11/18/04	12/15/04	KWG0418523	
Benz(a)anthracene	400JD	260	37	2	11/18/04	12/15/04	KWG0418523	
Chrysene	Dل 1100	260	37	2	11/18/04	12/15/04	KWG0418523	
Di-n-octyl Phthalate	D ل 11000	260	31	2	11/18/04	12/15/04	KWG0418523	
Benzo(b)fluoranthene	1100 JD	260	65	2	11/18/04	12/15/04	KWG0418523	
Benzo(k)fluoranthene	270JD	260	65	2	11/18/04	12/15/04	KWG0418523	
Benzo(a)pyrene	490 ĴD	260	42	2	11/18/04	12/15/04	KWG0418523	
Indeno(1,2,3-cd)pyrene	530 JD	260	49	2	11/18/04	12/15/04	KWG0418523	
Dibenz(a,h)anthracene	150 JD	260	57	2	11/18/04	12/15/04	KWG0418523	
T					11/10/04	10/12/04	72777777777	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Phenol-d6	63	40-123	12/15/04	Acceptable	
Nitrobenzene-d5	61	24-128	12/15/04	Acceptable	•
2-Fluorobiphenyl	77	28-126	12/15/04	Acceptable	·
Terphenyl-d14	119	56-152	12/15/04	Acceptable	·

60

2

11/18/04

12/15/04

KWG0418523

260

Comments:

Printed: 12/23/2004 13:19:59 U:\Stcalth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

00043

RR44239

Page 1 of 2

SuperSet Reference:

حل 790

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: 11/04/2004

Date Received: 11/08/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-110404-CB K2408877-001

Units: ug/Kg

Basis: Dry

· Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 12/23/2004 13:19:59

U:\Stealth\Crystal.rpt\Form1m.rpt

Marged

Form 1A - Organic

00044

SuperSet Reference:

RR44239

Page 2 of 2

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0418523-5

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methylphenol†	ND U	5.0	2.9	1	11/18/04	12/01/04	KWG0418523	
Naphthalene	ND U	5.0	1.3	1	11/18/04	12/01/04	KWG0418523	
2-Methylnaphthalene	ND U	5.0	1.2	1	11/18/04	12/01/04	KWG0418523	
Acenaphthylene	ND U	5.0	1.4	1	11/18/04	12/01/04	KWG0418523	
Acenaphthene	ND U	5.0	1.0	1	11/18/04	12/01/04	KWG0418523	
Dibenzofuran	ND U	5.0	1.3	1	11/18/04	12/01/04	KWG0418523	
Fluorene	ND U	5.0	1.7	1	11/18/04	12/01/04	KWG0418523	
Phenanthrene	ND U	5.0	1.3	1	11/18/04	12/01/04	KWG0418523	
Anthracene	ND U	5.0	1.4	1	11/18/04	12/01/04	KWG0418523	
Fluoranthene	ND U	5.0	2.2	1	11/18/04	12/01/04	KWG0418523	
Pyrene	ND U	5.0	1.3	1	11/18/04	12/01/04	KWG0418523	
Butyl Benzyl Phthalate	ND U	5.0	1.5	1	11/18/04	12/01/04	KWG0418523	
Benz(a)anthracene	ND U	5.0	1.4	1	11/18/04	12/01/04	KWG0418523	
Chrysene	ND U	5.0	1.4	1	11/18/04	12/01/04	KWG0418523	
Di-n-octyl Phthalate	ND U	5.0	1.2	1	11/18/04	12/01/04	KWG0418523	
Benzo(b)fluoranthene	ND U	5.0	2.5	1	11/18/04	12/01/04	KWG0418523	
Benzo(k)fluoranthene	ND U	5.0	2.5	1	11/18/04	12/01/04	KWG0418523	
Benzo(a)pyrene	ND U	5.0	1.6	1	11/18/04	12/01/04	KWG0418523	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1.9	1	11/18/04	12/01/04	KWG0418523	·
Dibenz(a,h)anthracene	ND U	5.0	2.2	1	11/18/04	12/01/04	KWG0418523	
Benzo(g,h,i)perylene	ND U	5.0	2.3	1	11/18/04	12/01/04	KWG0418523	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Phenol-d6	78	40-123	12/01/04	Acceptable
Nitrobenzene-d5	75	24-128	12/01/04	Acceptable
2-Fluorobiphenyl	80	28-126	12/01/04	Acceptable
Terphenyl-d14	95	56-152	12/01/04	Acceptable

Comm	ents:
------	-------

Analytical Results

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG0418523-5

Units: ug/Kg

Basis: Dry

· Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
MO-110404-CB	K2408877-001	63 D	61 D	77 D	119D
Method Blank	KWG0418523-5	78	75	80	95
MO-110404-CBMS	KWG0418523-1	55 D	47 D	63 D	75 D
MO-110404-CBDMS	KWG0418523-2	50 D	55 D	58 D	91 D
Lab Control Sample	KWG0418523-3	80	80	84	94
Duplicate Lab Control Sample	KWG0418523-4	78	76	80	90

Surrogate Recovery Control Limits (%)

		·
Surl = Phenol-d6	40-123	
Sur2 = Nitrobenzene-d5	24-128	•
Sur3 = 2-Fluorobiphenyl	28-126	• • •
Sur4 = Terphenyl-d14	56-152	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/23/2004 13:20:08

U:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

RR44239

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877

Date Extracted: 11/18/2004

Date Analyzed: 12/15/2004

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MO-110404-CB

K2408877-001

Units: ug/Kg Basis: Dry

Extraction Method:

Level: Low

EPA 3541

Analysis Method:

8270C

Extraction Lot: KWG0418523

	Sample	K	-110404-CB1 VG0418523- Vatrix Spike		MO-110404-CBDMS KWG0418523-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
4-Methylphenol	3000	2510	323	-142 #	2080	323	-277 #	13-139	19	40
Naphthalene	64	213	323	46	206	323	44	16-137	3	40
2-Methylnaphthalene	ND	205	323	64	200	323	62	29-119	3	40
Acenaphthylene	ND	243	323	75	241	323	75	35-145	1	40
Acenaphthene	ND	231	323	<i>7</i> 2	220	323	68	30-138	5	40
Dibenzofuran	69	251	323	57	260	323	59	32-131	4	40
Fluorene	72	284	323	66	274	323	62	31-145	4	40
Phenanthrene	660	724	323	20	700	323	12	12-161	3	40
Anthracene	140	296	323	47	288	323	45	26-153	2 .	40
Fluoranthene	1400	1100	323	-83 #	1180	323	-56 #	10-170	8	40
Pyrene	1200	975	323	-55 *	1050	323	-31 *	10-173	8	40
Butyl Benzyl Phthalate	930	802	323	-40 *	839	323	-29 *	38-155	5	40
Benz(a)anthracene	400	472	323	22 *	478	323	24	23-159	1	40
Chrysene	1100	960	323	-28 *	934	323	-36 •	19-166	3	40
Di-n-octyl Phthalate	11000	1020	323	-2941#	917	323	-2971#	45-144	11	40
Benzo(b)fluoranthene	1100	897	323	-52 *	914	323	-47 *	12-168	2	40
Benzo(k)fluoranthene	270	411	323	42	436	323	50	10-166	· 6	40
Benzo(a)pyrene	490	556	323	22	560	323	23	10-166	1	40
Indeno(1,2,3-cd)pyrene	530	597	323	20	555	323	7 *	16-164	7	40
Dibenz(a,h)anthracene	150	252	323	. 33	279	323	41	33-152	10	40
Benzo(g,h,i)perylene	790	714	323	-22 *	686	323	-31 *	17-154	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

U0048

Printed: 12/23/2004 13:20:11 U:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page 1 of 1

QA/QC Report

Client:

McCall Oil

Project:

McCall Oil/021062-02

Sample Matrix:

Sediment

Service Request: K2408877 Date Extracted: 11/18/2004

Date Analyzed: 12/01/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0418523

	KW	Lab Control Sample KWG0418523-3 Lab Control Spike			Duplicate Lab Control Sample KWG0418523-4 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
4-Methylphenol	172	250	69	172	250	69	30-111	0	40
Naphthalene	187	250	75	1 9 0	250	76	43-126	1	40
2-Methylnaphthalene	188	250	75	188	250	75	40-114	0	40
Acenaphthylene	222	250	89	217	250	87	49-131	2	40
Acenaphthene	201	250	81	195	250	<i>7</i> 8	46-122	3	40
Dibenzofuran	200	250	80	192	250	<i>7</i> 7	42-120	4	40
Fluorene	209	250	83	206	250	82	46-126	1	40
Phenanthrene	203	250	81	206	250	83	48-125	2	40
Anthracene	207	250	83	212	250	85	50-125	2	40
Fluoranthene	217	250	87	216	250	86	53-128	1	40
Pyrene	203	250	81	199	250	80	45-135	2	40
Butyl Benzyl Phthalate	220	250	88	216	250	86	54-134	2	40
Benz(a)anthracene	215	250	86	213	250	85	52-131	1	40
Chrysene	226	250	90	221	250	88	54-129	2	40
Di-n-octyl Phthalate	222	250	89	222	250	89	54-136	0	40
Benzo(b)fluoranthene	214	250	85	215	250	86	52-133	1	40
Benzo(k)fluoranthene	219	250	88	218	250	87	57-128	1	40
Benzo(a)pyrene	216	250	86	217	250	87	51-133	1	40
Indeno(1,2,3-cd)pyrene	214	250	85	214	250	86	50-137	0	40
Dibenz(a,h)anthracene	217	250	87	213	250	85	46-144	2	40
Benzo(g,h,i)perylene	218	250	87	215	250	86	45-141	1	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

uüü49

Printed: 12/23/2004 13:20:14 U:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

RR44239

ATTACHMENT C DATA VALIDATION REVIEW

DATA VALIDATION REVIEW REPORT

MCCALL / GWCC

October 2004

This report summarizes the review of analytical results for groundwater samples collected October 21, 22 and November 11, 2004, at the McCall/GWCC site in Portland, Oregon. Samples were collected by Anchor Environmental and submitted to Columbia Analytical Services, Inc. (CAS) in Kelso, Washington. Samples were analyzed for one or more of the following: polynuclear aromatic hydrocarbons (PAHs), plus 4-methylphenol, butylbenzylphthalate, di-n-octylphthalate and dibenzofuran by U.S. Environmental Protection Agency (USEPA) method 8270C; volatile organic compounds (VOCs) by USEPA method 8260B (USEPA, 1986); arsenic, chromium and copper by USEPA method 6020; petroleum hydrocarbons by Fuel Fingerprint (FIQ)-TPH. CAS sample data group numbers K2408403 and K2408430 were reviewed.

Sample ID	Location	Lab ID	Matrix	Analysis Requested
MO-102104-1	MW-10	K2408403-1	Water	VOC, FIQ-TPH, Metals (As)
MO-102104-2	EX-7	K2408403-2	Water	FIQ-TPH, Metals (As)
MO-102104-3	EX-7 (dup)	K2408403-3	Water	FIQ-TPH, Metals (As)
MO-102104-4	MW-6	K2408403-4	Water	VOC, FIQ-TPH, Metals (As)
MO-102104-5	MW-12	K2408403-5	Water	FIQ-TPH, Metals (As)
MO-102104-6	EX-2	K2408403-6	Water	PAH, FIQ-TPH, Metals (As)
MO-102104-7	EX-3	K2408403-7	Water	PAH, FIQ-TPH, Metals (As)
MO-102104-8	MW-8	K2408403-8	Water	PAH, VOC, FIQ-TPH, Metals (As, Cr, Cu)
MO-102104-9	MW-7	K2408403-9	Water	PAH, VOC, FIQ-TPH, Metals (As, Cr, Cu)
MO-102104-10	MW-14	K2408403-10	Water	PAH, VOC, FIQ-TPH, Metals (As, Cr, Cu)
Trip Blank		K2408403-11	Water	VOC
MO-102204-11	MW-5	K2408430-1	Water	VOC, FIQ-TPH, PAH, Metals (As)
MO-102204-12	EX-1	K2408430-2	Water	VOC, FIQ-TPH, Metals (As)
MO-102204-13	MW-1	K2408430-3	Water	VOC, FIQ-TPH, Metals (As, Cr, Cu)
MO-102204-14	MW-1 (dup)	K2408430-4	Water	VOC, FIQ-TPH, Metals (As, Cr, Cu)
MO-102204-15	MW-3	K2408430-5	Water	VOC, FIQ-TPH, Metals (As, Cr, Cu)
MO-102204-16	MW-9	K2408430-6	Water	FIQ-TPH, Metals (As)
MO-102204-17	EX-4 (MW-2)	K2408430-7	Water	VOC, FIQ-TPH, Metals (As)
MO-102204-18	MW-15	K2408430-8	Water	VOC
Trip Blank-2		K2408430-9	Water	VOC
MO-110404-CB	S-3	K2408877-1	Water	PAH, VOC, FIQ-TPH, Metals (As, Cd, Cr, Cu, Pb, Zn), TOC

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the data quality objective section of the Quality Assurance Project Plan (QAPP). Laboratory results were reviewed following USEPA guidelines (USEPA, 1994, 1999). Unless noted in this report, laboratory results for the samples listed above were within QC criteria. Gasoline results are semi-quantitative, due to potential loss of volatiles during the extraction process.

Laboratory Data Package and Field Documentation

Field documentation was checked for completeness and accuracy. The following were noted by CAS at the time of sample receipt: the samples were received in good condition and were consistent with the accompanying chain of custody.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyses were conducted within holding times. One sample was pH corrected upon arrival at the laboratory, no data were qualified.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. No analytes were detected in the laboratory method blanks.

Field Quality Control

Trip Blanks

Two trip blanks were submitted with the VOC samples. The trip blanks were free of contamination.

Field Duplicates

Two field duplicate pairs were collected: MO-102104-3/MO-102104-4 and MO-102204-13/MO-102204-14. The field duplicate pairs were comparable. No data were qualified due to these results.

Surrogate Recoveries

Surrogate recoveries for organic analyses were performed at the required frequencies. Surrogate recoveries were within the laboratory control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Matrix spike (MS) and matrix spike duplicate (MSD) samples, were analyzed at the required frequency. All MS and MSD percent recoveries (%Rs) were within the laboratory control limits with the following exceptions.

- The K2408877 FIQ MS/MSD %R for diesel and RRO's were above the control limits due to a high analyte concentration in the spiked sample. As the LCS was within acceptable limits, no data were qualified.
- The K2408877 VOC MS/MSD %R for 1,2-dichlorobenzene (8%, 7%) and naphthalene (5%, 4%) was below the control limits. As the LCS was acceptable, the associated sample results for these two analytes are only qualified as estimated (J), not rejected.
- The K2408877 VOC MSD %R for benzene (42%) was below the control limits. As the MS and LCS were within the control limits; no data were qualified.
- The K2408877 SVOC MS/MSD %Rs for 10 of the 21 spiked PAHs were outside the control limits due to high analyte concentration in the spiked sample. All PAHs are qualified as estimated (J) for the associated sample MO-110404-CB.

Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

Laboratory control samples were analyzed at the required frequencies. All LCS and LCSD percent recoveries were within laboratory control limits, no data were qualified due to these results.

Method Reporting Limits

Sample results were reported using the laboratories method reporting limits. Reporting limits were acceptable. Samples MO-102104-4 and MO-102204-12 were diluted for VOCs due to high analyte concentrations. Sample MO-110404-CB was diluted for PAHs due to high analyte concentrations. The reporting limits were appropriately adjusted to reflect the dilution.

Overall Assessment

The data are judged to be acceptable for their intended use as qualified. The following qualifiers were added as a result of this review.

Sample ID	Analyte	Original Result	Qualified Result	Reason
MO-110404-CB	diesel	1600 H	1600 JH	MS/MSD %R out
	RROs	8500 O	8500 JO	MS/MSD %R out
	1,2-dichlorobenzene	13 U	13 UJ	MS/MSD %R out
,	naphthalene	51 U	51 UJ	MS/MSD %R out
	PAHs	U, D, or JD	JU or JD	MS/MSD %R out

Precision, Accuracy, and Completeness

Precision:

All precision goals were met.

Accuracy:

All accuracy goals were met.

Completeness:

Completeness was 100 percent, all data are useable as qualified.

REFERENCES

- USEPA. 1983. Methods for Chemical Analysis of Water and Wastes. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio. EPA-600/4-79-020.
- USEPA. 1986. Test methods for Evaluating Solid Waste: Physical/Chemical Methods. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- USEPA. 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-94/013. February.
- USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-99/008. October.

Library Copy

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Suite 110 Portland, OR 97224 Phone 503.670.1108 Fax 503.670.1128

October 15, 2004 030162-01

Mr. Tom Gainer, P.E. Oregon Department of Environmental Quality 2020 SW 4th Avenue, Suite 400 Portland, Oregon 97201-4987

Re: Third Quarter 2004 Status Report; McCall Oil and Chemical Corporation, RIFS, Portland, Oregon, ECSI #134

Dear Tom:

This status report provides DEQ with information on the remedial investigation tasks completed during the third quarter 2004, and work planned for the fourth quarter 2004 for the McCall Oil and Chemical site in Portland, Oregon (Figure 1).

WORK COMPLETED THIRD QUARTER 2004

- data management and reporting
- submitted a revised draft of the Remedial Investigation Report to DEQ on July 30, 2004
- project management and meetings

PLANNED FOURTH QUARTER 2004 RI TASKS

- data management and reporting
- sample monitoring wells consistent with the sampling plan (Table 15) proposed in the July 2004 Draft Remedial Investigation Report
- evaluate the stormwater collection system and consider DEQ's request for a plan to conduct additional stormwater and catch basin sediment monitoring
- project management and meetings

RESULTS

No new data was generated during third quarter 2004.

PROBLEMS ENCOUNTERED

No problems were encountered during third quarter 2004.

If you have any questions, please let us know.

Sincerely,

John J. Renda, R.G.

Anchor Environmental, L.L.C.

John E. Edwards, C.E.G, R.G. Anchor Environmental, L.L.C.

Cc: Ted McCall; McCall Oil and Chemical

DRAFT

REMEDIAL INVESTIGATION REPORT MCCALL OIL AND CHEMICAL CORPORATION

VOLUME 1
TEXT, TABLES, FIGURES

Prepared for

McCall Oil and Chemical Corporation

Portland, Oregon

Prepared by

Anchor Environmental, L.L.C. 6650 SW Redwood Lane, Ste 110 Portland, Oregon 97224

July 2004

Table of Contents

1	EXECUTIVE SUMMARY				
	1.1	Work Completed	1		
	1.2	Findings			
	1.3	Recommendations	5		
	1.3.1	LNAPL Characterization	5		
	1.3.2	Focused Human Health Risk Assessment	5		
	1.3.3	Bioaccumulation	6		
2	INTE	RODUCTION	7		
3		KGROUND			
	3.1	Synopsis of Site Background			
	3.2	RI Goals and Objectives			
	3.2.1				
	3.2.2	,			
	3.3	Summary of RI Reports and Agency Meetings Completed to Date			
	3.4	Site Conditions.			
	3.4.1				
	3.4.2	Contaminants of Interest (COIs)	19		
4	INVE	STIGATION	22		
	4.1	Beneficial use Evaluation	22		
	4.2	Ecological Level 1 Scoping Assessment	2 3		
	4.3	Supplemental Remedial Investigation Work Scope	23		
	4.4	Groundwater Pathway			
	4.4.1	Groundwater Work Completed	24		
	4.4	1.1.1 Test Borings			
	4.4	1.1.2 Monitoring Wells	25		
	4.4	1.1.3 Aquifer Tests			
	4.4	l.1.4 Water Quality Testing			
		I.1.5 Soil Testing			
		Groundwater Findings			
		1.2.1 Groundwater Flow System			
		1.2.2 Groundwater Quality			
		Storm Water Pathway			
		Scope of Storm Water Sampling Program			
		5.1.1 Storm Water BMPs			
		5.1.2 Storm Water			
		5.1.3 Catch Basin Sediment			
		5.1.4 River Sediment at Outfall			
	4.5.2				
		5.2.1 Storm Water and Catch Basin Sediment Quality			
	4.6	Risk Screening Evaluation	39		

Table of Contents

4.6.1	Groundwater Screen	40
4.6.2	Soil Screen	41
4.6.3		
4.7	Contaminants of Potential Concern (COPCs)	44
5 DAT	A GAP ANALYSIS	46
5.1	Source Control Findings	
5.2	Upland Human Health Risk Assessment	46
6 REFE	RENCES	47
List of T	ables	
Table 1	Groundwater Sampling Rationale	
Table 2	Sampling Matrix Groundwater and Storm water	
Table 3	Sampling Matrix Upland Soil and Catch Basin Sediment	
Table 4	Monitoring Well and River Hydrology Measurements	
Table 5	Total Petroleum Hydrocarbons Groundwater and Storm water	
Table 6	PAHs and SVOCs Groundwater and Storm water	
Table 7	Volatile Organic Compounds Groundwater	
Table 8	Metals Groundwater and Storm water	
Table 9	Total Petroleum Hydrocarbons Upland Soil	
Table 10	PAHs and SVOCs Upland Soil and Catch Basin Sediment	
Table 11	Volatile Organic Compounds Upland Soil	
Table 12	Metals Upland Soil and Catch Basin Sediment	
Table 13	Shoreline Groundwater Comparison with Surface Water Screening Criteria	
Table 14	Storm water Comparison with Aquatic Ecological Screening Criteria	
Table 15	Sampling Plan	
List of F	igures	
Figure 1	Location Map	
Figure 1E	3 Land Use Map	
Figure 2	Boring and Well Location Map	
Figure 3	Conceptual Site Model	
Figure 4	Groundwater Elevation Contour Map, March 2002	
Figure 5	Groundwater Elevation Contour Map, October 2002	
Figure 6	Cross Sections A-A' Through E-E'	
Figure 7	Benzo(a)Pyrene in Groundwater	
Figure 8	Chlorinated Solvents in Groundwater	

Table of Contents

List of Appendices (See Volume 2)

Appendix A Level I Ecological Scoping Assessment

Appendix B Boring and Well Logs

Appendix C Aquifer Test Report

Appendix D Water Quality Trend Plots

Appendix E Field Sampling Data Sheets

Appendix F Well MW-11 LNAPL Forensic Test Report

Appendix G Soil Grain Size and Total Organic Carbon Data

1 EXECUTIVE SUMMARY

1.1 Work Completed

- Agreement and Workplans. McCall Oil and Chemical Corporation (MOCC) and the
 Oregon Department of Environmental Quality (DEQ) entered into a Voluntary
 Agreement for Remedial Investigation and Source Control Measures (Agreement) on
 May 8, as amended in August, 2000. The RI Proposal was completed June, 2000.
 The Focused RI Investigation Workplan (Workplan) was completed November 16,
 2000.
- Operational and Release History. Preparation of the RI Proposal included review of site records with employee interviews to compile a facility history of chemicals handled and documented chemical releases. The history of releases was amended by additional employee interviews and resubmitted in Appendix C of the April, 2001 Interim Status Report.
- Meetings, Reports and Communications. Since signing the Agreement, McCall has
 maintained close communication with DEQ through the submittal of eight status
 reports, two supplemental workplans, five meetings, numerous e-mail and phone
 conversations.
- Conceptual Site Model. The project CSM identified the potential pathways by which potential human or ecological receptors could be exposed to chemicals of interest (COIs) from the site.
- COIs Investigated. The RI evaluated the following classes of COIs for the potential pathways identified in the CSM.
 - chlorinated VOCs
 - total petroleum hydrocarbons (TPHs) as diesel, oil, and gasoline
 - polynuclear aromatic hydrocarbons (PAHs)
 - benzene, toluene, ethylbenzene, xylenes
 - metals (arsenic, cadmium, chromium, copper, lead, zinc)
 - miscellaneous semivolatile organic compounds (SVOCs)
- Beneficial Use Evaluation.
- Ecological Level 1 Scoping Assessment
- Groundwater Assessment. The groundwater pathway was assessed in phases through the installation and sampling of 63 GeoProbe borings and 20 monitoring

wells. Four monitoring events were conducted, during which the wells were tested for the COIs. Groundwater flow in the alluvial aquifer was defined using hydrologic data from the monitoring events. Alluvial aquifer hydraulic properties were determined through the completion of aquifer well tests. The grain size and total organic carbon of the shallow aquifer materials were also tested. Results of the grain size and total organic carbon are in Appendix G.

- Stormwater Assessment The storm water pathway was assessed by sampling storm water and sediments from three facility catch basins and an oil-water separator. Storm water from two rainfall events was sampled and tested for the COIs. Sediment from the three catch basins was tested for the COIs.
- Risk Screen. The risk screen included an analysis of COI concentrations that have occurred along the groundwater, storm water and soil pathways identified in the CSM. The risk screen process identified contaminants of potential concern (COPCs) for further evaluation and risk assessment.

1.2 Findings

- Beneficial Use. The only identified beneficial use for site groundwater and storm
 water results from their role as recharge sources for the adjacent Willamette River.
 Drinking water is not a viable beneficial use for groundwater beneath the Site.
- Ecological Level 1 Scoping Assessment. Available evidence indicates there are no
 significant pathways by which important terrestrial ecological receptors could be
 exposed to site related chemicals that are present in soil. Site related chemicals in
 groundwater or storm water could migrate to surface water of the Willamette River
 where they could be encountered by ecological receptors.
- Groundwater Findings. As defined for this project the alluvial aquifer includes
 dredge sand overlying river alluvium. The river alluvium is approximately 75 feet
 thick and overlies Columbia River Basalt bedrock. Only groundwater in the upper
 portion of the alluvial aquifer has water quality impacts from neighboring properties
 and historic site operations. Groundwater in the alluvial aquifer flows to the
 Willamette River. Horizontal hydraulic conductivity of the alluvial aquifer ranges
 from 0.003 to 0.16 ft/minute.
 - TPH in the gasoline, diesel, and heavy fuel oil ranges has been detected in the alluvial aquifer throughout the site. A petroleum light non-aqueous phase

liquid (LNAPL) identified as a residual Bunker C or diesel fuel has been detected on the boundary between the facility and Tube Forgings. Review of the DEQ UST file for Tube Forgings shows that Tube Forgings had a release of Bunker C fuel near the McCall property line. The shape of the LNAPL plume along the property line and forensic identification of the product indicates that the LNAPL migrated onto the McCall property from the Tube Forgings Bunker C release.

- Trace concentrations of the SVOC COIs have been detected in the alluvial aquifer.
- Two areas of chlorinated VOC contamination have been identified. The largest area represents a plume that originates near well EX-1 in the former solvent drumming area and extends downgradient to the river. The second area includes several wells on the Quadra property and this contamination may be a plume that has developed from several sources.
- Copper, chrome, and arsenic from a former wood treating chemical packaging process have been detected in groundwater.

Groundwater and Soil Risk Screen Results.

- Groundwater COI concentrations at shoreline wells did not exceed chronic aquatic life criteria for any constituents (Table 13).
- Groundwater gasoline, diesel, and PAH concentrations did not exceed DEQ RBCs for volatilization to outdoor air or vapor intrusion to buildings (Tables 5 and 6). For these constituents, the indoor and outdoor air pathways do not pose a significant risk until saturation conditions are reached (i.e., free product). Because groundwater is encountered at depths of about 13 to >20 feet below grade (Table 4), direct contact of groundwater with excavation workers is not considered a significant pathway. Several of the wells appear impacted by offsite sources.
- Chlorinated solvent concentrations were above RBCs for vapor intrusion to indoor air in very limited areas of the Site (Table 7). TCE and PCE were consistently at or above indoor air RBCs at location EX-1. TCE was above the vapor intrusion RBC in one monitoring round at location MW-6; however, this exceedance has not been confirmed in two subsequent monitoring rounds. Neither of these two locations are situated below an enclosed

- building; thus, the pathway does not appear to be complete considering RBCs for volatilization to outdoor air were not exceeded.
- Petroleum LNAPL is present and may be a hot spot.
- Petroleum constituents (gasoline and diesel) in Site soils did not exceed DEQ risk-based concentrations (RBCs) for occupational and excavation workers (Table 9). In a very limited location (GP-31, 14-16'), the construction worker RBC for diesel was exceeded. GP-31 is within the LNAPL Bunker C plume. This same sample exceeded RBCs for three carcinogenic PAH compounds for occupational and/or construction worker scenarios (Table 10). However, because of the excessive depth of this sample (14 to 16 feet below grade), these are not considered significant exposure pathways. One other sample (GP-29, 4-6') exceeded the occupational RBC for benzo(a)pyrene. Samples from both locations (GP-31 and GP-29) were collected from areas identified with LNAPL.
- No VOCs in site soils, neither hydrocarbons nor chlorinated solvents, were above Site screening levels for direct contact, indoor or outdoor air (Table 11).

Stormwater and Catch Basin Sediment Findings.

- Constituents from all classes of the COIs were detected in storm water.
- NPDES concentration limits for Quadra Chemical and McCall Oil were not exceeded.
- Target COIs were also detected in the sediment samples obtained from the catch basins.

Stormwater and Catch Basin Sediment Risk Screen Results.

- No constituents in stormwater exceeded the aquatic life screening criteria (Table 14).
- Catch basin sediment COI concentrations did not exceed Draft DEQ RBCs for excavation workers, which represent workers who may be involved with maintenance of the storm sewer (Tables 5, 6). Catch basin sediment arsenic concentrations did exceed Region 9 industrial PRGs. The actual exposure that occurs during annual catch basin cleaning is likely much less than is assumed for the derivation of the arsenic industrial PRG.

- McCall has implemented best management practices (BMPs) to protect stormwater quality, including inlet protection, oil-water separator, and routine cleanout of accumulated sediments in catch basins.
- Based on the risk screening evaluation, no COPCs were identified for the storm water pathway to the river.
- COPCs and Exposure Pathways. Based on the risk screening analysis, the following COPCs and exposure pathways may warrant further evaluation.
 - carcinogenic PAHs (LNAPL free product area; contingent construction worker)
 - TPH (LNAPL free product area; contingent construction worker)
 - arsenic (storm sewer utility worker)
 - chlorinated VOCs (indoor air, occupational workers)

1.3 Recommendations

The following tasks are recommended to fill the remaining Remedial Investigation data gaps.

1.3.1 LNAPL Characterization

Characterization of the LNAPL detected at well MW-11 was recently completed to support a hot spot determination. A total of fourteen Geoprobe borings were advanced and two monitoring wells were installed (one in the center of the plume and the other at the downgradient boundary) to identify the extent of the LNAPL plume. The extent of the onsite LNAPL plume was identified (Figure 2); however, the full extent of the LNAPL plume cannot be determined until investigations are carried out on the Tube Forgings property. Forensic analysis of the LNAPL (Appendix G) showed that the LNAPL is a residual Bunker C or diesel fuel. The DEQ UST files for Tube Forgings shows that Tube Forgings had a Bunker C release near the McCall property line. Tube Forgings is responsible for future evaluation and remediation of the LNAPL on the McCall property.

1.3.2 Focused Human Health Risk Assessment

A focused upland human health risk assessment may be necessary to better quantify the risks associated with the LNAPL area adjacent to Tube Forgings, arsenic in the storm

sewer catch basin sediments, and potential chlorinated VOCs impacts to indoor air. If an upland human health risk assessment is required by DEQ, McCall may elect to conduct the risk assessment under a separate VCP agreement.

1.3.3 Bioaccumulation

Assessment of bioaccumulation risks to fish and fish-eating organisms (including humans) is a watershed-scale issue that is best evaluated in consideration of the cumulative effects of all point and nonpoint source mass loadings to the river, and their effects on the long-term average concentration in the receiving water and the surface-weighted average concentration in sediments. The bioaccumulation risk associated with COIs found at this Site, if any, should be evaluated in the context of the regional investigation currently underway by the Lower Willamette Group. If necessary, the information presented herein will be sufficient to develop mass loadings for comparison with other point and nonpoint sources to the river.

2 INTRODUCTION

On behalf of McCall Oil & Chemical Corporation (MOCC), Anchor Environmental L.L.C. (Anchor) prepared this draft Remedial Investigation report for the MOCC and former Great Western Chemical Company facility in Portland, Oregon. This report was prepared pursuant to a "Voluntary Agreement For Remedial Investigation and Source Control Measures" (the Agreement) entered into between MOCC/GWCC and the DEQ on May 8 as amended in August, 2000. As of July 15, 2001, the former GWCC facility has been operated by Quadra Chemical Corporation (Quadra) and MOCC retains responsibility for meeting the obligations of the Agreement. The Agreement requires MOCC to conduct an RI that satisfies the requirements of OAR 340-122-080 and to assess and implement, as needed, source control measures to address contaminant migration from the facility to the Willamette River consistent with OAR 340-122-070. This document is designed to satisfy the requirements for the Remedial Investigation Report described in the scope of work (SOW), Attachment B to the Agreement.

The Agreement is a response to the DEQ's efforts to investigate potential upland sources of contamination along the Portland Harbor, at a facility-by-facility level. Information from this investigation may be used to support the Portland Harbor sediment RI and feasibility study (FS) as applicable. The overlying goal of the Agreement, therefore, focuses on whether past or present activities at the facility currently contribute, or have the potential to contribute, to impacts on Willamette River water and sediments. This investigation has been conducted to meet the requirements of the Final McCall Oil and Chemical Corporation Focused Remedial Investigation Workplan, Portland, Oregon, prepared by IT Corporation, November 16, 2000 (Workplan).

3 BACKGROUND

Synopsis of Site Background

The site is located in the industrialized area of northwest Portland along NW Front Avenue (see Figure 1). It occupies approximately 36 acres on the southwest bank of the Willamette River. The site encompasses six tax lots. Before 1966, most of the land now occupied by the McCall Oil Terminal was submerged beneath the Willamette River (Figure 2). The Port created new land along the Willamette during the mid-1960s by dredging and filling along the shore. This land, including a portion of the subject site, was deeded to the Port by the state of Oregon in 1967. A detailed description of the ownership and operational history of the site is in the Workplan and in the RI Proposal, which is Appendix D to the Workplan. In this report the former GWCC facility is referred to as the Quadra facility.

The property is currently occupied by two separate facilities: MOCC, which operates a marine terminal and asphalt facility, and Quadra, which operates the former GWCC chemical distribution facility. Until 1995, the GWCC facilities consisted of two operating units, the GWCC Technical Center and the GWCC Portland Branch. The Technical Center included the former Chemax operations. In 1995, GWCC's two operating units were merged into the Portland Branch. Current and historical activities associated with the operations of each of these facilities are discussed in detail in chapters two through five of the RI Proposal (Appendix D to the Workplan). McCall purchased the marine terminal property from the Port of Portland in 2004 and now owns all of the property shown on Figure 2.

The site is included in the Willamette Greenway (Greenway) established by the City of Portland to monitor and control land use next to the river. The site and surrounding properties are zoned for heavy industrial use, both within the Greenway on the northwest (i.e., downriver) bank and outside of the Greenway. Surrounding industries include: petroleum bulk distribution terminals, chemical plants, sand and gravel operations, a steel fabrication facility, shipyards, and rail yards.

In the mid-1920s, the Port purchased the property now occupied by MOCC and GWCC as part of an approximately 65-acre parcel that stretched from the lands owned by Union Oil

Company of California (Unocal) on the west, to the Willamette River. Prior to the mid-1940s the property was vacant. In 1946, Pioneer Flintkote Company (Flintkote) purchased two parcels from the Port. Those parcels are currently occupied by Quadra and the MOCC asphalt plant, respectively.

Flintkote manufactured asphalt roofing shingles and tiles on the property from 1947 to approximately 1982. Historical occupation records indicate that Standard Oil Company operated a distribution center at the site during the 1950s (SAFE, 1994). By 1960, Douglas Oil Company (Douglas) occupied this address, and operated an asphalt facility. In 1962, Douglas purchased the facility from Flintkote. Douglas and Flintkote continued to operate their respective facilities until 1982, when both parcels and the improvements were sold to MOCC. Chemax began operations on the former Flintkote site in early 1984. The Portland branch began its on-site operations in late 1985. In 1985, MOCC operated a lube oil distribution facility on part of the asphalt plant site. The lube oil operations were discontinued in 1991.

In the early to mid-1960s, the Port used dredge spoils from the Willamette River channel (primarily fine sand) to create new land along the Willamette River next to the Flintkote and Douglas facilities. As stated previously, this land was subsequently deeded to the Port by the state of Oregon in 1967. In the mid-1970s, MOCC constructed the marine terminal on the filled land.

3.2 RI Goals and Objectives

This section links the overall goals and objectives of the focused RI with objectives previously identified in the Agreement.

3.2.1 Goal of Focused RI

The overlying purpose for the DEQ entering into agreements with property owners along the Willamette River was to address possible upland conditions that may contribute to sediment contamination in the Portland Harbor project area of concern. The investigation at this site therefore focuses on the transport mechanisms and exposure pathways that could contribute to river sediment impacts (i.e., through groundwater and stormwater). The investigation approach evaluates groundwater

quality in the upper aquifer as a whole and assesses whether any contaminants detected will pose a risk to the river. Stormwater quality is also evaluated at the site discharge points. In addition, a risk screening evaluation was conducted to assess potential risks to upland site workers, including site occupants, excavation workers, and construction workers (the latter contingent on extensive site redevelopment).

The primary goal of the focused RI is to identify and characterize potential contaminant sources, if any, at the site that could contribute to river sediment impacts or unacceptable risks to site workers. This goal translates to a number of project specific objectives developed for the RL. The following RI objectives were identified in the Workplan.

- characterize groundwater quality in upper aquifer and screen for COPCs
- · characterize stormwater quality
- characterize hydrogeology of site to assess dynamics of groundwater flow and contaminant transport
- conduct fate and transport analyses to determine if storm water and/or groundwater pathways have potential current or future unacceptable impact on the river
- conduct source area evaluation(s) if fate and transport analyses indicate potential current or future unacceptable river impact

3.2.2 RI Objectives Defined in Agreement

The Agreement listed a number of generic objectives in Section II of the SOW. These are paraphrased below and then discussed in the context of work already completed. Alignment of these objectives with project-specific objectives and the overlying project goal also is defined where appropriate.

- A. Identify and characterize upland hazardous substance source areas.
- B. Evaluate contaminant migration pathways from upland to river.
- C. Determine nature and extent of affected upland media.

- D. Identify potential human and ecological receptors.
- E. Collect upland data to allow identification of possible source areas that may impact sediment quality or upland site workers. Risk-based ecological and human health screening levels were developed to facilitate source area identification.
- F. Conduct risk assessment.
- G. Determine if upland hot spots are present.
- H. Achieve adequate data quality for site characterization and risk assessment.
- I. Develop information necessary to evaluate and implement necessary source control measures, if needed.
- J. Implement necessary source control measures.

Objectives A and B. RI objectives A and B have been largely completed through the efforts of the 1994 Preliminary Assessment (EMCON, 1994b), preparation of the RI proposal (IT, 2000a), and the monitoring that has occurred since 1994. The RI proposal documented the areas of MOCC and GWCC industrial activity and locations of documented releases. This information was an important criterion used in the design of the pre-RI groundwater and storm water monitoring programs. The pre-RI storm water and groundwater monitoring points are downgradient of historic release areas and the most active areas of industrial operations. This RI has largely completed the needed characterization of the potential source areas and the lateral extent of groundwater impacts possibly associated with those sources.

The RI proposal evaluated potential exposure pathways through the conceptual site model (CSM). The CSM presented in the Workplan is still valid. The investigative work described in this report largely completes the evaluation of the stormwater and groundwater pathways to the river.

Objective C. As required in Objective C, the contaminants of interest (COI) identified in the Workplan have been evaluated in this RI.

Objective D. RI objective D has been largely completed through the CSM analysis described in the RI proposal and Workplan. With respect to goals identified for this focused RI, potential receptors include aquatic organisms in the river through the groundwater and surface water pathways. Upland human receptors identified for exposure in the CSM (e.g., industrial on-site workers, construction and trench workers) are also evaluated in this focused RI. Potential impacts to human anglers and fish-eating wildlife, through bioaccumulation pathways, are best evaluated in the context of the regional investigation currently underway as part of the Portland Harbor RI/FS, and will not be discussed herein. A Level 1 Ecological Screening Assessment was completed and is reported herein.

Objective E. Objective E has been met in this RI through the detailed evaluation of the groundwater and storm water pathways to the river. This focused RI has not included an investigation of the river or river sediment as this would potentially be duplicative of activities proposed for the Portland Harbor RI/FS. Any sediment data collected would also lack the necessary context of sediment dynamics and upriver-downriver sediment chemistry data critical to understanding the origin of possible sediment contamination, especially in this highly industrialized area with numerous potential sources.

Objective F. Following agency approval of completion of the RI, Objective F will be met by conducting a human health risk assessment focused on the exposures to occupational, construction, and excavation workers of LNAPL in the vicinity of MW-11, solvent vapors in the vicinity of the drum handling area near EX-1, and arsenic in the site storm sewers. This RI report includes a screening of site groundwater and storm water COI concentrations against ecological and human health criteria for the purpose of identifying exposure pathways that may warrant further evaluation as part of a risk assessment. Depending upon the status of the Portland Harbor investigation and other factors, McCall may elect to conduct the upland human health risk assessment under a separate Voluntary Agreement with DEQ.

Objective G. This RI Report describes the status of the hot spot analysis for groundwater and storm water. A possible petroleum hydrocarbon LNAPL hot spot has

been identified on the southern site boundary. Evidence gathered to date indicates that the LNAPL is sourced from a historic Bunker C release at the neighboring Tube Forgings property.

Objective H. Data quality objectives required to meet objective H were specified in the quality assurance and quality control plan in Appendix B of the Workplan. Those objectives have been met.

Objectives I and J. This focused RI has been conducted to gather the data necessary to evaluate source control measures to meet objective I, should the risk assessment indicate such measures are needed. If the risk assessment indicates that source control measures are needed, the feasibility study could identify additional data needs required for the design of source control measures. Any designed source controls would be implemented to meet objective J.

3.3 Summary of RI Reports and Agency Meetings Completed to Date

This section provides a sequential listing of the remedial investigation status reports provided to DEQ and the meetings held with DEQ, since DEQ's approval of the November 2000 Workplan. The list includes the date of occurrence and a summary of the key topics discussed or presented.

April 30, 2001, Focused Remedial Investigation Interim Status Report This interim status report described the data resulting from the following tasks.

- 44 test borings completed
- laboratory testing of soil and groundwater grab samples from the test borings
- installation of a piezometer near well EX-6 for use during a planned pump test
- water level monitoring
- field slug tests in monitoring wells EX-1, EX-5, EX-7, and MW-4
- laboratory testing of sediment and water samples from stormwater catch basins
- laboratory testing of a composite river sediment sample collected at the outfall from catch basin S-3
- level 1 ecological scoping assessment
- review of historic industrial practices and spill history

May 29, 2001, DEQ Meeting

This meeting was held to discuss the Interim Status Report and conceptual plans for further investigation.

August 1, 2001, DEQ Meeting

This meeting was held to discuss the sale of Great Western Chemical to Quadra Chemical, plus plans and schedule for further investigation.

September 24, 2001, Status Report and Supplemental Investigation Workplan The Work Plan included six tasks.

- 1. Phased installation of monitoring wells MW-6 through 13 and Geoprobe borings GP-45 through 55, installation of a piezometer, decommissioning of well EX-6
- 2. New well development and sampling
- 3. Sampling all wells
- 4. Stormwater sampling and testing
- 5. Well pump tests
- 6. Reporting

January 14, 2002, Status Report

This report summarized the work completed during the fourth quarter 2001 and work planned for first quarter 2002.

- monthly water level measurements
- installation and sampling of wells MW-6, 7, 8, 9, and piezometer TPZ-2
- completion of Geoprobe borings GP-45 through 55
- laboratory testing of soil and groundwater samples

April 18, 2002, Status Report

Work completed

- installed, developed, and sampled monitoring wells MW-10, 11, 12, and 13
- surveyed all new wells
- March, measured water levels, sampled all wells and stormwater catch basins
- laboratory testing

May 15, 2002, Data Report

This report provided water level data and data from laboratory testing of groundwater and stormwater.

July 15, 2002, Status Report

This report covered the results of the first quarter sampling and the findings from aquifer testing conducted using river tide lag methodology.

July 31, 2002, DEQ Meeting

This meeting was held to discuss the work completed, future tasks and schedule.

October 15, 2002, Status Report

This report discusses the July 31, 2002 meeting and work planned for fourth quarter 2002.

October 24, 2002, DEQ Meeting

A meeting was held with DEQ to discuss the RI report schedule and an evaluation of source control measures.

November 14, 2002, Conceptual Supplemental RI Workplan

This workplan is designed to cover the following data gaps agreed with DEQ.

- extent and source of free product at well MW-11
- exceedance of ambient water quality criteria in groundwater at river edge

This workplan includes plan and schedule to conduct three tasks.

- 1. characterization of the free product at MW-11 by phased installation of Geoprobe borings and monitoring wells
- 2. RI report preparation
- 3. assessment of groundwater to river transition zone near well MW-8

November 21, 2002, DEQ Comment Letter on the November 14 Conceptual Supplemental RI Workplan

This letter included four comments on the conceptual plan to conduct task 3, the assessment of groundwater to river transition zone. DEQ's suggested changes to the conceptual workplan, if implemented, would expand the groundwater to river transition zone evaluation to other site areas beyond well MW-8.

January 15, 2003, Status Report

The report covered work completed during fourth quarter 2002.

- water level measurements October 2
- sampling of all monitoring wells and laboratory testing
- · sampling and forensic lab testing of free product from well MW-11
- DEQ meeting
- · conceptual supplemental RI work plan submitted to DEQ

January 21, 2003, DEQ Meeting

This meeting was held to discuss DEQ's comments in the agency's November 21, 2002 letter. At the meeting Anchor proposed to use updated EPA surface water quality criteria (including EPA 2002a and 2002b) to screen groundwater quality in shoreline monitoring wells, and 5 times the chronic ambient water quality criteria (EPA, 2002a) to screen storm water. Anchor also suggested using toxicity equivalency factors to evaluate human health risks associated with polycyclic aromatic hydrocarbons (PAHs). DEQ agreed to evaluate these proposals.

January 23, 2003, DEQ E-mail

Tom Gainer requests that preparation of the RI report not be delayed while DEQ reviews the proposals made during the January 21 meeting.

April 15, 2003, Status Report

This report discusses the January 21, 2003 meeting and work planned for second quarter 2003.

June 2003, Remedial Investigation Report

The first draft of this report was submitted to DEQ.

July 14, 2003, Status Report

This report discusses the submittal of the June 2003 Remedial Investigation Report and plans for investigation of the LNAPL plume.

July 30, 2003, DEQ Comment Letter

DEQ provided comments on the June 2003 Remedial Investigation Report.

October 15, 2003, Status Report

This report discusses the results of the October 6, 2003 investigation of the LNAPL plume.

October 16, 2003, Response to July 30, 2003, Comment Letter, Remedial Investigation Report

This response to DEQ's July 30, 2003 comment letter on the remedial investigation report includes responses to DEQ's comments, plans for supplemental site investigations including installation of monitoring wells MW-14 and MW-15, and a proposed groundwater monitoring plan.

November 13, 2003, DEQ Comment of Anchor's October 16, 2003 Response Letter This letter provides DEQ's comments on Anchor's October 16, 2003 response letter and accepts the proposed groundwater monitoring plan with minor modifications.

January 15, 2004, Status Report

This report discusses the results of the October 6, 2003 investigation of the LNAPL plume and the installation of monitoring wells MW-14 and MW-15

April 15, 2004, Status Report

This report discusses the February 2004 monitoring event and includes the February 2004 sampling results, and well logs for monitoring wells MW-14 and MW-15.

July 13, 2004, Status Report

This report discusses that Anchor is currently revising the Remedial Investigation Report.

3.4 Site Conditions

3.4.1 Conceptual Site Model

The CSM identifies the sources, pathways and receptors that were considered in designing the focused Workplan (Figure 3). Although MOCC and Quadra operate independently, the CSM covers both facilities because the two facilities are adjacent to

each other, and have potentially overlapping exposure pathways to the Willamette River.

The CSM illustrates the site's potential exposure pathways from potential source areas to potential receptors. The CSM considers all media including: soil, groundwater, surface water, sediment, and air.

Five classes of potential receptors were identified on Figure 3 on the basis of current and reasonably likely future land use. The site and surrounding area are currently used for industrial purposes, are zoned industrial, and are likely to remain industrial for the foreseeable future.

Of primary concern to this focused RI are the ecological receptors of the Willamette River. For the purposes of the CSM, all flora and fauna potentially exposed to river water or sediments are grouped under the heading of ecological receptors. Potential secondary contaminant sources to these receptors are groundwater and storm water (i.e., surface water) that discharge to the Willamette River water and sediments. These are two potentially complete pathways that are addressed in this RI Report.

The CSM also identifies some exposure routes for trench workers, construction workers, and industrial (occupational) on-site workers. As appropriate, these exposure routes are assessed in the upland areas. Specifically, occupational workers may come in contact with surface soils (0 to 3 feet below grade), volatilization to outdoor air, and vapor intrusion to buildings. Construction and excavation workers may come in contact with subsurface soils. However, construction and excavation workers are not likely to contact groundwater because the water table lies at 12 to 20 feet below grade, i.e. below the practical limits of excavation for this Site. Utility workers may also contact catch basin sediments during cleanout or beach sediments during outfall maintenance.

Recreational users of the Willamette River are unlikely to contact sediments and shallow river water adjacent to the Site during swimming and wading activities because the Site and surrounding properties are industrial in nature with no public access facilities.

These are therefore considered insignificant pathways. Fish-eating humans and wildlife

may be exposed to contaminants which have bioaccumulated in fish tissue; however, bioaccumulation is a watershed-scale issue that is best evaluated in the context of the regional investigation currently underway by the Lower Willamette Group.

3.4.2 Contaminants of Interest (COIs)

The site contaminants of interest (COIs) were selected on the basis of chemicals that were (1) historically or currently used or stored at the facility, (2) detected in adjacent Willamette River sediment samples, or (3) detected in site storm water. The classes of COIs historically or currently used or stored at the site include:

- chlorinated VOCs
- total petroleum hydrocarbons (TPH) as diesel and oil
- polynuclear aromatic hydrocarbons (PAHs)
- metals (in particular, arsenic, chromium, and copper)

Total petroleum hydrocarbons have been tested at the site for the purpose of identifying and characterizing potential upland source areas. TPH concentrations at the site were also screened using DEQ's "Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites" (DEQ, 2003). The DEQ guidance was also used to evaluate toxic components of diesel- and oil-range hydrocarbons in soil and groundwater, in particular PAHs.

Because of the extended history of petroleum storage, handling, and shipping at the various bulk terminals in the vicinity of the site, the following COI's were included in the investigation, although no significant on-site sources of these chemicals are known:

- · total petroleum hydrocarbons (TPH) as gasoline
- benzene, toluene, ethylbenzene, xylenes (BTEX), and related target volatile compounds per DEQ (2003)

Chlorinated VOCs have not been identified as Willamette River target compounds by DEQ, but chlorinated VOCs have been detected in groundwater at the site. These have therefore been investigated as COIs for the site.

During the Portland Harbor Sediment Investigation Report (Weston, 1998), EPA's contractor collected and analyzed sediment samples from six Willamette River locations near the site. Sample locations SD 114, 117, 118, 120, and 123 are shown on Figure 2. Location SD-115 is located further north, just beyond the area covered by Figure 2. The Weston investigation obtained surface sediment samples (0 to 10 cm depth) at all locations. Subsurface core samples were also obtained at locations SD 117 and SD 120 (0 to 90 cm depth).

The Weston samples were tested for inorganic, semivolatile organic compounds (SVOCs), VOCs, pesticides, and organotin compounds. On pages 2 and 3 of the Agreement, the agency listed the following compounds that exceeded baseline concentrations established for the Portland Harbor Study Area:

Surface Sediment Constituents Exceeding Baseline Values:

aluminum

zinc

cadmium

4-methylphenol

cobalt

butyl benzyl phthalate

lead

di-n-octyl phthalate

mercury

Subsurface Sediment Constituents Exceeding Baseline Values:

aluminum

4-methylphenol

barium

dibenzofuran

cobalt

LPAH

mercury

HPAH

zinc

With one exception, all of the constituent concentrations were well below dredged material screening levels (USACE et al., 1998). The exception was the shallow sample from SD 120 that had a 4-methylphenol concentration of 880 µg/kg. The dredged material screening level for this compound is 670 µg/kg. Of these chemicals, the four SVOCs and PAHs (see above) were retained for testing at the site. None of the listed metals are part of any process nor are they stored at the MOCC/GWCC facility.

Cadmium, lead, and zinc were added to the list of COIs, not on the basis of the Portland Harbor sediment evaluation, but rather because of their occurrence in site storm water. Three additional metals—copper, chromium, and arsenic—were also selected as COIs because they were previously used in the production of wood-treating chemicals (CCA) on site.

In summary, the following COIs were identified for investigation during this focused RI:

- Chlorinated VOCs
- TPH as diesel, oil, and gasoline
- PAHs
- BTEX
- Metals (arsenic, cadmium, chromium, copper, lead, and zinc)
- Miscellaneous SVOCs (4-methylphenol, butyl benzyl phthalate, di-n-octyl phthalate, dibenzofuran)

4 INVESTIGATION

Beneficial use Evaluation

A groundwater and surface water beneficial use evaluation was conducted as part of this. investigation. The site and surrounding area are zoned for commercial and heavy industrial uses. The site and surrounding properties are currently in heavy industrial use including, chemical packaging, asphalt manufacturing, petroleum bulk terminals, steel pipe manufacturing and aggregate storage. The photobase map on Figure 1B shows the various industries currently in the vicinity of the site. The current zoning and industrial use on the site and surrounding properties are reasonably likely to continue for the foreseeable future. There are no residences adjacent to or near the site. Industrial workers currently employed by McCall Oil and Chemical and Quadra are the only people that could possibly be exposed to COPCs on the upland portion of the site.

The site and surrounding industrial area obtain their drinking water and industrial water supplies from the City of Portland municipal supply system. There are some industrial supply wells in the northwest industrial area, but none are located onsite or downgradient from potential onsite source areas. Site groundwater discharges to the Willamette River, so there is no possible pathway from the site to any existing groundwater supply well. Because site industrial workers and industrial workers on adjacent properties do not use groundwater for potable purposes, there is no possible drinking water pathway for site groundwater.

There are no surface water bodies, such as ponds, lakes, marshes, or streams on the upland portion of the site. The Willamette River is the eastern boundary of the site and the river is the regional discharge boundary for groundwater. Site storm water discharges to the Willamette River.

The only identified beneficial use for site groundwater and storm water results from their role as recharge sources for the adjacent Willamette River. As sources of recharge to the river, site storm water and groundwater have the same beneficial use to the river as the other upland properties in the Portland Harbor CERCLA site.

4.2 Ecological Level 1 Scoping Assessment

The Ecological Level 1 Scoping Report completed as part of this RI was prepared by IT Corporation, August 8, 2001. That report is in Appendix A. The report concluded that: at present, there are insufficient data to eliminate the possibility that site-related chemicals in groundwater or storm water could migrate to surface water of the Willamette River where they could be encountered by aquatic ecological receptors. As a result, a Level 2 Screening Assessment (DEQ, 1999) may be required to evaluate the potential ecological risks associated with groundwater or storm water discharge to the Willamette River. No further ecological evaluations are recommended for upland soil at the site. All available evidence indicates that there are no significant pathways by which important terrestrial ecological receptors could be exposed to site-related chemicals that are present in soil.

4.3 Supplemental Remedial Investigation Work Scope

McCall met with DEQ on May 29, 2001 to discuss the April 30, 2001 Focused Remedial Investigation Status Report and conceptual plans for further investigation. Another meeting was held with DEQ on August 1, 2001 to discuss the sale of Great Western Chemical to Quadra Chemical, plus plans and schedule for further investigation. McCall provided DEQ with a September 24, 2001 written Status Report that included a Work Scope to do the DEQ requested Supplemental Remedial Investigation. That investigation was proposed to be conducted in phases covering the periods of the fourth quarter 2001 and first quarter 2002. In total the supplemental investigation was proposed to include 9 GeoProbe borings, 8 monitoring wells, monitoring well sampling, storm water testing, aquifer testing, data management, and reporting. Sections 4.4 and 4.5 describe the work completed and findings from the supplemental RI investigation.

4.4 Groundwater Pathway

This report provides all of the RI data collected to date. Logs for all of the GeoProbe borings and logs for all of the site monitoring wells are in Appendix B. The work completed and findings for the groundwater and storm water pathways are discussed in Sections 4.4 and 4.5. Sections 4.4.1 and 4.5.1 describing work completed cover the investigative period from April 2001 to the present. RI work completed prior to April 2001 was described in the April 30, 2001 Focused Remedial Investigation Interim Status Report (IT Corporation).

4.4.1 Groundwater Work Completed

4.4.1.1 Test Borings

GeoProbe borings GP-45 through 55 were completed November 14 and 15, 2001. GeoProbe borings GP-56 through GP-63 were installed on October 6, 2003. The groundwater and soil sampling rationale for the location of the borings and monitoring wells is shown on Table 1. The table subdivides the locations into three main categories; potential source areas from McCall Oil & Chemical Corporation activities, from former Great Western Chemical (now Quadra) operations, and from upgradient off-site source areas. Each of the boring and well locations is assigned to a potential source area in one of the three operational areas.

For example, test borings GP-45, 46, 47, and 54 through 63 were located to define the boundary of petroleum LNAPL that had been encountered at GP-31 on the southern property boundary. Borings GP-48, 49, and 50 were located to define the extent of diesel and fuel oil detected in vadose zone soil at GP-9. The GP-9 soil data are shown on Table 9. Borings GP-51, 52, and 53 were installed to determine the extent of groundwater impacts from the former Chemax CCA wood treatment chemical formulation operation.

The GeoProbe logs in Appendix B show that the boring depths typically ranged from 16 to 24 feet below ground surface (bgs). The field drilling and sampling methods met the requirements of the Workplan. Continuous soil samples were obtained at all GeoProbe boring locations from the surface to the bottom of the boring.

Table 2 lists the GeoProbe borings where groundwater grab samples were obtained for laboratory testing and lists the analytes tested. Groundwater grab samples were obtained at all but thirteen of the borings. Groundwater grab samples were not obtained at borings GP-48, 49, and 50 because the goal of those borings was to sample and test vadose zone soils to determine the extent of diesel and oil contamination detected in boring GP-9. Groundwater grab samples were not obtained at borings GP-54 through 63 because these borings were used to obtain soil

samples for the purpose of visually evaluating the extent of LNAPL detected in borings GP-31, 45, and 47.

The groundwater analytes tested varied depending upon the purpose of the borings. The samples from GP-45, 46, and 47 were tested for gasoline, diesel, and oil to determine the extent of petroleum LNAPL detected at GP-31. The samples from GP-51, 52, and 53 were tested for total and dissolved arsenic, chromium, and copper because of the intent to evaluate groundwater impacts from historic CCA releases from the former Chemax production area.

With the exception of borings GP-48, 49, and 50, the Workplan specified that soil samples from the GeoProbe borings were not to be laboratory tested, unless field examination of the samples indicated the presence of petroleum hydrocarbons or other contaminants that had not previously been identified in the area being investigated. Representative soil samples from borings GP-48, 49, and 50 were tested for gasoline, diesel, and oil. The sampling matrix for upland soil samples is on Table 3.

4.4.1.2 Monitoring Wells

The new monitoring wells were installed in phases. Wells MW-6, 7, and 8 were installed on September 26, 2001. Table 1 shows that MW-6 and 7 were installed to monitor the distal end of the chlorinated solvent plume that is sourced near the former solvent drumming area on the former Great Western Chemical property. MW-8 was located to serve two purposes; one was to monitor possible releases from the McCall oil terminal tank farm, and the second was to define the boundary of the chlorinated solvent plume.

Well MW-9 was installed on November 16, 2001. The well was placed to monitor groundwater quality entering the west side of the site from possible offsite source areas. An attempt was made to install well MW-10 on November 16, but the installation was not completed because the auger drill penetrated the top of a concrete sanitary sewer that had not been properly located by the City of Portland. The city subsequently backfilled the hole and repaired the sewer.

Wells MW-10, 11, 12, and 13 were installed on January 7, 2002. MW-10 was placed to monitor groundwater that is entering the west side of the site from possible upgradient sources. Well MW-11 was placed to monitor the area of petroleum LNAPL that had been detected by GeoProbe borings GP-31, 45, 46, 47, 54, and 55. Well MW-12 was placed east of MW-11 along the southern site boundary to monitor groundwater entering the site from possible upgradient source areas to the south. Well MW-13 was placed in the middle of the McCall terminal tank farm to monitor groundwater quality and provide a hydrology data point in the tank farm area.

Wells MW-14 and MW-15 were installed on December 31, 2003. Well MW-14 was placed to monitor groundwater near the shoreline at the northwest corner of the site. Well MW-15 was placed to monitor the area directly downgradient of petroleum LNAPL that had been detected by GeoProbe borings GP-31, 45, 46, 47, and 54 through 63.

The wells were constructed according to the Workplan, with 2 inch schedule 40 PVC screen and casing. The screen depths were designed so that the top of the water table would be within the screen zone throughout an average year of seasonal water table fluctuations. The well construction details are shown on the logs in Appendix B and the well measuring point elevations are listed on Table 4.

The screen of each of the new wells was developed within one week of installation as required in the Workplan. Each of the new wells was sampled within one week of screen development, and the samples tested for the analytes shown on Tables 1 and 2.

Monthly water level measurements were made in all site monitoring wells and at the river staff gauge from December 2000 through March 2002. Additional measurements were made in October 2002 and February 2004. The hydrology data, including river level measurements, are on Table 4.

4.4.1.3 Aquifer Tests

On the recommendation of DEQ, the site water table aquifer hydraulic properties were evaluated by measuring groundwater fluctuations caused by river level changes. The Willamette River level fluctuates daily in response to ocean tides transmitted from the Columbia River.

On June 3, 2002, pressure transducers were installed in monitoring wells EX-5, MW-6, MW-7, and at the Willamette River gauge site, WG-1. Those well locations were selected to be representative of the possible range of hydrogeologic properties across the site, and the wells were pre-approved by Don Pettit, RG, Oregon DEQ. The transducers were removed on June 11. The transducers were set to record water level changes at one minute intervals throughout the 8 day period.

The test data, calculations, and findings from this test were reported to DEQ in a July 15, 2002 Status Report, that is provided in Appendix C of this report.

4.4.1.4 Water Quality Testing

During this RI there have been three comprehensive groundwater monitoring events that included all the site monitoring wells that existed at the time of each event. Those events occurred in December 2000, March and October, 2002. The event dates were selected to be representative of seasonal low and high water table conditions at the site. Each of the new monitoring wells MW-6 through 13 were sampled at least three times during this RI. For those new wells, the first sampling event occurred within one month of well installation, and was not necessarily time coincident with one of the three comprehensive sampling rounds described previously. Monitoring wells EX-1, EX-2, EX-3, EX-4(MW-2), EX-7, MW-1, MW-3, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-12, MW-14, and MW-15 were sampled in February 2004, according to the sampling plan (Table 15) approved by DEQ in a letter dated November 13, 2003.

Groundwater from the monitoring wells was laboratory tested for the target analyte COPCs that were established in the Workplan. The water quality data are in the spreadsheets presented in Tables 5, 6, 7, and 8.

4.4.1.5 Soil Testing

Upland soil and catch basin samples were collected and laboratory tested as specified in the Workplan. Representative soil samples obtained from the GeoProbe test borings that showed visual or olfactory evidence of contamination were laboratory tested for the target analytes listed on Table 3. Samples of sediment were obtained from the stormwater catch basins at locations S-1, 2, 3, and 4 on December 15, 2000. The catch basin sediment samples were laboratory tested for the target analytes shown on Table 3.

4.4.2 Groundwater Findings

4.4.2.1 Groundwater Flow System

On the basis of soil and bedrock samples obtained from the GeoProbe and monitoring well borings drilled during this RI, there are three geologic units of interest underlying the uplands at this site. The uppermost geologic unit is dredge fill derived from the Willamette River. The dredge fill overlies river alluvium. The dredge fill was placed in the 1960's by the Port of Portland in the area where McCall later built the marine terminal above ground tank farm. The alluvium overlies basalt bedrock. The combined thickness of the dredge fill and alluvium is approximately 75 feet, based on the depth to basalt bedrock at borings GP-41, 42, 43, and 44. Because the dredge fill and alluvial sediments both consist primarily of fine to medium sand and silt, the contact between the two units is difficult to identify in borings.

Logs from site borings have not identified a consistent lithologic boundary between the dredge fill sediments and the underlying alluvial sediments. Both units are quite sandy and contain silty-sand or silt interbeds. Although some boring logs indicate that the underlying alluvium is siltier than the dredge fill sediments, the water level data do not indicate that groundwater in the dredge fill is consistently perched on the underlying alluvium. For these reasons the dredge fill sediments and alluvial sediments are considered to be one hydrogeologic unit. For the purpose of this report the dredge fill and alluvium are termed the alluvial aquifer.

Five subsurface geologic cross sections are shown on Figures 6A through 6E. The section locations are shown on Figure 2. The sections identify the type of sediment encountered in the GeoProbe and monitoring well borings. Section B-B' on Figure 6B also shows the full thickness of the alluvial aquifer down to basalt bedrock.

On a regional basis the Willamette River is the discharge boundary for shallow and deep groundwater. For this project we are concerned primarily with characterizing the groundwater flow system in the alluvial aquifer overlying basalt bedrock. The properties of the COIs and water quality data collected to date indicate that only groundwater in the upper portion of the alluvial aquifer has water quality impacts. The organic COIs that have been detected in site groundwater have specific gravities less than one, except the chlorinated VOCs. Therefore, we expect to encounter those light COIs in groundwater in the upper portion of the alluvial aquifer. Four borings were drilled to bedrock in the chlorinated VOC plume to look for evidence of chlorinated VOC DNAPL. Groundwater from those borings was tested for chlorinated VOCs from multiple depths down to bedrock. No evidence of DNAPL was detected. The results from those borings, GP-41, 42, 43, and 44 were reported in the April 2001 Status Report.

Groundwater potentiometric surface contour maps were prepared for March and October, 2002, Figures 4 and 5, respectively. The contour patterns on these maps indicate that groundwater in the alluvial aquifer flows northeast to the Willamette River. Comparison of the groundwater elevations shown next to the monitoring wells on Figures 4 and 5 indicates that there was up to two feet of difference in groundwater elevation between the October dry season and March wet season conditions. The flow pattern did not change significantly from the dry to wet season in 2002.

Groundwater in the alluvial aquifer is recharged by a combination of infiltration of rainwater in the unpaved portions of the facility, and underflow from areas to the south (Tube Forgings) and to the west (Chevron Asphalt and Willbridge terminals). The entire facility is paved, with two exceptions. The rectangular shaped area between the Quadra Chemical facility and the McCall Marine Terminal has a gravel surface. Although it is unpaved, vehicle traffic has compacted the gravel and the resulting low permeability causes rainfall to runoff to the catch basins in this area. Stormwater from those catch basins flows to the McCall terminal oil water separator located at S-4. The area within the McCall terminal above-ground tank farm is also unpaved. Some infiltration may occur in this area, although much of the rainwater that falls into the tank farm runs off and is routed to the oil water separator at S-4. The alluvial aquifer is also temporarily recharged near the shoreline when the Willamette River rises due to daily tidal, storm, and seasonal fluctuations. River level induced groundwater elevation fluctuations can be seen by reviewing the hydrographs from the aquifer tests conducted at the site.

The hydraulic conductivity of the alluvial aquifer was determined by field testing at monitoring wells EX-5, MW-6, and MW-7. A time lag method was used for these tests at the suggestion of DEQ. This method uses the time lag between river level fluctuations and the river induced groundwater level fluctuations to determine the alluvial aquifer hydraulic conductivity. The data and results of the field tests were reported in the July 15, 2002 Status Report. The horizontal hydraulic conductivity values determined for the three wells were 0.005 ft/minute for MW-6, 0.003 ft/minute for EX-5, and 0.16 ft/minute for MW-7.

4.4.2.2 Groundwater Quality

The groundwater quality data from the first phase of the RI was provided in the April 30, 2001 Interim Status Report. That report used tables and maps to display the range of COPC concentrations that had been detected in GeoProbe groundwater grab samples and in groundwater samples from the site monitoring wells. A primary purpose of that data analysis was to use the GeoProbe groundwater quality data to identify areas where monitoring wells should be installed. Based on the GeoProbe data the supplemental RI included the installation of monitoring wells MW-6 through MW-13, as described in section 4.3.1.2. The groundwater quality testing that has occurred in the supplemental RI was described in section 4.3.1.4.

For the fourth RI groundwater monitoring event (February 2004) a modified sampling and testing plan was implemented, as agreed with DEQ. The modified sampling and testing plan is summarized on Table 15.

This section describes the general occurrence and concentration time trends of the primary COI groups, Total petroleum Hydrocarbons, PAHs, SVOCs, VOCs, and metals. When reviewing the tabulated water quality data, note that detections are shown in bold.

Total Petroleum Hydrocarbons

The data on Table 5 show that petroleum hydrocarbons have been detected at least once in every monitoring well at the site with the exception of newly installed monitoring well MW-15. The total petroleum hydrocarbon (TPH) detections have been in the gasoline, diesel, and heavy fuel oil ranges. The groundwater concentrations for each hydrocarbon range are generally less than one mg/l, but since RI monitoring began in 2000, wells MW-1, MW-3, MW-4, MW-7, MW-8, MW-11, MW-12, and MW-13 have had concentrations exceeding 1 mg/l.

Wells MW-11 and MW-8 have the highest TPH concentrations.

A petroleum Light Non Aqueous Phase Liquid (LNAPL) has been detected in the vicinity of well MW-11. Forensic testing has identified the LNAPL as a residual Bunker C or diesel fuel, and the forensic test report for LNAPL from well MW-11 is in Appendix F. The LNAPL was also detected in GeoProbe borings GP-31, 45, 46, 47, 54, 55, 56, and 59 near well MW-11. The LNAPL was not detected in GeoProbe borings GP-57, 58, 60, 61, 62, and 63 which were advanced to delineate the onsite extent of the plume. The estimated footprint of the LNAPL plume on McCall property was defined using the GeoProbe boring results and the estimated boundary is shown on Figure 2. Review of the Tube Forgings UST file shows that a Bunker C release occurred near the McCall property boundary with Tube Forgings. The shape and location of the LNAPL plume on McCall property, as shown on Figure 2, implies that the plume extends onto the Tube Forgings property. The forensic

evidence, LNAPL location, and geometry all indicate that the LNAPL is sourced from the historic Tube Forgings Bunker C release.

At well MW-8, petroleum hydrocarbons were logged in sand at a depth of 30 ft bgs when the well was being installed, but LNAPL has not been detected during subsequent sampling of the well. This well is adjacent to the marine terminal above-ground tank farm, so the tank farm is a potential source for the hydrocarbons detected in well MW-8. There is no record of a specific release that occurred in the NW corner of the tank farm. However, there is a surface depression in this corner of the tank farm, several feet below the surrounding grade; the depression has been observed to pool runoff water which could subsequently infiltrate beneath the berm of the tank farm. Documented releases in the marine terminal tank farm were identified in Appendix C of the April 30, 2001 Interim Status Report.

Time trends of total TPH concentrations in groundwater have been plotted for the monitoring wells and are located in Appendix D. For the oldest wells, the TPH data go back as far as 1994. These plots do not show any discernible trends (either downward or upward) in TPH groundwater concentrations over time. For most of the wells the total TPH concentrations vary within the range of 0.1 to 1 mg/l. For the newer wells, such as MW-8, the period of record is too short to draw any significant conclusions.

PAHs

The data on Table 6 shows that PAHs have been detected in all site monitoring wells. The PAHs are components of the petroleum hydrocarbons in groundwater described in the previous section. Table six shows that the LPAH and HPAH compounds have been individually quantified for this investigation. The table also shows the total LPAHs and HPAHs concentrations for each well at each monitoring event.

The PAH concentrations in groundwater are generally at the trace level or extremely low, with total LPAH and HPAH concentrations less than 1 ug/l at all wells except MW-6, 8, 9 and 11. The highest concentrations of PAHs are in wells MW-8 and

MW-11, which is consistent with the elevated petroleum hydrocarbon detections in those wells.

Maximum and average benzo(a)pyrene (BAP) concentrations in groundwater are displayed next to the site wells on Figure 7. Benzo(a)pyrene has not been detected in all monitoring wells. The concentrations in Figure 7 are further discussed in the groundwater risk screen analysis in section 4.6. For those locations where BAP was not detected, a concentration equal to one half of the method detection limit is shown as the average concentration.

Time trend plots of total LPAH and HPAH concentrations are in Appendix D. Concentrations of the LPAHs and HPAHs seemed to generally increase between the October 2001 and March 2002 events, but there was no general concentration trend from March 2002 to February 2004.

SVOCs

Four SVOCs are COIs for this site, 3- and 4-methylphenol (co-elution), dibenzofuran, butyl benzyl phthalate, and di-n-octyl phthalate. The SVOC groundwater quality data are on Table 6.

Trace concentrations of 3-and 4-Methylphenol were detected in wells EX-2, EX-3, EX-5, and MW-6. Wells MW-8 and MW-12 had concentrations between 1 and 2 ug/l and well MW-13 had a concentration of 28 ug/l. That concentration at MW-13 was measured in the first sample obtained following installation of well MW-13. The concentrations were 1.5 and 0.4 ug/l for the later March and October 2002 samples, so the 28 ug/l concentration is not considered representative.

Trace concentrations of Dibenzofuran were detected in MW-8, MW-11, and MW-13.

Trace concentrations of Butyl Benzyl Phthalate were detected in wells EX-7, MW-1, MW-5, MW-8, MW-9, and MW-10. There were no detections of Di-n-octyl Phthalate in groundwater.

VOCs

Table 7 shows all of the VOC groundwater quality data obtained at the site since

Two areas of chlorinated solvent groundwater contamination are shown on Figure 8. The average and maximum concentrations of representative VOC compounds are displayed at each Figure 8 well location. Those compounds are further discussed as part of the risk screen analysis presented in section 4.3.2.3.

The largest area of contamination represents a plume that originates near well EX-1 in the former solvent drumming area and extends downgradient to wells MW-7 and MW-8 near the river. The plume trend and geometry is consistent with a source area near EX-1 and a northerly groundwater flow direction. The location of the plume boundary is estimated from the groundwater quality data from the monitoring wells and GeoProbe groundwater grab samples. The GeoProbe data are also in Table 7, and the GeoProbe data were graphically displayed on Figure 6 of the April 2001 Interim Status Report. The VOC compounds and concentrations that occur in the downgradient wells near the river are consistent with the degradation products that would be expected from breakdown of the VOC compounds in wells EX-1 and MW-6.

The second area of contamination includes monitoring wells MW-1, 2, 3, 4, and 10. This area of contamination may be a plume that has developed from a single source, or it may represent commingled plumes from multiple sources. The combination of VOC compounds at each well, their concentration, and the well locations suggest that more than one source, including an offsite source, may be involved. The VOCs at MW-10 may be sourced from offsite because MW-10 is located upgradient of any known on-site source areas. PCE has not been detected at well MW-10, but is present in wells MW-1 and MW-2, suggesting that the contamination at MW-10 is from a different source. The concentrations and types of VOC compounds at MW-3 and MW-4 suggest that they are degradation products of the VOCs that are found in wells MW-1 and MW-2.

BTEX compounds were also detected at very low concentrations in well MW-11. Other than a few trace level detections of toluene at monitoring wells EX-3, MW-1, MW-7, and MW-12, this monitoring well is the only one on-site with detections of BTEX compounds, another indication that the LNAPL at this location is sourced from offsite.

Metals

Monitoring wells MW-1, 2, 3, 4, and 5 were installed in 1993 as part of the 1993 cleanup of the former chromated copper arsenic (CCA) formulation facility that operated from 1984 to 1986 at the Chemax portion of the former Great Western Chemical Corporation. That cleanup was reported in the Great Western Chemical Company, Technical Center Facility, 5700 NW Front Avenue, Portland, Oregon Soil Cleanup and Groundwater Monitoring Report, prepared for Great Western Chemical Company, March 31, 1994, by EMCON Northwest, Inc. That report was also provided to DEQ as Appendix L to the Preliminary Assessment of McCall Oil and Chemical Company and Great Western Chemical Company, NW Front Avenue Properties, Portland, Oregon, ECSI ID #134, Volume 3, by EMCON Northwest, Inc., April 5, 1994.

For the first three groundwater RI sampling events, monitoring wells MW-1, 2, 3, 4, 6, 7, and 8 were tested for arsenic, chromium, and copper to determine the extent and concentration of residual CCA components remaining in groundwater near the former CCA facility. Both total and dissolved metals concentrations were measured. All of the wells tested had detections of all three CCA compounds in total and dissolved forms. This is expected, since these metals naturally occur in shallow groundwater in Western Oregon (U.S. Geological Survey, 1999). Well MW-1 had the highest average dissolved copper concentration of 280 ug/l. However, downgradient wells MW-4 and MW-7 had average dissolved copper concentrations of 0.8 and 1.0 ug/l, respectively. MW-1 also had the highest average dissolved total chromium concentration of 3.93 ug/L Well MW-3 had the highest average dissolved arsenic concentration of 43.9 ug/l. Downgradient well MW-4 had an average dissolved arsenic concentration of 13.1 ug/l.

For the fourth groundwater monitoring event (February, 2004) DEQ requested that additional wells be tested for arsenic to help determine arsenic background concentrations and evaluate potential impacts to the Willamette river (Table 15). For that sampling round groundwater from the following additional wells was tested for total and dissolved arsenic: EX-1, EX-2, EX-3, EX-7, MW-5, MW-9, 10, 12, 14, and 15. The arsenic data are on Table 8.

4.5 Storm Water Pathway

4.5.1 Scope of Storm Water Sampling Program

4.5.1.1 Storm Water BMPs

Stormwater BMPs. McCall maintains the site storm water system using the following best management practices (BMPs).

- Annual catch basin cleaning. McCall conducts annual cleaning of all stormwater catch basins on the site, including those located on the Quadra facility.
- Catch Basin Particulate Filters McCall maintains particulate filters on the catch basins at the site. The filters are inspected on a regular basis and replaced if needed.
- O Automated Monitoring of the McCall Oil Water Separator. McCall is using an ISCO sampler at outfall location S-4 (Figure 2). The sampler keeps a record of stormwater flows and automatically obtains weekly stormwater samples for NPDES testing. The sampler is installed just downgradient of the oil water separator at location S-4.

4.5.1.2 Storm Water

The RI Work Plan required testing of storm water from three catch basins S-1, 2, and 3, and the McCall terminal oil water separator, designated S-4 (Figure 2). Storm water was sampled on several dates as shown on the tables listed in section 4.5.2.1. Most of the catch basins were sampled on December 20, 2000 and March 6, 2000.

However, sampling access issues required Anchor to also sample S-3 on February 15, 2001 and S-4 on April 9, 2002. At least two storm water samples have been tested from sample stations S-1 through S-4. Storm water samples were tested for the target analytes listed on Table 2. The results of the December 2000 effort were reported in the April 30, 2001 Interim Status Report.

4.5.1.3 Catch Basin Sediment

The RI Work Plan required testing of catch basin sediment for the target analytes listed on Table 3. Catch basin sediment samples were obtained on December 15, 2000, and the testing results were reported in the April 2001 Interim Status Report.

4.5.1.4 River Sediment at Outfall

A river sediment sample was also collected on December 15, 2000. The sample was composited from three discrete sediment samples obtained from the river bank scour point where the S-3 catch basin outlet discharges to the bank. The sample was designated S3-01C and the sample location is on Figure 2. The sample was tested for the target analytes listed on Table 3 and the results were presented in the April 2001 Interim Status Report.

4.5.2 Storm Water Findings

4.5.2.1 Storm Water and Catch Basin Sediment Quality

The storm water quality and sediment quality data are summarized in the following tables. Detections are highlighted on the tables.

- Storm water total petroleum hydrocarbons-Table 5
- Storm water PAHs and SVOCs-Table 6
- Storm water metals-Table 8
- Catch basin sediment total petroleum hydrocarbons-Table 9
- Catch basin sediment PAHs and SVOCs-Table 10
- Catch basin sediment metals-Table 12

The storm water TPH data on Table 5 are somewhat inconsistent, with 1.1 mg/l gasoline detected in S-1 from the December 2000 sampling event, but no other

hydrocarbons detected in S-1 in the December 2000 or March 2002 events. Gasoline was also detected at 0.13 mg/l at S-2 in the March 2002 sample, but no other hydrocarbons were detected in S-2 at that event or the December 2000 event. Gasoline and diesel were detected in S-3 at 1.30 and 0.510 mg/l respectively in the 2000 event, but only diesel was detected in S-3 at 0.110 mg/l in the 2002 event. Gasoline and diesel were detected at S-4 for both events; with concentrations ranging from 0.220 to 0.270 mg/l gasoline and from 0.280 to 1.30 mg/l diesel. Heavy fuel range hydrocarbons were detected at a concentration of 0.550 mg/l at S-4 in the April 2002 sample. The 10 mg/l oil and grease NPDES limit for the Quadra Chemical and McCall Oil storm water permits were not exceeded at any of the sample points.

Very low concentrations of PAHs were detected in all of the storm water samples tested from all four sample stations (Table 6). Very low concentrations of the SVOC target analytes 3-and 4-methylphenol, dibenzofuran, and butyl benzyl phthalate were also detected in the storm water samples from all four sample stations. Dinoctyl phthalate was not detected in any of the storm water samples.

The target analyte metals were detected in all of the storm water samples tested (Table 8). The NPDES storm water permit limits for copper (0.1 mg/l), lead (0.4 mg/l), and zinc (0.6 mg/l) were not exceeded in any of the samples.

Gasoline, diesel, and heavy fuel oil range hydrocarbons were detected in the sediment samples obtained from catch basins S-1, 2, and 3 (Table 9). A sediment sample was not obtained for testing from station S-4, since the oil/water separator is designed to capture storm water sediment and prevent sediment release to the river. A trace detection of heavy fuel oil range hydrocarbons was detected in the river sediment sample 53-01C.

PAHs were detected in the sediment samples obtained from stations S-1, 2, 3, and S3-01C (Table 10). All of the target SVOCs except di-n-octyl phthalate were detected in the sediment samples from catch basins S-1, 2, and 3. A trace concentration of din-octyl phthalate was detected in the river sediment sample from station S3-01C.

All target metal analytes were detected in the three catch basin sediment samples S-1, 2, 3, and in the river sediment sample, S3-01C.

4.6 Risk Screening Evaluation

[NOTE: RISK SCREENING EVALUATIONS FOR ALL MEDIA WERE CONSOLIDATED INTO THIS SECTION]

A risk screening evaluation has been performed to determine if the key contaminant pathways to the river have been sufficiently characterized to support the evaluation of source control measures. Of particular concern to this focused RI are the aquatic organisms in the Willamette River. For the purposes of the CSM, all flora and fauna potentially exposed to river water or sediments are grouped under the heading of ecological receptors. In addition, a risk screening evaluation of soil and groundwater data was also conducted to identify potential concerns to upland site workers. The risk screening evaluation was used to identify contaminants of potential concern (COPCs) that deserve further investigation and/or should be carried forward to risk assessment.

The risk screening process included the following steps.

- 1. tabulate groundwater, stormwater, and soil COI concentrations
- 2. screen those concentrations against water quality and soil quality criteria from DEQ and EPA guidance documents
- Identify contaminants of potential concern (COPCs) based on exceedences of screening levels
- identify the site areas where the screening levels are exceeded, and which could potentially constitute source areas to the river or to site workers
- 5. determine if sufficient data are available in the area of the exceedances to support the risk assessment
- 6. identify those areas, if any, where additional site characterization is needed to support the source control evaluation or risk assessment

4.6.1 Groundwater Screen

Potential Human Receptors. Groundwater quality data are screened for protection of upland site workers in Table 5 (TPH), Table 6 (PAHs and SVOCs), and Table 7 (VOCs) using the risk-based concentrations (RBCs) presented in DEQ's Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites (DEQ, 2003). Note that groundwater samples collected from GeoProbe borings were not used in the screening process; only groundwater samples obtained from appropriately constructed and developed monitoring wells. Potential exposure pathways include vapor intrusion to indoor air and volatilization to outdoor air for occupational workers. Because depth to groundwater is below the practical limits of excavation at this Site (see Table 4), direct contact of excavation or construction workers with groundwater is not considered a viable pathway.

The RBCs for volatilization from groundwater to indoor or outdoor air exceed saturation values for gasoline- and diesel-range hydrocarbons (Table 5) as well as PAHs (Table 6). Therefore, TPH and PAHs do not in general pose a risk to occupational workers via this pathway. However, the DEQ RBCs are not applicable to free product conditions; thus the LNAPL area (vicinity of MW-11) may warrant further investigation.

The screening evaluation of volatile organic compounds via indoor and outdoor air is summarized in Table 7. Chlorinated solvent concentrations were above RBCs for vapor intrusion to indoor air in very limited areas of the Site (Table 7). TCE and PCE were consistently at or above indoor air RBCs at location EX-1. TCE was above the vapor intrusion RBC in one monitoring round at location MW-6; however, this exceedance has not been confirmed in two subsequent monitoring rounds. Neither of these two locations is situated below an enclosed building; thus, the pathway does not appear to be complete considering RBCs for volatilization to outdoor air were not exceeded

Potential Ecological Receptors (Aquatic Organisms). Groundwater quality data are screened for protection of aquatic organisms in the Willamette River in Table 13.

This table summarizes groundwater concentrations for shoreline monitoring wells which are situated near the area of discharge to the river (EX-2, EX-3, EX-5, MW-5, MW-7, MW-8, and MW-14). Comparing groundwater concentrations to these criteria is conservative, because it assumes no attenuation or dilution of groundwater concentrations from the monitoring wells to the seepage areas along the river bank, nor any dilution between the river bank and the water column where aquatic organisms are living.

For this screening evaluation, chronic water quality criteria were derived from several sources. Surface water SLVs from DEQ Level II Ecological Risk Assessment Guidance (2001) were considered in the evaluation. SLVs which are based on protection of invertebrates (e.g., daphnids) are evaluated at the population level, and SLVs which are based on protection of fish are evaluated at the level of the individual, because fish-based criteria are representative of threatened salmonids in the river [per Task (9)(c)(i), DEQ, 2001]. However, several of the Level II SLVs are based on outdated information. Recently, EPA issued Final Chronic Values for PAHs (EPA, 2003). Also, EPA 2002 National Recommended Water Quality Criteria were considered in the screening evaluation.

There were no shoreline wells with detected COI concentrations which exceeded any of the chronic water quality criteria. Therefore, no COPCs were identified that would potentially impact aquatic life in the river.

4.6.2 Soil Screen

Upland Site Workers. Soil quality data were screened for protection of upland site workers in Table 9 (TPH), Table 10 (PAHs and SVOCs), Table 11 (VOCs), and Table 12 (Metals). Occupational and excavation worker scenarios were screened because these represent existing receptors at the site. In addition, a construction worker scenario was also screened as a possible future exposure scenario, although no site redevelopment work is currently planned. As a result, the construction worker scenario was evaluated as a "worst-case" exposure considering soil concentrations from all depths and locations at the site.

The majority of the screening levels for the soil evaluation were derived from DEO (2003). This guidance addresses direct contact exposures to occupational, excavation, and construction workers, and volatilization to indoor and outdoor air from contaminated soils. However, this guidance includes primarily hydrocarbon compounds and chlorinated solvents. Screening levels for compounds not listed in DEQ (2003) were derived from industrial Preliminary Remediation Goals (PRGs) developed by EPA Region 9 (EPA, 2002). Although these values are representative of occupational exposures, they were conservatively used to screen exposures to subsurface soils by excavation and construction workers, even though the exposure periods for these workers are typically much shorter duration. Finally, the arsenic screening level in soil was based on the regional background concentration for this metal (7 mg/kg, Ecology, 1994) because the regional background value exceeds the risk-based PRG (1.6 mg/kg; EPA, 2002).

Petroleum constituents (gasoline and diesel) in Site soils did not exceed DEO RBCs for occupational and excavation workers (Table 9). In a very limited location (GP-31, 14-16'), the construction worker RBC for diesel was exceeded. This same sample exceeded RBCs for three carcinogenic PAH compounds for occupational and/or construction worker scenarios (Table 10). However, because of the excessive depth of this sample (14 to 16 feet below grade), these are not considered significant exposure pathways. One other sample (GP-29, 4-6') exceeded the occupational RBC for benzo(a)pyrene; however, occupational exposures are generally evaluated over the top 3 feet of soil (DEQ, 2003).

No VOCs in site soils, neither hydrocarbons nor chlorinated solvents, were above Site screening levels for direct contact, indoor or outdoor air (Table 11). Similarly, no metals in site soils were above Region 9 PRGs, or in the case of arsenic, the regional background concentration (Table 12).

In summary, no TPH, PAHs, SVOCs, VOCs, or metals were found above screening levels at depths appropriate to the receptor being evaluated. These results indicate

no potential risk to existing occupational or excavation workers, or possible future construction workers.

Hot Spot Evaluation. Free petroleum LNAPL has been detected in well MW-11, preliminarily identified as a residual bunker C or diesel fuel. Further characterization of the LNAPL is needed to determine if the LNAPL is a hot spot, and to evaluate remedial alternatives, if required. In addition, the draft DEQ TPH guidance indicates that the generic RBCs are not applicable in areas of free product. The risk of contact with free product may need to be further evaluated as part of the risk assessment.

4.6.3 Stormwater Screen

Stormwater. On Table 14, stormwater concentrations are compared to ecological screening criteria which are based on five times the acute ambient water quality criteria for aquatic life (EPA, 2002a, 2002b), consistent with DEQ's Portland Harbor source control strategy and NPDES stormwater permitting guidelines. The acute water quality criteria are derived from EPA 2002 National Recommended Water Quality Criteria and EPA 2003 Procedures for Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for Protection of Benthic Organisms: PAH Mixtures. EPA (2003) presents Final Chronic Values for PAH compounds; these were subsequently converted to Final Acute Values using the acute/chronic ratio of 4.16.

No constituents in stormwater exceeded the aquatic life screening criteria. Therefore, no risk to aquatic life in the Willamette River is indicated.

Catch Basin Sediment. Catch basin sediment samples were compared to DEQ RBCs for excavation workers, representing contractors who may be called in for a short period of time to clean out the storm sewers. Occupational workers are not generally exposed to catch basin sediments, nor are construction workers that may be associated with any future redevelopment of the site. For metals, DEQ RBCs have not been developed; therefore, catch basin sediments were conservatively compared to Industrial PRGs for these constituents.

Petroleum hydrocarbons and PAHs in catch basin sediments were all below their respective RBCs for excavation workers (see Tables 9 and 10). Metals in catch basin sediments were all below their respective PRGs with the exception of arsenic. Arsenic exceeded its PRG as well as the regional background value in two of the four catch basin sediment samples. However, because the PRG for this carcinogen is based on a long-term occupational exposure rather than a short-term utility worker exposure, the potential risk is overestimated. Further evaluation of arsenic in catch basin sediments may be warranted in the risk assessment.

Finally, it is noted that McCall has implemented best management practices (BMPs) to protect stormwater quality, including inlet protection and an oil-water separator for treatment of critical areas of the Site, and routine cleanout of accumulated sediments in catch basins. These BMPs will help to prevent storm sediments from leaving the Site and entering the river. Thus, the indirect soil erosion pathway (i.e., sediment transport via storm sewers) has been controlled at the Site.

4.7 Contaminants of Potential Concern (COPCs)

Based on the risk screening analysis presented above, the following COPCs and their associated exposure pathways are recommended for further evaluation and/or risk assessment:

- LNAPL free product area (occupational, excavation, and trench workers)
- Chlorinated VOCs in groundwater (indoor air, occupational workers)
- Arsenic (catch basin sediments, utility worker)

The following exposure scenarios do not appear to pose any significant risk and can therefore be eliminated from further consideration:

- Direct contact of occupational workers to surface soils
- · Direct contact of excavation and trench workers to subsurface soils
- Indoor and outdoor air exposures to occupational workers from volatilization of TPH and PAHs
- Outdoor air exposures to occupational workers from any Site COIs

- Exposures to aquatic life from stormwater runoff to the Willamette River
- Exposures to aquatic life from groundwater discharge to the Willamette River

5 DATA GAP ANALYSIS

5.1 Source Control Findings

The risk screening analysis of RI data in Section 4.6 showed that site groundwater and stormwater COI concentrations do not exceed conservative risk-based criteria. Therefore there are no upland data gaps with respect to river source control assessment. This agrees with the conclusion of the Preliminary Assessment of McCall Oil & Chemical Corporation and Great Western Chemical Company (EMCON Northwest, Inc., April 5, 1994).

5.2 Upland Human Health Risk Assessment

A focused upland human health risk assessment may be needed in the following areas.

- LNAPL at property line near monitoring well MW-11. Further assessment and
 possible cleanup of this LNAPL should be the responsibility of Tube Forgings, since
 it appears that this material is sourced from a historic Bunker C release at Tube
 Forgings.
- o Arsenic in Storm Drain Sediment. Although historic arsenic concentrations in storm drain sediment exceeded the Region 9 industrial PRG, this criteria may not be applicable considering the method and frequency of exposure of storm drain maintenance workers. The storm drains are cleaned remotely using a vactor truck on an annual basis. Therefore there is little, if any, exposure of vactor truck operators to catch basin sediment. This pathway may warrant additional assessment considering the actual exposure of utility workers during these annual maintenance activities.
- Groundwater Chlorinated VOCs to Indoor Air. This pathway may need further
 assessment to determine if it is reasonably likely that future facility buildings will be
 placed over the VOC plume.

McCall may request that future human health risk assessment, if required by DEQ, be conducted under a separate VCP Agreement.

6 REFERENCES

- EMCON Northwest, Inc., April 5, 1994, Preliminary Assessment of McCall Oil & Chemical Corporation and Great Western Chemical Company, NW Front Avenue Properties, Portland, Oregon, ESCI ID #134, three volumes.
- U.S. Army Corps of Engineers, U.S., EPA, et al., 1998, Dredged Material Evaluation Framework, Lower Columbia River Management Area, November 1998.
- Hinkle, S.R. and D.J. Polette, 1999, Arsenic in Ground Water of the Willamette Basin, Oregon. U.S. Geological Survey Water Resources Investigation Report 98-4205, Portland, Oregon.
- U.S. EPA, 1993, Provisional guidance for quantitative risk assessment of Polycyclic aromatic hydrocarbons. Office of Research and Development, Washington D.C., EPA/600/R-93/089.
- U.S. EPA, 2002a, National Recommended Water Quality Criteria: 2002, Office of Water, Washington D.C., EPA/822/R-02/047, November 2002.
- U.S. EPA, 2002b, Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures, Office of Research and Development, Washington D.C., EPA/600/R-02/013 (DRAFT).
- U.S. EPA, 1991, Technical support document for water quality-based toxics control, Office of Water, Washington D.C., EPA/505/2-90/001, March 1991.
- U.S. EPA, 1989, Statistical analysis of ground water monitoring data at RCRA facilities, Office of Solid Waste, Washington D.C., EPA/530/SW-89/026, April 1989.
- U.S. Geological Survey, 1999, Arsenic in Ground Water of the Willamette Basin, Oregon, Water Resources Investigations Report 98-4205.
- Washington State Department of Ecology, 1992, Statistical guidance for Ecology site managers. Toxics Cleanup Program, Olympia, Washington, Pub. No. 92-54.

Oregon DEQ, 1997, Policy on Toxicity Equivalency Factors. Waste Management and Cleanup Division, October 1997.

Table 1

Groundwater Sampling Rationale

McCall Oil and Chemical Corporation Focused RI Workplan

Potential Source Area	Sampling Locations	Chemical Class Tested ^a	Rationale
McCall Oll & Chemical Corp.			· ·
Diesel rack (marine terminal)	EX-2, GP-20	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of TPH/PAHs
Asphalt rack (asphalt plant)	GP-8	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of TPH/PAHs
Asphalt plant AST tank farm	GP-8, -9, -21,-28, -29, -30, -37	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of TPH/PAHs
-	GP-48, -49, -50	TPH (soil only)	Evaluate extent of TPH detected at GP-9
Railcar loading/unloading facility	GP-6, -7	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs and TPH/PAHs
Marine terminal AST tank farm	GP-15 to GP-20, GP-22, -23, -24, -25, -26, -27,	VOCs, SVOCs, PAHs, TPH	Document groundwater quality in AST farm and leaving site
	-34, -35, -36, EX-2, EX-3, EX-5, MW-8, -13		
Former Great Western Chemical Co.			
Railcar loading/unloading facility	GP-67	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs and TPH/PAHs
Acid/solvent AST tank farm	EX-1, EX-6, GP-8, GP-9	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs
Drumming shed	EX-1, EX-6, GP-9, -10, -38, -39, MW-6, -7	VOCs, SVOCs, PAHs, TPH	Downgradient of potential source of VOCs
	GP-41, -42, -43, -44	VOCs	Evaluate vertical extent of contamination
			Downgradient of documented source of metals. Source has been
Former CCA production area	EX-4 (MW-2), MW-1, -3, -4, -5	VOCs, SVOCs, PAHs, TPH	removed.
-	GP-11, -12, -13, -14, -15	VOCs, SVOCs, PAHs, TPH, Metals	
	GP-51, -52, -53	Metals	
Upgradient Off-Site Source Areas	GP-1, -2, -31, EX-7, MW-9, -10, -11, -12	VOCs, SVOCs, PAHs, TPH	Evaluate groundwater quality entering the site from upgradient sources
	GP-3, -4, -5	VOCs, SVOCs, PAHs, TPH, Metals	
	GP-32, -33, -40	VOCs, SVOCs, PAHs, TPH	
	GP-45, -46, -47	ТРН	Evaluate extent of free product
	GP-54 through GP-63	Not Tested	Evaluate extent of free product

NOTE: VOCs = chlorinated VOCs; SVOCs = four semivolatile organic compounds listed in workplan; PAHs = polynuclear aromatic hydrocarbons;

TPH = total petroleum hydrocarbons as diesel and oil; Metals = dissolved arsenic, chromium, and copper.

List of chemicals to be tested for each chemical class is shown in QAPP (Appendix B of RI Workplan).

Table 2 Sampling Matrix Groundwater and Stormwater McCall/GWCC

Portland, Oregon

GP-42-75.5				Organ	ic Comp				Ме	tals
GP-1				Butyl Benzyl Phthalate	Di-n-octyl Phthalate	Dibenzofuran	PAHs	Total Petroleum Hydrocarbons	As, Cu, Cr	Cd, Pb, Zn
GP-2 GP-3 GP-4 GP-4 GP-5 X X X X X X X X X X X X X X X X X X X	Geoprobe Borings - C		ater			37				
GP-3 GP-4 GP-4 GP-5 SX XX XX XX XX XX XX XX XX XX XX XX XX				X				X		
GP-5	GP-3	х	х	x	х	х	х	х		
GP-6										
GP-7									^	
GP-9	GP-7	х	х	х	х	Х	х	х		
GP-10										
GP-11	1									
GP-13	GP-11	х	х	х	х	х	х	х		
GP-14						X				
GP-15 GP-16 GP-17 X X X X X X X X X X X X X X X X X X X						X				
GP-17 GP-18 GP-18 GP-19 X X X X X X X X X X X X X X X X X X X	GP-15	x	х	х	х	х	х	х	х	
GP-18 GP-19 X X X X X X X X X X X X X X X X X X X									X	
GP-19 GP-20 GP-20 GP-21 X X X X X X X X X X X X X X X X X X X										
GP-21	GP-19	х	х	x	х	x	Х	х		
GP-22						X				
GP-23 GP-24 GP-24 GP-25 GP-26 GP-27 GP-28 GP-27 X X X X X X X X X X X X X X X X X X X										
GP-25 GP-26 GP-26 GP-27 GP-27 GP-27 X X X X X X X X X X X X X X X X X X X			х	х	х	х	Х	х		
GP-26 X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
GP-27 GP-28										
GP-29 X <td>M I</td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td>х</td> <td></td> <td></td>	M I	x					x	х		
GP-30										
GP-31	1)						X			
GP-33										
GP-34										
GP-35										
GP-37										
GP-38										
GP-39										
GP-40				x			х			
GP-41-39.5		X	х							
GP-41-56.0										
GP-41-74.0										
GP-42-42.5	GP-41-74.0	х								
GP-42-54.5										
GP-42-75.5	GP-42-42.5 GP-42-54.5					İ				
GP-43-34.5		х								
GP-43-64.0 X GP-43-74.5 X GP-44-22.0 X GP-44-5.5 X GP-44-75.5 X GP-44-76.5 X GP-45 GP-45 GP-47 GP-51 GP-52 X GP-52										
GP-44-22.0 X GP-44-45.5 X GP-44-75.5 X GP-44-76.5 X GP-45 GP-47 GP-47 GP-51 GP-52 X X GP-52 X X X GP-52 X X X X GP-52 X X X X X X X X X X X X X X X X X X X	0									
GP-44-45.5 X GP-44-75.5 X GP-44-76.5 X GP-45 GP-46 GP-47 GP-51 GP-52 X GP-52 X GP-55 X GP-47 X X GP-52 X GP-50 X X X X X X X X X X X X X X X X X X X										
GP-44-75.5										
GP-45 GP-46 GP-47 GP-51 GP-52 X X X X X X X X X	II .									
GP-46 GP-47 GP-51		х						.		
GP-47 GP-51 GP-52 X	H .									
GP-52 X									,	
				, ,		· '				'
	GP-52 GP-53								X	

Table 2 Sampling Matrix Groundwater and Stormwater McCall/GWCC

Portland, Oregon

				nic Comp				Mo	tals
Location	vocs	4-methylphenol	Butyl Benzyl Phthalate	Di-n-octyl Phthalate	Dibenzofuran	PAHs	Total Petroleum Hydrocarbons	As, Cu, Cr	Cd, Pb, Zn
Monitoring Wells - G				·					
EX-1	X	X	X	X	X	X	X		l
EX-2	X	X	X	X	Х	х	Х	l	l
EX-3	X	Х	X	X	X	X	X	١	I
EX-4/MW-2	X	X	X	X	х	X X	х	х	
EX-5	X	X	х	Х	X	X	X	l	
EX-7	X	X	X	X	X	x	Х	l	
MW-1	X	X	X	X	X	X	х	X	
MW-3	X	X	X	X	X	Х	X	X	
MW-4	х	X	X	х	X	х	X	Х	1
MW-5	Х	X	X	Х	X	X X	x		
MW-6	Х	Х	Х	х	х	X	x	х	
MW-7	х	х	х	х	х	х	x	х	
MW-8	х	х	х	х	х	х	х	х	ì
MW-9	х	х	х	x	х	х	х		
MW-10	x	х	х	х	x	х	x		
MW-11	x	Х	x	х	х	x	x		
MW-12	х	х	x	х	х	х	x		
MW-13	х	х	х	х	Х	x	x		
MW-14	х	х	x	X	Х	х	x	X	
MW-15	Х	Х	Х	Х	Х	х	x		
Catch Basins - Storm	Water								-
S-1W		Х	Х	Х	Х	Х	х	Х	X
S-2W		х	х	x	x	х	х	х	x
S-3W	i	х	х	х	х	х	х	х	x
Oil/Water Separator	- Storm	Water							
S-4W	1	х	х	х	Х	Х	х	х	х
Note: The soil and groundwa	ter samples								

Table 3 Sampling Matrix Upland Soil and Catch Basin Sediment McCall/GWCC

Portland, Oregon

				ic C			eyor		tals		
Location Geoprobe Borings - S	VOCs	4-methylphenol	Butyl Benzyl Phthalate	Di-n-octyl Phthalate	Dibenzofuran	PAHs	Total Petroleum Hydrocarbons	As, Cu, Cr (dissolved for groundwater)	Cd, Pb, Zn (dissolved for groundwater)	Total Organic Carbon	Grain Size
GP-1 18-20										х	х
GP-4 10-12 GP-4 18-20	X	Х	X	х	x	X	х	х		x	х
GP-6 18-20 GP-7 2-4	x	х	x	x	x	x	х	х		X 	х
GP-8 16-18 GP-9 10-12	х	x	x	х	х	x	х	х		х	х
GP-11 18-20 GP-13 22-24 GP-14 0-2		x	x	x	x	x	x	x		X X	X X
GP-14 2-4 GP-14 20-22 GP-14 22-24		X	X X	X	X X	X	X X	X X		x	x
GP-15 0-2 GP-15 2-4 GP-15 20-22	x	X X X	X X X	X X X	X X X	X X X	X X X	X X X			
GP-16 0-2 GP-16 2-4 GP-16 16-18 GP-16 20-22		X X X	X X	X X	X X	X X	X X	X X		х	x
GP-17 0-2 GP-17 2-4 GP-17 12-14	x	X X X	X X X	X X X	X X X	x x x	X X X	x x x			-
GP-18 0-2 GP-18 2-4 GP-18 16-18		X X X	X X X	X X X	X X X	x x x	X X X	X X X			
GP-18 22-24 GP-19 0-2 GP-19 2-4		X X	x x	X X	X X	x x	x x	X X		х	х
GP-19 16-18 GP-19 18-20 GP-20 2-4		x x	x	x x	x x	x	x	x x		х	х
GP-20 16-18 GP-21 16-18 GP-22 10-12	x	x x	x	x	x	x	x x	х		х	х
GP-23 16-18 GP-24 12-14	X X	X X	X X	X X	X X	X X	X X				
GP-24 16-18 GP-25 10-12	X X	X	X X	X	X	X	X				
GP-25 14-16 GP-26 14-16	X X	X	X	X	X	X	X				
GP-26 18-20	x	х	x	х	х	х	х				
GP-27 10-12 GP-28 12-14	X	X	X	X	X	X	X				
GP-29 4-6	х	х	X	X	X	X	X				
GP-30 4-6 GP-31 14-16	X	X	X	X	X	X	X				
GP-32 10-12	x	х	X	х	X	х	х			,	
GP-33 16-18 GP-34 12-14	X	X	X	X	X	X	X				
GP-35 10-12	х	х	x	х	X	х	х				
GP-36 12-14 GP-38 10-12	X X	X	X	X	X	X	X				
GP-48 10-12	^	^	^	^	^	^	x				
GP-49 10-12 GP-50 10-12							X X				
Catch Basins - Sedim	ent	v	v		v		v	v	v		
S-1 S-2 S-3		X	X	X X	X	X	X	X X	X X X	X X X	
S-3 S3-01C		X X	X X	X X	X X	X	X X	X X	X	X	
Note: The soil and groundwa	der sa	mples	flom	GP-54	and (3P-55	were not t	ested.			

Table 4

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Reference Point			
	Elevation		DTW	WLE
Well	(Feet MSL)	Date	(Feet)	(Feet MSL)
		09/08/94	15.35	20.77
EX-1	36.12	09/08/94 12/29/94		21.52
EX-1	36.12		14.60	
EX-1	36.12	03/29/95	13.06	23.06
EX-1	36.12	06/27/95	13.65	22.47
EX-1	36.12	07/14/95	13.82	22.30
EX-1	36.12	05/01/97	12.71	23.41
EX-1	36.12	02/03/99	13.21	22.91
EX-1	36.12	12/08/00	15.65	20.47
EX-1	36.12	01/19/01	15.46	20.66
EX-1	36.12	02/08/01	15.55	20.57
EX-1	36.12	03/08/01	15.65	20.47
EX-1	36.12	04/12/01	15.72	20.40
EX-1	36.12	05/15/01	15.68	20.44
EX-1	36.12	06/12/01	15.75	20.37
EX-1	36.12	07/16/01	15.84	20.28
EX-1	36.12	08/14/01	15.97	20.15
EX-1	36.12	09/13/01	16.07	20.05
EX-1	36.12	10/25/01	16.31	19.81
EX-1	36.12	11/16/01	16.27	19.85
EX-1	36.12	12/18/01	15.88	20.24
EX-1	36.12	01/22/02	15.05	21.07
EX-1	36.12	02/14/02	14.56	21.56
EX-1	36.12	03/06/02	14.28	21.84
EX-1	36.12	10/02/02	15.39	20.73
EX-1	36.12	02/11/04	13.74	22.38
EX-2	32.28	09/08/94	18.56	13.72
EX-2	32.28	12/29/94	17.87	14.41
EX-2	32.28	03/29/95	17.11	15.17
EX-2	32.28	06/27/95	17.27	15.01
EX-2	32.28	07/14/95	17.42	14.86
EX-2	32.28	05/01/97	13.08	19.20
EX-2	32.28	02/03/99	16.30	15.98
EX-2	32.28	12/08/00	18.66	13.62
EX-2	32.28	01/19/01	18.67	13.61
EX-2	32.28	02/08/01	18.70	13.58
EX-2	32.28	03/08/01	18.76	13.52
EX-2	32.28	04/12/01	18.10	14.18
EX-2	32.28	05/15/01	17.94	14.34
EX-2	32.28	06/12/01	17.94	14.34
EX-2	32.28	07/16/01	18.49	13.79
EX-2	32.28	08/14/01	18.73	13.55
EX-2	32.28	09/13/01	18.90	13.38
EX-2	32.28	10/25/01	19.18	13.10
EX-2	32.28	11/16/01	19.24	13.04
EX-2	32.28	12/18/01	18.50	13.78
EX-2	32.28	01/22/02	17.83	14.45
EX-2	32.28	02/14/02	17.49	14.79
EX-2	32.28	03/06/02	17.45	14.83
EX-2	32.28	10/02/02	18.22	14.06
EX-2	32.28	02/11/04	17.54	14.74

Table 4

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Reference Point Elevation		DTW	WLE
Well	(Feet MSL)	Date	(Feet)	(Feet MSL)
	32.07	09/08/94	17.96	14.11
EX-3 EX-3	32.07 32.07	12/29/94	16.72	15.35
		03/29/95	15.43	16.64
EX-3	32.07	•	15.43	16.16
EX-3	32.07	06/27/95		
EX-3	32.07	07/14/95	15.96	16.11
EX-3	32.07	05/01/97	12.84	19.23
EX-3	32.07	02/03/99	15.12	16.95
EX-3	32.07	12/08/00	18.27	13.80
EX-3	32.07	01/19/01	18.13	13.94
EX-3	32.07	02/08/01	18.10	13.97
EX-3	32.07	03/08/01	18.17	13.90
EX-3	32.07	04/12/01	17.44	14.63
EX-3	32.07	05/15/01	17.08	14.9 9
EX-3	32.07	06/12/01	17.04	15.03
EX-3	32.07	07/16/01	17.82	14.25
EX-3	32.07	08/14/01	18.25	13.82
EX-3	32.07	09/13/01	18.51	13.56
EX-3	32.07	10/25/01	18.92	13.15
EX-3	32.07	11/16/01	19.02	13.05
EX-3	32.07	12/18/01	17.91	14.16
EX-3	32.07	01/22/02	16.41	15.66
EX-3	32.07	02/14/02	15.95	16.12
EX-3	32.07	03/06/02	15.88	16.19
EX-3	32.07	10/02/02	17.59	14.48
EX-3	32.07	02/11/04	15.99	16.08
EX-4 (MW-2)	35.60	10/18/93	16.63	18.97
EX-4 (MW-2)	35.60	10/28/93	16.72	18.88
EX-4 (MW-2)	35.60	01/27/94	16.56	19.04
EX-4 (MW-2)	35.60	09/08/94	16.86	18.74
EX-4 (MW-2)	35.60	12/29/94	16.09	19.51
EX-4 (MW-2)	35.60	03/29/95	14.63	20.97
EX-4 (MW-2)	35.60	06/27/95	15.22	20.38
EX-4 (MW-2)	35.60	07/14/95	15.41	20.19
EX-4 (MW-2)	35.60	05/01/97	14.08	21.52
EX-4 (MW-2)	35.60	02/03/99	14.58	21.02
EX-4 (MW-2)	35.60	12/08/00	16.97	18.63
EX-4 (MW-2)	35.60	01/19/01	16.81	18.79
EX-4 (MW-2)	35.60	02/08/01	16.84	18.76
EX-4 (MW-2)	35.60	03/08/01	16.92	18.68
EX-4 (MW-2)	35.60	04/12/01	16.96	18.64
EX-4 (MW-2)	35.60	05/15/01	16.92	18.68
EX-4 (MW-2)				
	35.60 35.60	06/12/01	16.98	18.62
EX-4 (MW-2)	35.60	07/16/01	17.09	18.51
EX-4 (MW-2)	35.60 35.60	08/14/01	17.22	18.38
EX-4 (MW-2)	35.60	09/13/01	17.30	18.30
EX-4 (MW-2)	35.60	10/25/01	17.51	18.09
EX-4 (MW-2)	35.60	11/16/01	17.52	18.08
EX-4 (MW-2)	35.60	12/18/01	17.22	18.38
EX-4 (MW-2)	35.60	01/22/02	16.28	19.32
EX-4 (MW-2)	35.60	. 02/14/02	15.80	19.80
EX-4 (MW-2)	35.60	03/06/02	15.61	19.99
EX-4 (MW-2)	35.60	10/02/02	16.49	19.11
EX-4 (MW-2)	35.60	02/11/04	15.14	20.46

Table 4

Monitoring Well and River Hydrology Measurements

McCali Oil and Chemical

	Reference Point		DTW	WE E
Well	Elevation (Feet MSL)	Date	DTW (Feet)	WLE (Feet MSL)
				(100, 1102)
EX-5	31.87	09/08/94	NM	16.00
EX-5	31.87	12/29/94	15.85	16.02
EX-5	31.87	03/29/95	14.84	17.03
EX-5	31.87	06/27/95	16.32	15.55
EX-5	31.87	07/14/95	16.34	15.53
EX-5	31.87	05/01/97	12.06	19.81
EX-5	31.87	02/03/99	13.45	18.42
EX-5	31.87	12/08/00	19.72	12.15
EX-5	31.87	01/19/01	18.87	13.00
EX-5	31.87	02/08/01	18.98	12.89
EX-5	31.87	03/08/01	19.22	12.65
EX-5	31.87	04/12/01	18.96	12.91
EX-5	31.87	05/15/01	18.94	12.93
EX-5	31.87	06/12/01	19.05	12.82
EX-5	31.87	07/16/01	19.76	12.11
EX-5	31.87	08/14/01	20.32	11.55
EX-5	31.87	09/13/01	20.70	11.17
EX-5	31.87	10/25/01	21.27	10.60
EX-5	31.87	11/16/01	21.04	10.83
EX-5	31.87	12/18/01	16.64	15.23
EX-5	31.87	01/22/02	16.10	15.77
EX-5	31.87	02/14/02	15.35	16.52
EX-5	31.87	03/06/02	15.93	15.94
EX-5	31.87	10/02/02	19.58	12.29
EX-5	31.87	02/11/04	15.70	16.17
EX-6	34.38	09/08/94	NM	
EX-6	34.38	12/29/94	13.98	20.40
EX-6	34.38	03/29/95	12.51	21.87
EX-6	34.38	06/27/95	13.04	21.34
EX-6	34.38	07/14/95	13.17	21.21
EX-6	34.38	05/01/97	11.93	22.45
EX-6	34.38	02/03/99	12.71	21.67
EX-6	34.38	12/08/00	Well casing fille	
EX-6	34.38	11/16/01	Decommissione	
EX-7	35.29	09/08/94	NM	
EX-7	35.29	12/29/94	13.21	22.08
EX-7	35.29	03/29/95	11.69	23.60
EX-7	35.29	06/27/95	12.34	22.95
EX-7	35.29	07/14/95	12.38	22.91
EX-7	35.29	05/01/97	11.44	23.85
EX-7	35.2 9 35.29	02/03/99	11.81	23.48
EX-7	35.29	12/08/00	14.32	20.97
EX-7	35.29 35.29	01/19/01	14.15	21.14
EX-7	35,29 35,29	02/08/01	14.18	21.14
EX-7	35.29 35.29	03/08/01	14.18	20.99
EX-7	35.29 35.29	04/12/01	14.37	20.99
EX-7 EX-7	35.29 35.29	04/12/01	14.37 14.33	20.92 20.96
EX-7	35.29 35.29		14.33 14.41	20.96
EX-7 EX-7	35.29 35.29	06/12/01	14.41 14.51	20,88 20.78
EX-7 EX-7	35.29 35.29	07/16/01	14.51	20.78 20.64
		08/14/01		20.54
EX-7	35.29 36.20	09/13/01	14.75	
EX-7	35.29 35.20	10/25/01	15.01	20.28
EX-7	35.29 35.20	11/16/01	14.98	20.31
EX-7	35.29 36.20	12/18/01	14.42	20.87
EX-7	35.29	01/22/02	13.50	21.79
	35.29	02/14/02	13.15	22.14
EX-7	0.5.55	AB 15 5 15 5		c- 44
EX-7 EX-7 EX-7	35.29 35.29	03/06/02 10/02/02	12.86 13.76	22.43 21.53

Table 4

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Reference Point Elevation		DTU	WLE
Well	(Feet MSL)	Date	DTW (Feet)	(Feet MSL)
Men	(rect MSL)	Date	(Feet)	(reet MSL)
MW-1	35.48	05/11/93	15.56	19.92
MW-1	35.48	10/18/93	17.04	18.44
MW-1	35.48	10/28/93	17.16	18.32
MW-1	35.48	01/27/94	16.99	18.49
MW-1	35.48	09/08/94	NM	
MW-1	35.48	12/29/94	16.43	19.05
MW-1	35.48	03/29/95	NM	
MW-1	35.48	06/27/95	NM	
MW-1	35.48	07/14/95	NM	
MW-1	35.48	05/01/97	14.12	21.36
MW-1	35.48	02/03/99	14.83	20.65
MW-1	35.48	12/08/00	17.40	18.08
MW-1	35.48	01/19/01	17.23	18.25
MW-1	35.48	02/08/01	17.32	18.16
MW-1	35.48	03/08/01	17.42	18.06
MW-1	35.48	04/12/01	17.41	18.07
MW-1	35.48	05/15/01	17.37	18.11
MW-1	35.48	06/12/01	NM	10.11
MW-1	35.48	07/16/01	17.59	17.89
MW-1	35.48 35.48	08/14/01	17.70	17.78
MW-1	35.48	09/13/01	17.78	17.70
MW-1	35.48	10/25/01	17.76	17.51
MW-1	35.48 35.48	11/16/01	17.88	17.60
MW-1 MW-1		12/18/01		
	35.48		17.44	18.04 18.80
MW-1	35.48	01/22/02 02/14/02	16.68	
MW-1	35.48		16.38	19.10
MW-1	35.48	03/06/02	16.03	19.45
MW-1	35.48	10/02/02	16.98	18.50
MW-1	35.48	02/11/04	15.63	19.85
MW-3	34.56	10/18/93	16.47	18.09
MW-3	34.56	10/28/93	16.60	17.96
MW-3	34.56	01/27/94	16.40	18.16
MW-3	34.56	09/08/94	NM	
MW-3	34.56	12/29/94	15.90	18.66
MW-3	34.56	03/29/95	NM	
MW-3	34.56	06/27/95	NM	
MW-3	34.56	07/14/95	NM	
MW-3	34.56	05/01/97	13.73	20.83
MW-3	34.56	02/03/99	14.36	20.20
MW-3	34.56	12/08/00	16.73	17.83
MW-3	34.56	01/19/01	16.60	17.96
MW-3	34.56	02/08/01	16.64	17.92
MW-3	34.56	03/08/01	16.73	17.83
MW-3	34.56	04/12/01	16.73	17.83
MW-3	34.56	05/15/01	16.71	17.85
MW-3	34.56	06/12/01	16.76	17.80
MW-3	34.56	07/16/01	16.91	17.65
MW-3	34.56	08/14/01	16.97	17.59
MW-3	34.56	09/13/01	17.09	17.47
MW-3	34.56	10/25/01	17.24	17.32
MW-3	34.56	11/16/01	17.16	17.40
MW-3	34.56	12/18/01	16.82	17.74
MW-3	34.56	01/22/02	16.09	18.47
MW-3	34.56	02/14/02	15.65	18.91
MW-3	34.56	03/06/02	15.50	19.06
MW-3	34.56	10/02/02	16.36	18.20
TAY 44 _ ?	J4.JU	10/02/02	10.50	10.20

Table 4

Monitoring Well and River Hydrology Measurements

McCall Oil and Chemical

	Reference Point Elevation		DTW	WLE
Well	(Feet MSL)	Date	(Feet)	(Feet MSL)
MW-4	33.61	10/18/93	16.21	17.40
MW-4	33.61	10/28/93	16.26	17.35
MW-4	33.61	01/27/94	16.06	17.55
MW-4	33.61	09/08/94	NM	
MW-4	33.61	12/29/94	15.55	18.06
MW-4	33.61	03/29/95	NM	
MW-4	33.61	06/27/95	NM	
MW-4	33.61	07/14/95	NM	
MW-4	33.61	05/01/97	13.32	20.29
MW-4	33.61	02/03/99	14.04	19.57
MW-4	33.61	12/08/00	16.25	17.36
MW-4	33.61	01/19/01	16.17	17.44
MW-4	33.61	02/08/01	16.21	17.40
MW-4	33.61	03/08/01	16.29	17.32
MW-4	33.61	04/12/01	16.28	17.33
MW-4	33.61	05/15/01	16.28	17.33
MW-4	33.61	06/12/01	16.32	17.29
MW-4	33.61	07/16/01	16.43	17.18
MW-4	33.61	08/14/01	16.53	17.08
MW-4	33.61	09/13/01	16.60	17.01
MW-4	33.61	10/25/01	16.74	16.87
MW-4	33.61	11/16/01	16.63	16.98
MW-4	33.61	12/18/01	16.20	17.41
MW-4	33.61	01/22/02	15.65	17.96
MW-4	33.61	02/14/02	15.26	18.35
MW-4	33.61	03/06/02	15.18	18.43
MW-4	33.61	10/02/02	15.96	17.65
MW-4	33.61	02/11/04	14.76	18.85
MW-5	34.66	10/18/93	20.13	14.53
MW-5	34.66	10/28/93	20.48	14.18
MW-5	34.66	01/27/94	19.89	14.77
MW-5	34.66	09/08/94	NM	
MW-5	34.66	12/29/94	19.25	15.41
MW-5	34.66	03/29/95	NM	•
MW-5	34.66	06/27/95	NM.	
MW-5	34.66	07/14/95	NM	
MW-5	34.66	05/01/97	15.91	18.75
MW-5	34.66	02/03/99	18.15	16.51
MW-5	34.66	12/08/00	19.80	14.86
MW-5	34.66	01/19/01	19.69	14.97
MW-5	34.66	02/08/01	1 9.67	14.99
MW-5	34.66	03/08/01	19.75	14.91
MW-5	34.66	04/12/01	19.80	14.86
MW-5	34.66	05/15/01	20.00	14.66
MW-5	34.66	06/12/01	20.01	14.65
MW-5	34.66	07/16/01	20.32	14.34
MW-5	34.66	08/14/01	20.39	14.27
MW-5	34.66	09/13/01	20.47	14.19
MW-5	34.66	10/25/01	20.30	14.36
MW-5	34.66	11/16/01	20.19	14.47
MW-5	34.66	12/18/01	19.18	15.48
MW-5	34.66	01/22/02	19.00	15.66
MW-5	34.66	02/14/02	18.79	15.87
MW-5	34.66	03/06/02	18.95	15.71
MW-5	34.66	10/02/02	20.25	14.41
MW-5	34.66	02/11/04	18.96	15.70

Table 4

Monitoring Well and River Hydrology Measurements

McCall Oll and Chemical

······································	Reference Point Elevation		DTW	WLE
Well	(Feet MSL)	Date	(Feet)	(Feet MSL)
MW-6	34.83	10/25/01	16.73	18.10
MW-6	34.83	11/16/01	16.67	18.16
MW-6	34.83	12/18/01	16.35	18.48
MW-6	34.83	01/22/02	15.46	19.37
MW-6	34.83	02/14/02	15.94	18.89
MW-6	34.83	03/06/02	14.73	20.10
MW-6	34.83	10/02/02	1 5.57	19.26
MW-6	34.83	02/11/04	14.17	20.66
MW-7	34.74	10/25/01	25.77	8.97
MW-7 .	34.74	11/16/01	24.94	9.80
MW-7	34.74	12/18/01	21.26	13.48
MW-7	34.74	01/22/02	22.72	12.02
MW-7	34.74	02/14/02	22.61	12.13
MW-7	34.74	03/06/02	23.33	11.41
MW-7	34.74	10/02/02	25.08	9.66
MW-7	34.74	02/11/04	22.66	12.08
MW-8	32.24	10/25/01	25.64	6.60
MW-8	32.24	11/16/01	23.85	8.39
MW-8	32.24	12/18/01	19.55	12.69
MW-8	32.24	01/22/02	22.44	9.80
MW-8	32.24	02/14/02	22.54	9.70
MW-8	32.24	03/06/02	23.52	8.72
MW-8	32.24	10/02/02	25.41	6.83
MW-8	32.24	02/11/04	21.64	10.60
MW-9	36.00	01/22/02	17.57	18.43
MW-9	36.00	02/14/02	17.21	18.79
MW-9	36.00	03/06/02	17.02	18.98
MW-9	36.00	10/02/02	17.85	18.15
MW-9	36.00	02/11/04	16.63	19.37
MW-10	35.06	01/22/02	14.97	20.09
MW-10	35.06	02/14/02	14.46	20.60
MW-10	35.06	03/06/02	14.20	20.86
MW-10	35.06	10/02/02	15.81	19.25
MW-10	35.06	02/11/04	13.64	21.42
MW-11	34.41	01/22/02	13.32	21.09
MW-11	34.41	02/14/02	12.94	21.47
MW-11	34.41	03/06/02	12.76	21.65
MW-11	34.41	10/02/02	Free product, una	ible to measure
MW-11	34.41	02/11/04	Free product, una	ible to measure
MW-12	32.79	01/22/02	17.88	14.91
MW-12	32.79	02/14/02	17.46	15.33
MW-12	32.79	03/06/02	17.37	15.42
MW-12	32.79	10/02/02	17.65	15.14
MW-12	32.79	02/11/04	17.22	15.57
MW-13	34.94	01/22/02	18.83	16.11
		02/14/02	17.95	16.99
MW-13	34.94			
	34.94 34.94	03/06/02	17.57	17.37
MW-13 MW-13 MW-13			17.57 18.80	17.37 16.14
MW-13 MW-13	34.94	03/06/02		
MW-13 MW-13 MW-13	34.94 34.94	03/06/02 10/02/02	18.80	16.14

Table 4

Monitoring Well and River Hydrology Measurements

McCall Oll and Chemical

	Reference Point			
	Elevation		DTW	WLE
Well	(Feet MSL)	Date	(Feet)	(Feet MSL)
WG-1	37.28	10/28/93	32.82	4.46
WG-1	37.28	01/27/94	30.04	7.24
WG-1	37.28	09/08/94	NM	
WG-1	37.28	12/29/94	NM	
WG-1	37.28	03/29/95	NM	
WG-I	37.28	06/27/95	NM	
WG-1	37.28	07/14/95	NM	
WG-1	37.28	05/01/97	17.80	19.48
WG-1	37.28	02/03/99	23.02	14.26
WG-1	37.28	12/08/00	31.60	5.68
WG-1	37.28	01/19/01	31.74	5.54
WG-1	37.28	02/08/01	30.78	6.50
WG-1	37.28	03/08/01	31.80	5.48
WG-1	37.28	04/12/01	29.15	8.13
WG-1	37.28	05/15/01	29.95	7.33
WG-1	37.28	06/12/01	31.02	6.26
WG-1	37.28	07/16/01	34.23	3.05
WG-1	37.28	08/14/01	33.27	4.01
WG-1	37.28	09/13/01	31.15	6.13
WG-1	37.28	10/25/01	31.38	5.90
WG-1	37.28	11/16/01	30.77	6.51
WG-1	37.28	12/18/01	25.45	11.83
WG-1	37.28	01/22/02	27.80	9.48
WG-1	37.28	02/14/02	29.27	8.01
WG-1	37.28	03/06/02	29.46	7.82
WG-1	37.28	10/02/02	32.60	4.68
WG-1	37.28	02/11/04	28.65	8.63

Note: Reference point elevations for EX-1 to EX-7, MW-1 to MW-5 and WG-1 surveyed by W&H Pacific on 9/19/00.

MW-6 to MW-13 surveyed by W&H Pacific on 1/30/02. MW-14 and MW-15 surveyed by W&H Pacific on 4/5/04.

Table 5
TPH in Groundwater and Storm Water
McCall/GWCC

MCCall/GWCC									
				TPH - FIG	<u> </u>				
Risk-Based Concentration	ns (DEQ, 2003)*	Caralla		7511		YY To -1 C	.,,		
<u> </u>		Gasoline		Diesel		Heavy Fuel C	11		
Construction/ Excavat		12,000		> Saturation	-	N/A			
Volatilization, Out		> Saturation	-	> Saturation		N/A			
Vapor Intrusion, In		> Saturation		> Saturation		N/A			
Location	Date	100		alytical Resul					
GP-1	12/11/00	100	U	100	_	250	U		
GP-2	12/11/00	130	H	100	-	250	U		
GP-3	12/11/00	170	H		L	250	U		
GP-4 GP-5	12/11/00	2,500	H	7,100	F	250	U		
	12/11/00	620	H		Y	250	U		
GP-6	12/14/00	100	U	100		250	U		
GP-7	12/14/00	100	U	100	U	250	U		
GP-8	12/12/00	100	U	100	Y	250	U		
GP-9	12/12/00	100	IJ		Y	250	U		
GP-10	12/12/00	100	U	100	Y	250	U		
GP-11	12/12/00	100	U	130	Y	250	U		
GP-12	12/13/00	100	U		H	250	U		
GP-12 Duplicate	12/13/00	100	U	160	Y	250	U		
GP-13	12/12/00	110	Z	260	Y	250	U		
GP-14	12/13/00	100	U	100	_	250	U		
GP-15	12/13/00	100	U	2,800	F	250	U		
GP-16	12/13/00	100	U	100	U	250	U		
GP-17	12/13/00	100	U		U	250	U		
GP-18	12/14/00	100	U	100	_	250	U		
GP-19 GP-19 Duplicate	12/14/00	100	U	100 100	U	250 250	U U		
GP-19 Duplicate GP-20	12/14/00	100	U	550	Y	250	U		
GP-21	12/14/00	100 100	_	120	Y	250	U		
GP-21 GP-22	12/12/00		U		_	250	U		
GP-23	02/09/01	210	1	1,100 440	F		U		
GP-24	02/09/01	100 100	U U		H	250 250	U		
GP-25	02/09/01 02/09/01	100	U.		H	250	บ		
GP-26			ט		H		U		
GP-27	02/09/01	100	Ü	170	Н	250 250	บ		
GP-28	02/12/01	100	U	100	U	250	U		
GP-29	02/12/01 02/12/01	100	Ü		U	250 250	U		
GP-30	02/12/01	100	บ	100	U	250	U		
GP-30 Duplicate	02/12/01	100	U	120	H	250	U		
GP-31	02/12/01	1,800	H	7,600	Y	250	Ü		
GP-32	02/13/01	100	Ü	7,000	H	250	Ü		
GP-33	02/13/01	100	Ū		Y	250 250	U		
GP-34	02/13/01	130	H		Y	250	U		
GP-35	02/13/01	100	U	2,100		250	Ü		
GP-36	02/13/01	100	บ	210		250	U		
GP-37	02/14/01	100	บ	100		250	U		
GP-38	02/14/01	100	บ	100		250	Ü		
GP-38 Duplicate	02/14/01	100	U	100		250	U		
GP-39	02/14/01	100	Ū	100		250	Ū		
GP-40	02/14/01	100	Ü	640		250	Ŭ		
GP-45	11/14/01	667	-	1,680		1,680	Ü		
GP-46	11/14/01	714		38,700		28,000	-		
GP-47	11/14/01		DET	630	U	630	U		

Table 5
TPH in Groundwater and Storm Water
McCall/GWCC

WCCall/GVVCC									
				TPH - FIC	<u> </u>				
Risk-Based Concentration	ns (DEO 2003)*					1			
Mak-Dased Concentiatio	ль (вес, 2005)	Gasoline		Diesel		Heavy Fuel O	il		
Construction/ Excava	tion Worker	12,000		> Saturation	0	N/A			
Volatilization, Ou		> Saturation		> Saturation	n	N/A			
Vapor Intrusion, I		> Saturation		> Saturation	n.	N/A			
Location	Date		An	alytical Result	in	μg/L			
Monitoring Wells - Water	ig/L (ppb)								
EX-1	09/08/94	50	U	50	U	266			
EX-1 Duplicate	09/08/94	5	U						
EX-1	12/30/94	50	U	50	U	632			
EX-1	03/29/95	50	U	50	U	454			
EX-1	07/14/95	50	U	50	U	200	U		
EX-1	05/02/97	167	Y	50	U	200	U		
EX-1 Duplicate	05/02/97	188	Y	50	U	200	U		
EX-1	02/04/99	100	U	100	U	924			
EX-1 Duplicate	02/04/99	100	U	100	U	814			
EX-1	12/20/00	990	Z	100	U	250	U		
EX-1	03/07/02	460	H	280	Y	550	0		
EX-1	10/03/02	100	U	100	U	250	U		
EX-1	02/11/04	500	Z	120	Y	250	U		
EX-1 Duplicate	02/11/04	450	Z	120	Y	250	U		
	00/00/04	-		50	**	200			
EX-2	09/08/94	50	U		U	200			
EX-2	12/30/94	50	U	50		441			
EX-2	03/29/95	50	U	50		398			
EX-2	07/14/95	50	U	50		885			
EX-2	05/01/97	50	U	519	Y	200	U		
EX-2	02/04/99	10	U	10	U	569	**		
EX-2	12/20/00	100	U		U	250	U		
EX-2	03/07/02	110	U	170	Y	270	U		
EX-2	10/04/02	100	U	270	Y Y	290	0		
EX-2	02/12/04	100	U	110	Y	250	U		
EX-3	09/08/94	50	U	50	U	200			
EX-3 Duplicate	09/08/94	50	Ū	50		200			
EX-3	12/30/94	50	U		Ū	474			
EX-3	03/29/95	50	U		U	226			
EX-3	07/14/95	50	U	50	U	200	U		
EX-3	05/01/97	50	U	64	Y	200	บ		
EX-3	02/04/99	100	U	100	U	564			
EX-3	12/20/00	690	Z	100	U	250	U		
EX-3	03/07/02	110	U	110	Y	270	U		
EX-3	10/04/02	100	U	120	Y	250	U		
EX-3	02/12/04	100	U	100	U	250	U		
EX-4/MW-2	09/08/94	50	U	50		200			
EX-4/MW-2	12/30/94	50	U	1000	U	3840			
EX-4/MW-2	03/29/95	50	U	2140		200	U		
EX-4/MW-2	07/14/95	50	U	343	,,	200	U		
EX-4/MW-2 Duplicate	07/14/95	50	U	50		200	U		
EX-4/MW-2	05/01/97	50	U	1	Y	200	U		
EX-4/MW-2	02/03/99	100	U	787 100		250 250	U U		
EX-4/MW-2 EX-4/MW-2	12/20/00 03/07/02	640 160	Z H	920		250 290	0		
EX-4/MW-2 EX-4/MW-2	10/03/02	150	Н	920 980		250 250	U		
EX-4/MW-2	02/13/04	120	H		Y	230 280	0		
7-12 F - 41 TAT AA - 7-	V2113104	120	11	740	*	200	J		
	L	i							

Table 5
TPH in Groundwater and Storm Water
McCall/GWCC

		icoan/GW	<u> </u>				-
		ļ		TPH - FIG	5		
Risk-Based Concentr	ations (DEO, 2003)*						
ABA Dases Concent		Gasoline		Diesel		Heavy Fuel O)il
Construction/ Exc	avation Worker	12,000		> Saturation	n	N/A	
Volatilization,		> Saturation	ı	> Saturation	n	N/A	
Vapor Intrusio	n, Indoor Air	> Saturation		> Saturation		N/A	
Location	Date		Au	alytical Result			
EX-5	12/30/94	50	U	50	_	1400	
EX-5	03/29/95	50	U	50		639	- 1
EX-5 Duplicate	03/29/95	50	U	50	U	767	
EX-5	07/14/95	50	U	1500		200	U
EX-5	05/01/97	50	U	50	U	200	ן ט
EX-5 Duplicate	05/01/97	50	U	50	U	200	U
EX-5	02/04/99	100	U	573	Y	250	U
EX-5 Duplicate	02/04/99	100	U	550	Y	250	υ
EX-5	12/20/00	950	Z	100	U	250	U
EX-5	03/07/02	100	U	140	Y	250	U
EX-5	10/04/02	100	U	120	Y	270	0
EX-6	12/30/94	50	U	50	U	842	
EX-6 Duplicate	12/30/94	50	Ū	50		851	
EX-6	03/29/95	50	Ū	i	Ū	1160	
EX-6	07/14/95	50	Ū	50	Ū	200	ט
EX-6	05/02/97	50	Ū		Ū	1450	
EX-6	02/04/99	100	U	1280	Y	250	บ
	02/04/33	100	•	1	•		Ĭ
EX-7	12/30/94	50	Ū	50	U	200	บ
EX-7	03/29/95	50	Ū	50		200	Ŭ
EX-7	07/14/95	50	Ū	50	-	200	Ü
EX-7	05/02/97	50	Ū	50		200	ŭ
EX-7	02/03/99	100	Ü	250	-	250	ŭ
EX-7	12/20/00	530	Z	100	Ū	250	ŭ
EX-7	03/06/02	100	U	1	Ü	250	บ
EX-7	10/03/02	100	Ū	100	Ū	250	Ü
EX-7	02/13/04	100	U	100	U	250	Ü
EA-/	02/13/04	100	U	100	Ü	250	١
MW-1	05/01/97	50	U	319	Y	200	U
MW-1	02/03/99	100	U	250	U	250	U
MW-1	12/20/00	1,200	Z	100	U	250	U
MW-1	03/07/02	100	U	110	Y`	250	U
MW-1	10/03/02	100	U	220	Y	250	υ
MW-1	02/11/04	, 100	U	120	Y	250	U
MW-3	05/01/97	50	U	1430	y	200	U
MW-3	02/03/99	100	Ü	1190		250	บั
MW-3	12/20/00	720	z	100		250	Ü
MW-3 Duplicate	03/07/02	240	H	1000	Y	390	o
MW-3	03/07/02	220	H	1000	Ŷ	410	ŏ
MW-3	10/03/02	320	Н	3000	Ÿ	520	Ľ
MW-3	02/11/04	300	Н	2000	Ÿ	250	Ū
MOW 4	05/01/07		ŢŤ	212	v	200	บ
MW-4	05/01/97	50	U	312		200	
MW-4 MW-4	02/03/99 12/20/00	100	U	716 100		250 250	U
1		100	U	ľ		l	
MW-4 MW-4	03/07/02 10/03/02	180 170	Н	870 1200	Y	350 250	U
TAT AA 	10/03/02	1 1/0	Н	1200	I	230	ا۲
I		L	_	L		l	

Table 5
TPH in Groundwater and Storm Water
McCall/GWCC

ſ-		ACCAII/GW	<u> </u>	TPH - FI	0	· · · · · · · · · · · · · · · · · · ·	
İ				T	<u> </u>		
Risk-Based Concentration	ns (DEQ, 2003)*	 Gasoline		Dissel		Hooses Engl C	\ 21
Construction/ Excava	ion Worker	12,000		Diesel > Saturatio		Heavy Fuel C	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Volatilization, Out		> Saturation		> Saturatio		N/A N/A	
Voiatinzation, Ott		> Saturation		> Saturatio		N/A	
Location	Date	- Ontaragon		alytical Resul	_		
MW-5	05/01/97	50	U	204	Y	200	U
MW-5	02/03/99	100	Ū	391	Y	250	U.
MW-5	12/20/00	100	Ū	100	U	250	U
MW-5	03/07/02	100	U	310	Y	260	0
MW-5	10/03/02	. 100	U	280	Y	250	U
MW-5 Duplicate	10/03/02	100	U	310	Y	250	U
MW-5	02/11/04	100	U	290	Y	250	U
MW-6	10/25/01	250	U	630	U	630	U
MW-6 Duplicate	10/25/01	250	U	630	U	630	U
MW-6	03/08/02	160	Z	240	Y	500	0
MW-6	10/03/02	100	U	280	Y	350	L
MW-6 Duplicate	10/03/02	100	U	230	Y	270	L
MW-6	02/12/04	100	U	130	Y	250	U
MW-7	10/25/01	250	U	630	U	630	U
MW-7	03/08/02	110	U	1500	Y	4000	0
MW-7	10/04/02	160	Н	1100	Y	820	0
MW-7	02/12/04	100	U	240	Y	250	U
MW-7 Duplicate	02/12/04	100	U	240	Y	250	U
MW-8	10/25/01	250	U	3090		1840	
MW-8	03/07/02	650	Н	20000	Y	9200	0
MW-8	10/04/02	1,100	H	35000	DY	23000	DO
MW-8	02/12/04	100	U	330	Y	250	U
MW-9	01/22/02	140	H	480	Y	310	0
MW-9	03/06/02	200	H	520	Y	300	U
MW-9 Duplicate	03/06/02	210	H	600	Y	290	U
MW-9	10/03/02	150	H	850	Y	250	U
MW-9	02/13/04	100	U	300	Y	250	U
MW-10	01/22/02	100	U	250	Y	510	0
MW-10	03/06/02	110	U	170	Y	320	0
MW-10	10/03/02	100	U	170	Y	250	U
MW-10	02/13/04	100	U	370	Y	250	U
MW-11	01/22/02	1,900	H	15000	Y	4300	0
MW-11	03/08/02	1,700	H	11000	Y	2600	0
MW-12	01/22/02	110	Н	630	Y	1000	0
MW-12	03/06/02	150	H	1100	Y	1900	0
MW-12	10/04/02	100	U	570	Y	660	0
MW-12	02/13/04	100	U	340	Y	250	U
MW-13	01/22/02	300	H	1000	Y	2300	0
MW-13 Duplicate	01/22/02	360	H	1300	Y	2900	O
MW-13	03/06/02	150	H	710	Y	1500	О
MW-13	10/04/02	150	Z	650	Y	1300	0
MW-14	02/12/04	100	U	300	Y	250	U
MW-15	02/12/04	100	U	100	U	250	U

Table 5 TPH in Groundwater and Storm Water McCall/GWCC

	Vapor Intrusion, Indoor Air tion					
				TPH - FIQ		
Risk-Based Concentr	ations (DEQ, 2003)*	Gasoline		Diesel		Heavy Fuel Oil
Construction/ Exc	cavation Worker	12,000		> Saturation		N/A
Volatilization,	Outdoor Air	> Saturation	ı	> Saturation		N/A
Vapor Intrusio	n, Indoor Air	> Saturation	ı	> Saturation		N/A
Location	Date		An	alytical Result	in µg	/L
Catch Basins - Storm W	/ater					
S-1W	12/20/00	1,100	Z	100	U	250 U
S-1W	03/06/02	110	U	110	บ	270 U
S-2W	12/20/00	100	U	100	บ 📗	250 U
S-2W	03/06/02	130	Z	110	บไ	260 U
S-3W	02/15/01	1,300	Z	510	z	250 U
S-3W	03/06/02	110	U	110	z l	260 U
Oil/Water Separator - S	torm Water					
S-4W	02/15/01	270	Z	280	z	250 U
S-4W Duplicate	02/15/01	260	Z	300	z	250 U
S-4W	04/09/02	220	Н	1,300	F	550 O

Notes

Bold values indicate detected at or above method reporting limit.

- U = Not detected at or above method reporting limit shown.
- F = Fingerprint of the sample matches elution pattern of calibration standard
- L = Elution pattern indicates the presence of lighter weight constituents.
- H = Elution pattern indicates the presence of heavier weight constituents.
- O = The fingerprint resembles oil, but does not match the calibration standard.
- Y = Fingerprint resembles a petroleum product, but elution pattern does not match the calibration standard.
- Z = Fingerprint does not resemble a petroleum product.
- DET= Detected above method reporting limit (method reporting limit shown)
- D = The reported result is from a dilution.

^{*} Groundwater screened using monitoring well data only; GeoProbe data used only to focus well installations

TABLE 6
PAHs and SVOCs (μg/L)
Groundwater and Stormwater
McCall Oil and Chemical

	DEQ	Screening l	Levels														(Groundwa	ater												
	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	Construction/ Excavation Worker	EX-1 Water 12/20/00)	EX-1 Water 03/07/02		EX-1 Water 10/03/02		EX-2 Water 12/20/00		EX-2 Water 03/07/02		EX-2 Water 10/04/02		EX-2 Water 02/12/04		EX-3 Water 12/20/00	-	EX-3 Water 03/07/02		EX-3 Water 10/04/02		EX-3 Water 2/12/04		EX-4/MW-2 Water 12/20/00		EX-4/MW-2 Water 03/07/02	-	EX-4/MW-2 Water 10/03/02	2
Low Molecular Weight PAHs															_			LPAH	S										2-		
. Naphthalene	> Sat	> Sat	680	0.008	U	0.013	U	0.028	U	0.01	J	0.013	U	0.022	J	0.023	J	0.02	J	0.013	U	0.038	J	0.012	U	0.008	U	0.014	U	0.012	U
Acenaphthylene	n/a	n/a	n/a	0.006	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U	0.006	U	0.012	U	0.011	U
Acenaphthene	> Sat	> Sat	> Sat	0.007	U	0.0094	U	0.0088	U	0.02	J	0.041	J	0.110	J	0.025	J	0.01	J	0.0093	U	0.023	J (0.0088	U	0.14		0.30		0.19	J
Fluorene	> Sat	> Sat	> Sat	0.006	U	0.013	U	0.012	U	0.006	U	0.013	U	0.012	U	0.012	U	0.006	U	0.013	U	0.012	U	0.012	U	0.006	U	0.014	U	0.012	U
Phenanthrene	n/a	n/a	n/a	0.01	J	0.038	J	0.028	J	0.04	J	0.047	J	0.057	J	0.039	J	0.04	J.	0.06	J	0.06	J	0.028	J	0.10		0.52		0.16	J
Anthracene	> Sat	> Sat	> Sat	0.008	J	0.063	J	0.110	J	0.006	Ù	0.016	U	0.015	U	0.015	U	0.006	U	0.019	J	0.016	J	0.015	U	0.006	U	0.071	J	0.060	J
2-Methylnaphthalene	n/a	n/a	n/a	0.008	U	0.013	U	0.012	U	0.008	J	0.012	J	0.017	J.	0.013	J	0.008	U	0.012	U	0.015	J	0.012	U	0.008	U	0.013	·U	0.012	U
Total LPAH				0.018		0.101		0.166		0.078		0.100		0.206		0.100	-	0.07		0.08		0.15		0.028		0.24		0.89		0.41	
High Molecular Weight PAHs								· ·										HPAH	s												
Fluoranthene	> Sat	· > Sat	> Sat	0.02	J	0.014	U	0.053	J	0.009	J	0.017	J	0.013	U	0.013	U	0.01	J	0.038	J	0.034	J	0.013	U	0.01	J	0.048	J	0.028	J
Pyrene	> Sat	> Sat	> Sat	0.03	J	0.039	J	0.068	J	0.03	J	0.039	J	0.074	J	0.036	J	0.03	J	0.064	J	0.061	J	0.028	J	0.02	J .	0.13	J	0.049	J
Benz(a)anthracene	> Sat	> Sat	9.1	0.01	J	0.013	U	0.024	J	0.007	J	0.013	U	0.012	U	0.012	U	0.008	J	0.013	U	0.012	U	0.012	U	0.007	J	0.013	U	0.012	U
Chrysene	> Sat	> Sat	> Sat	0.02	J	0.015	U	0.033	J	0.007	J	0.015	U	0.014	U	0.014	U	0.01	J	0.015	U	0.014	U	0.014	U	0.008	J	0.016	U	0.014	υŀ
Benzo(b)fluoranthene	> Sat	> Sat	> Sat	0.01	J	0.021	U	0.033	J	0.006	J	0.021	Ù	0.020	U	0.020	U	0.006	J	0.021	U	0.020	U	0.020	U	0.006	J	0.021	U	0.020	υl
Benzo(k)fluoranthene	> Sat	> Sat	> Sat	0.01	J	0.021	U	0.020	U	0.006	J	0.021	U	0.020	U.	0.020	U	0.006	J	0.021	U	0.020	U	0.020	U	0.006	J	0.021	U	0.020	υl
Benzo(a)pyrene	> Sat	> Sat	0.53	0.02	J	0.018	U	0.051	J	0.007	J	0.017	U	0.016	U	0.016	U	0.007	J	0.017	U	0.016	U	0.016	U	0.007	J	0.018	U .	0.016	Ū
Indeno(1,2,3-cd)pyrene	> Sat	> Sat	> Sat	0.02	J	0.026	U	0.050	J	0.009	J	0.026	U	0.024	U	0.024	U	0.009	J	0.026	U	0.024	U	0.024	U	0.007	J	0.027	U	0.024	U
Dibenz(a,h)anthracene	> Sat	> Sat	0.21	0.004	U	0.03	U	0.031	U	0.005	J	0.033	U	0.031	U	0.031	U	0.004	U	0.033	U	0.031	U.	0.031	U	0.004	U	0.034	U	0.031	Ū
Benzo(g,h,i)perylene	n/a	n/a	n/a	0.02	J	0.039	J	0.061	J	0.01	J	0.018	U	0.017	U	0.017	U	0.02	J	0.034	J	0.025		0.017	U .	0.009	J	0.019	Ū	0.017	U
Total HPAHs				0.16		0.08		0.37		0.10		0.06		0.07		0.04		0.106		0.136		0.120		0.028		0.080		0.178		0.077	
Miscellaneous Semivolatiles	· · · · · · · · · · · · · · · · · · ·						<u> </u>			•		-				·		SVOCs	s.				-							1	\dashv
3- and 4-Methylphenol	n/a	n/a	n/a	0.003	· U	0.055	IJ	0.051	U	0.02	J	0.055	U	0.051	IJ	0.051	IJ	0.05	Ţ	0.087	J	0.090	J	0.051	U	0.003	U	0.056	U	0.051	11
Dibenzofuran	n/a	n/a	n/a	0.007	U	0.015	U	0.014	U	0.007	U	0.014	U	0.014	U	0.014	IJ	0.007	IJ	0.014	U	0.014		0.014	Ū	0.007	Ū	0.015	U	0.014	U
Butyl Benzyl Phthalate	n/a	n/a	n/a	0.02	U	0.028	U	0.026	U	0.02	U	0.028	U	0.026	U	0.026	IJ	0.02	IJ	0.028	U	0.026		0.026	U	0.02	U	0.028	U	0.026	IJ
Di-n-octyl Phthalate	n/a	n/a	n/a	0.003	Ü	0.035	U	0.032	U	0.003	U	0.035	U	0.032	U	0.032	U	0.003	U	0.035	U			0.032	Ü	0.003	Ü	0.036	Ü	0.032	Ŭ
Notes:						******							-															*****			$\overline{}$

U = Not detected at or above the indicated quantitation limit

Stormwater compared to construction/excavation worker only

 $[\]mu$ g/L = micrograms per liter or parts per billion.

J = Estimated concentration; D = Reported result from a sample dilution

> Sat = Screening level greater than product saturation value

n/a = No screening level available for this compound

TABLE 6
PAHs and SVOCs (μg/L)
Groundwater and Stormwater
McCall Oil and Chemical

	DEÇ	Screening	Levels													Gre	oundw	vater											
	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	Construction/ Excavation Worker	EX-5 Water 12/20/00	, ,	EX-5 Water 03/07/02	! .	EX-5 Water 10/04/02		EX-7 Water 12/20/00		EX-7 Water 03/06/02		EX-7 Water 10/03/02		MW-1 Water 12/20/00		MW-1 Water 03/07/02		MW-1 Water 10/03/02		MW-3 Water 12/20/00		MW-3 Water 03/07/02		MW-3 Dup Water 03/07/02	-	MW-3 Water 10/03/02	,
Low Molecular Weight PAHs							-								,		LPAH	Is											
Naphthalene	> Sat	> Sat	680	0.009	J	0.028	J	0.022	J	0.008	U	0.14	J	0.022	J	0.008	U	0.012	U	0.012	U	0.008	U	0.012	• U	0.012	\mathbf{U}	0.012	U
Acenaphthylene	n/a	n/a	n/a	0.006	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.006	U	0.011	U	0.011	U	0.011	U
Acenaphthene	> Sat	> Sat	> Sat	0.009	J	0.024	J	0.015	J	0.007	Ù	0.0089	U	0.0088	U	0.007	\mathbf{U}	0.0088	U	0.0088	U	0.17		0.21		0.23		0.33	.
Fluorene	> Sat	> Sat	> Sat	0.006	U	0.013	U	0.012	U	0.006	U	0.013	U	0.012	U	0.006	U	0.012	U	0.014	U	0.006	U	0.012	U	0.012	U	0.012	U
Phenanthrene	n/a	n/a	n/a	0.02	J	0.034	J	0.039	J	0.007	U	0.016	J	0.015	J	0.007	U	0.011	U	0.012	U	0.13		0.18	J	0.17	J	0.27	
Anthracene	> Sat	> Sat	> Sat	0.006	U	0.016	U	0.017	J	0:006	U	0.019	J ·	0.038	J	0.006	U	0.015	U	0.028	J	0.02	J	0.049	J	0.055	. J	0.092	J
2-Methylnaphthalene	n/a	n/a	n/a	0.008	U	0.012	\mathbf{U}	0.012	U	0.008	U	0.012	U	0.012	U	0.008	U	0.012	U	0.012	Ü	0.008	U	0.012	U	0.012	U	0.012	U
Total LPAH				0.038		0.086		0.093		0.008		0.18		0.08		0.008		0.015		0.03		0.32		0.44		0.46		0.69	
High Molecular Weight PAHs		·			-]	HPAH	Is											\neg
Fluoranthene	> Sat	> Sat	> Sat	0.009	J	0.013	U	0.013	U	0.007	U	0.018	J	0.024	J	0.007	U	0.013	U	0.013	,U	0.01	J	0.065	J	0.071	J	0.087	J
Pyrene	> Sat	> Sat	> Sat	0.040	J	0.046	J	0.067	J	0.007	U	0.022	J	0.028	J	0.007	U	0.015	U	0.015	\mathbf{U}	0.05	J	0.13	J	0.11	J	0.19	J
Benz(a)anthracene	> Sat	> Sat	9.1	0.006	· ј	0.013	U	0.012	·U	0.005	U	0.012	U	0.012	U	0.005	U	0.012	U	0.012	U	0.008	J	0.012	U	0.024	J	0.048	J
Chrysene .	> Sat	∍ > Sat	> Sat	0.008	$^{\prime}$ J	0.015	U	0.014	U	0.006	U	0.015	U	0.014	U	0.006	U	0.014	U	0.014	U	0.009	J	0.033	J	0.030	. J	0.062	J
Benzo(b)fluoranthene	> Sat	> Sat	> Sat	0.005	U	0.021	. U	0.020	U	0.005	U	0.020	U	0.020	U	0.005	U	0.020	U	0.020	U	0.006	J	0.020	U	0.020	U	0.055	J
Benzo(k)fluoranthene	> Sat	> Sat	> Sat	0.003	J	0.021	U	0.020	U	0.004	J	0.020	U	0.020	U	0.003	U	0.020	U	0.020	U	0.006	J	0.020	U	0.020	U	0.020	U
Benzo(a)pyrene	> Sat	> Sat	0.53	0.006	U	0.017	U	0.016	U	0.006	U	0.017	U	0.019	J	0.006	U	0.016	U	0.016	U	0.007	J	0.016	U	0.016	\mathbf{U}_{-}	0.077	J
Indeno(1,2,3-cd)pyrene	> Sat	> Sat	> Sat	0.007	J	0.026	U	0.024	U	0.005	J	0.025	U	0.024	U	0.004	U	0.024	U	0.024	U	0.008	J	0.024	U	0.024	U	0.053	J
Dibenz(a,h)anthracene	> Sat	> Sat	0.21	0.004	U	0.033	U	0.031	U	0.004	U	0.031	U	0.031	U	0.004	U	0.031	U	0.031	U	0.004	U	0.031	U	0.031	· U	0.031	U
Benzo(g,h,i)perylene	n/a	n/a	n/a	0.03	J	0.054	J	0.031	J	0.007	J ·	0.017	U	0.021	J	0.005	U	0.017	U.	0.017	U	0.009	J	0.039	J	0.017	U	0.066	J
Total HPAHs				0.103		0.100		0.098		0.016		0.040		0.092		0.007		0.031		0.031		0.113		0.267		0.235		0.638	
Miscellaneous Semivolatiles			,								-						svoc	Cs						<u></u>					
3- and 4-Methylphenol	n/a	n/a	n/a	0.007	J	0.055	U	0.051	U	0.003	U	0.052	U	0.051	U	0.003	U	0.051	U	0.051	· U	0.003	U	0.051	U	0.051	.U	0.051	Ų
Dibenzofuran	n/a	n/a	n/a	0.007	U	0.014	U	0.014	U	0.007	Ū	0.014	U.	0.014	U	0.007	U	0.014	U	0.014	U	0.007	U	0.014	U	0.014	U	0.014	Ü
Butyl Benzyl Phthalate	n/a	n/a	n/a	0.02	U	0.028	U	0.026	U	0.02	U	0.041	J	0.026	U	0.02	U	0.052	J	0.026	U.	0.02	U.	0.026	U	0.026	U	0.026	· U
Di-n-octyl Phthalate	n/a	n/a	n/a	0.003	U	0.035	U	0.032	U	0.003	. U	0.033	U	0.032	U	0.003	U	0.032	.U	0.032	U	0.003	U	0.032	U	0.032	U	0.032	U
Notes:														:						1									
U = Not detected at or above the indicated	quantitation	limit								•						•			•	1:									1

U = Not detected at or above the indicated quantitation limit

 $[\]mu$ g/L = micrograms per liter or parts per billion.

J = Estimated concentration; D = Reported result from a sample dilution

> Sat = Screening level greater than product saturation value

n/a = No screening level available for this compound

Stormwater compared to construction/excavation worker only

TABLE 6
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

	DEQ	Screening	Levels													Gro	ound	water											
	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	Construction/ Excavation Worker	MW-4 Water 12/20/00)	MW-4 Water 03/07/02	·	MW-4 Water 10/03/02		MW-5 Water 12/20/00		MW-5 Water 03/07/02		MW-5 Water 10/03/02	-	/W-5 Du Water 10/03/02	_	MW-5 Water 02/11/04		MW-6 Water 10/25/01	- :	MW-6 Dup Water 10/25/01		MW-6 Water 03/08/02		MW-6 Water 10/03/02		MW-6 Duj Water 10/03/02)
Low Molecular Weight PAHs								•]	LPA	Hs									-		
Naphthalene	> Sat	> Sat	680	0.008	U	0.014	U	0.012	U	0.008	U	0.034	J	.0.012	U	0.023		0.025	J	5.00	U	5.00	U	0.12	J	0.048	J	0.066	J
Acenaphthylene	n/a	n/a	n/a	0.006	U	0.012	U	0.011	U	0.006	U	0.011	U	0.011	Ú	0.011	U	0.011	U	5.00	U	5.00	U	0.038	J	0.011	Ü	0.011	Ų
Acenaphthene	> Sat	> Sat	> Sat	0.03	J	0.064	J	0.130	J	0.007	U	0.0094	U	0.0088	U	0.0088	U	0.0088	U	5.00	U	5.00	U	0.0095	U-	0.0088	U	0.020	J
Fluorene	> Sat	> Sat	> Sat	0.006	U	0.014	U	0.012	U	0.006	U	0.013	\mathbf{U}	0.012	U	0.012	U	0.012	U	5.00	U	5.00	U	0.02	J	0.012	U	0.012	U
Phenanthrene	n/a	n/a	n/a	0.06	J	0.082	J	0.086	J ·	0.007	U	0.011	U	0.021	J	0.021	J	0.011	U	5.00	U	5.00	U	0.13	J	0.039	J	0.059	J
Anthracene `	> Sat	> Sat	> Sat	0.01	J	0.035	J.	0.046	J	0.006	U	0.016	U	0.025	J	0.022	J	0.015	U	5.00	U	5.00	U	0.047	\mathbf{J}	0.045	J·	0.049	J
2-Methylnaphthalene	n/a	n/a	n/a	0.008	U	0.013	\mathbf{U}	0.012	U	0.008	U	0.013	U	0.012	U	0.012	U	0.012	U	5.00	U	5.00	U	0.025	J	0.012	U	0.012	U
Total LPAH				0.10		0.18		0.26		0.008		0.03		0.05		0.07		0.025						0.38		0.13		0.19	
High Molecular Weight PAHs																.]	HPA	Hs			<u> </u>			•					
Fluoranthene	> Sat	> Sat	> Sat	0.02	J	0.04	J ·-	0.013	U	0.007	U	0.014	U	0.031	J	0.026	J	0.013	IJ	5.00	IJ	5.00	IJ	0.18	J	0.08	J.	0.12	J
Pyrene	> Sat	> Sat	> Sat	0.05	J	0.11	J	0.15	J	0.007	Ū	0.024	J	0.037	J	0.034	. 1	0.015	U	5.00	Ū	5.00	Ü	0.25	. •	0.12	J	0.20	
Benz(a)anthracene	> Sat	> Sat	9.1	0.01	J	0.053	J	0.038	J	0.005	Ū	0.013	Ū	0.030	J	0.012	IJ	0.012	U	5.00	U	5.00	Ū	0.077	I	0.033	J	0.042	J
Chrysene	> Sat	> Sat	> Sat	0.02	J	0.048	J	0.054	J	0.006	Ū	0.015	Ü	0.022	J	0.014	Ü	0.014	U	5.00	Ü	5.00	Ū	0.087	J	0.038	J	0.052	J
Benzo(b)fluoranthene	> Sat	> Sat	> Sat	0.01	J	0.021	U	0.044	J	0.005	U	0.021	U	0.020	Ū	0.020	Ū	0.020	U	5.00	Ū	5.00	Ū	0.088	J	0.037	J	0.057	J
Benzo(k)fluoranthene	> Sat	> Sat	> Sat	0.01	J	0.021	U	0.020	U	0.003	U	0.021	U	0.020	·Ū	0.020	Ū	0.020	U	5.00	Ū	5.00	Ū	0.045	J	0.020	Ü	0.020	U
Benzo(a)pyrene	> Sat	> Sat	0.53	0.01	J	0.018	Ū	0.043	J	0.006	Ū	0.018	Ū	0.016	Ū	0.016	Ū	0.016	U	5.00	Ū	5.00	Ū	0.096	J	0.028	J	0.057	J
Indeno(1,2,3-cd)pyrene	> Sat	. > Sat	> Sat	0.01	J	0.026	Ū	0.032	J	0.004	Ū	0.026	Ū	0.024	Ū	0.024	U	0.024	U	5.00	n.	5.00	Ū	0.088	J	0.037	J	0.057	J
Dibenz(a,h)anthracene	> Sat	> Sat	0.21	0.004	Ū	0.033	Ū	0.031	Ū	0.004	Ū	0.033	Ū	0.031	Ū	0.031	Ŭ	0.031	U	5.00	Ū	5.00	Ū	0.033	Ü	0.031	Ü	0.031	U
Benzo(g,h,i)perylene	n/a	n/a	n/a	0.02	J	0.018	Ū	0.048	J	0.005	Ū	0.018	Ū	0.017	Ū	0.017	Ū	0.017	Ū	5.00	Ū	5.00	IJ	0.09	J	0.048	J	0.071	J
Total HPAHs				0.160	•	0.251		0.409		0.007		0.02		0.12	Ŭ	0.09	Ü	0.017		3.00	Ü	5.00	Ü	1.00		0.42	J	0.66	
Miscellaneous Semivolatiles																	svo	Cs											
3- and 4-Methylphenol	n/a	n/a	n/a	0.003	U	0.056	U	0.051	U	0.003	U	0.055	IJ	0.051	Ü	0.051	IJ	. 0.051	U	5.00	U	5.00	IJ	0.073	Ţ	0.051	U	0.051	U
Dibenzofuran	n/a	n/a	n/a	0.095	U	0.015	U	0.014	Ū	0.007	U	0.015	U	0.200	U	0.014	U	0.014	II	5.00	U	5.00	U	0.015	U	0.014	U	0.014	U
Butyl Benzyl Phthalate	n/a	n/a	n/a	0.02	U	0.013	U	0.026	IJ	0.02	U	0.013	U	0.048	ī	0.026	U	0.014	U	5.00	U	5.00	U	0.013	U	0.026	U	0.026	U
Di-n-octyl Phthalate	n/a	n/a	n/a	0.02	U	0.025	Ū.	0.020	U	0.003	U	0.025	U	0.048	U	0.020	IJ	0.020	U	5.00	U	5.00	U	0.028	U	0.020	. U	0.020	IJ
Notes:				3.303		0.000		0.002	<u> </u>						<u> </u>			0.002	-		-	2.00		- 0.000	<u> </u>		<u> </u>		- $$
U = Not detected at or above the indicated	d quantitation F	imit	. [i									,					-										•	ļ
μg/L = micrograms per liter or parts per b	•			1								,				•													
J = Estimated concentration; D = Reported		sample dilution	,	i								•								•								•	
> Sat = Screening level greater than produ		-		i						-														ricin E					
n/a = No screening level available for this				ľ				•							• •					•								:	
Stormwater compared to construction/exce	-	r only	ļ	1.		•		•					•											*					

3 of

TABLE 6
PAHs and SVOCs (µg/L)
Groundwater and Stormwater
McCall Oil and Chemical

	DEQ	Screening l	Levels													Groundw	vater	·										 	
	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	Construction/ Excavation Worker	MW-7 Water 10/25/01		MW-7 Water 03/08/02		MW-7 Water 10/04/02		MW-7 Water 02/12/04		MW-7 Du Water 02/12/04	•	MW-8 Water 10/25/01		MW-8 Water 03/07/02	} .	MW-8 Water 10/04/02		MW-8 Water 02/12/04		MW-9 Water 01/22/02		MW-9 Water 03/06/02		/W-9 Dup Water 03/06/02	•	MW-9 Water 10/03/02	
Low Molecular Weight PAHs															-	LPAH	ls .												
Naphthalene	> Sat	> Sat	680	5.00	U	0.086	J	0.020	J	0.012	U	0.012	U	5.00	U	0.16	J.	0.38		0.031	J	0.17	J	0.013	U	0.012	U	0.012	U
Acenaphthylene	n/a	n/a	n/a	5.00	U	0.025	J	0.011	U	0.011	U	0.011	U	5.00	U	0.011	U	0.210		0.011	U	0.054	J	0.11	J	0.069	J	0.011	U
Acenaphthene	> Sat	> Sat	> Sat	5.00	U	0.0092	U	0.0088	U	0.0088	U	0.045	J	5.00	U	0.58		0.78		0.34		0.120	J	0.12	J	0.15	J	0.25	
Fluorene	> Sat	. > Sat	> Sat	5.00	U	0.013	U	0.012	U	0.012	U	0.012	U	5.00	Ū	0.56		0.91		0.36		0.012	U	0.01	U	0.012	U	0.012	U
Phenanthrene	n/a	n/a	n/a	5.00	U	0.077	J	0.034	J	0.024	J.	0.036	J	5.00	U	1.2		1.7		0.22		0.26		0.22		0.16	J	0.20	J
Anthracene	> Sat	> Sat	> Sat	5.00	U	0.039	J	0.031	J	0.019	J	0.029	J	5.00	U	0.097	J	0.380		0.028	J	0.090	J	0.098	J	0.067	J	0.079	J
2-Methylnaphthalene	n/a	n/a	n/a	5.00	U	0.034	J	0.012	U	0.012	U	0.012	U	5.00	U	0.081	J	0.160	J	0.012 ·	U	0.020	Ţ	0.012	U	0.012	U	0.012	U
Total LPAH						0.26		0.09		0.043		0.11				2.68		4.52		0.98		0.71		0.55		0.45		0.53	
High Molecular Weight PAHs										-						HPAF	Is					· · ·							
Fluoranthene	> Sat	> Sat	> Sat	5.00	U	0.061	J	0.013	U	0.013	U	0.013	U	5.00	U	0.22		0.73		0.035	J	0.25		0.33		0.13	J	0.11	J
Pyrene	· > Sat	> Sat	> Sat	5.00	U	0.089	J	0.025	J	0.015	U	0.015	U	5.00	U	0.34		1.10		0.066	J	0.41		0.48		0.26		0.24	
Benz(a)anthracene	> Sat	> Sat	9.1	5.00	U	0.044	J	0.012	U	0.012	U	0.012	U	5.00	U	0.071	J	0.390		0.012	U	0.18	J	0.23		0.096	J	0.075	J
Chrysene	> Sat	> Sat	> Sat	5.00	U	0.045	J	0.014	U	0.014	U	0.014	U	5.00	U	0.16	J	0.56		0.014	U	0.18	J	0.24		0.10	J	0.07	J
Benzo(b)fluoranthene	> Sat	> Sat	> Sat	5.00	U	0.021	U	0.020	Ú	0.020	U	0.020	U	5.00	U	0.064	J	0.350		0.020	U	0.18	J	0.28		0.098	J	0.074	J
Benzo(k)fluoranthene	> Sat	> Sat	> Sat	5.00	U	0.021	U	0.020	U	0.020	U	0.020	U	5.00	U	0.02	U	0.13	J	0.02	U	0.078	J	0.096	J	0.027	J	0.033	J
Benzo(a)pyrene	> Sat	> Sat	0.53	5.00	U	0.017	U	0.016	U	0.016	U	0.016	. U	5.00	U	0.089	J	0.360		0.016	U	0.19	J	0.26		0.094	J	0.077	J
Indeno(1,2,3-cd)pyrene	> Sat	> Sat	> Sat	5.00	U	0.026	U	0.024	U	0.024	U	0.024	U	5.00	U	0.04	J	0.25		0.02	U	0.12	J	0.15	J	0.062	J	0.053	J
Dibenz(a,h)anthracene	> Sat	> Sat	0.21	5.00	U	0.032	U	0.031	U	0.031	U	0.031	U	5.00	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U	0.031	U
Benzo(g,h,i)perylene	n/a	n/a	n/a	5.00	U	0.099	J	0.017	U	0.017	U	0.017	U	5.00	U	0.057	J	0.310		0.017	U	0.130	J	0.16	J	0.065	J	0.071	J
Total HPAHs						0.34		0.03							•	1.04		4.18		0.101		1.72		2.23		0.93		0.81	
Miscellaneous Semivolatiles		· · · · · · · · · · · · · · · · · · ·							<u>-</u>							svoc	's												\dashv
3- and 4-Methylphenol	n/a	n/a	n/a	5.00	U	1.1		0.05	U	0.051	U	0.051	U	5.00	U	0.22	J	1.60		0.051	U	0.051	U	0.052	U	0.051	U	0.051	U
Dibenzofuran	n/a	n/a	n/a	5.00	U.	0.014	U	0.014	U	0.014	U	0.014	U	5.00	U	0.18	J	0.014	U	0.092	J	0.014	Ù	0.014	U	0.014	U	0.014	U
Butyl Benzyl Phthalate	n/a	n/a ·	n/a	5.00	U	0.027	U	0.026	U	0.026	U	0.026	U	5.00	U	0.13	J	0.026	U	0.026	U	.0.026	U	0.050	J	0.074	J	0.026	U
Di-n-octyl Phthalate	n/a	n/a	n/a	5.00	U	0.034	U	0.032	U	0.032	U	0.032	U	5.00	U	0.032	U	0.032	U	0.032	U	0.032	U	0.033	U	0.032	U	0.032	U
Notes:			· · · · · · · · · · · · · · · · · · ·																					·					\neg
U = Not detected at or above the indicated	l quantitation l	imit																											1
μg/L = micrograms per liter or parts per b	illion.																									,			- 1
J = Estimated concentration; D = Reported		sample dilution										-			:													-	
> Sat = Screening level greater than produ		-						•							•														l
n/a = No screening level available for this		•												-										w.					
Stormwater compared to construction/exc	_	r only																											1

4 of

TABLE 6
PAHs and SVOCs (μg/L)
Groundwater and Stormwater
McCall Oil and Chemical

	DEQ	Screening	Levels													(Frou	ndwater													
	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	Construction/ Excavation Worker	MW-10 Water 01/22/02		MW-10 Water 03/06/02		MW-10 Water 10/03/02		MW-11 Water 01/22/02		MW-11 Water 03/08/02	!	MW-12 Water 01/22/02		MW-12 Water 03/06/02		MW-12 Water 10/04/02		MW-13 Water 01/22/02	M	/W-13 Dup Water 01/22/02		MW-13 Water 03/06/02		MW-13 Water 10/04/02		MW-14 Water 02/11/04		MW-15 Water 02/12/04	
Low Molecular Weight-PAHs																200	LP	PAHs												•	
Naphthalene	> Sat	> Sat	680	0.058	J	0.24		0.012	U.	0.012	U	0.12	U	0.11	J	0.12	J	0.012	U	0.190	J	0.25		0.24		0.10	J	0.023	J	0.016	J
Acenaphthylene	n/a	n/a	n/a	0.019	J	0.022	J	0.011	U.	0.011	U	0.110	U	0.017	J	0.028	J	0.011	U	0.031	J	0.042	J	0.054	J	0.022	J	0.011	U	0.011	U
Acenaphthene	> Sat	> Sat	> Sat	0.120	J	0.009	U	0.0088	U	0.43		1.6	JD	0.190	J	0.15	J	0.25		0.087	J	0.093	J	0.18	J	0.25		0.0310	J	0.0088	. U
Fluorene	> Sat	> Sat	> Sat	0.012	U	0.013	U	0.012	U	0.86		2.0	D	0.012	U	0.013	U	0.012	U	0.041	J	0.033	J	0.037	J	0.012	U	0.012	U	0.012	U
Phenanthrene	n/a	n/a	n/a	0.073	J	0.08	J	0.012	J	1.80	•	3.0	D	0.11	J	0.11	J	0.15	J	0.11	J	0.13	J	0.19	J	0.14	J	0.011	U	0.011	U
Anthracene	> Sat	> Sat	> Sat	0.032	J	0.029	J	0.029	J	0.41	•	0.660	JD	0.019	J	0.016	U	0.054	J	0.025	J	0.033	J	0.041	J	0.019	J	0.015	U	0.070	J
2-Methylnaphthalene	n/a	n/a	n/a	0.012	U	0.015	J	0.012	U	20	D	24	D	0.036	J	0.034	J	0.012	U	0.058	J	0.073	J	0.056	J	0.026	J	0.012	U	0.012	บ
Total LPAH			+	0.30		0.39		0.04		23.50		31.26	٠	0.48		0.44		0.45		0.54		0.65		0.80		0.56		0.054		0.086	
High Molecular Weight PAHs																	Н	PAHs				· · · · · · · · · · · · · · · · · · ·		•							
Fluoranthene	> Sat	> Sat	> Sat	0.081	J	0.10	J	0.016	J	0.43		0.38	ЛD	0.036	J	0.058	J	0.013	U	0.10	J	0.12	J	0.14	J	0.058	J	0.013	U	0.013	U
Pyrene	> Sat	> Sat	> Sat	0.130	J	0.15	J	0.059	J	0.61		0.89	JD	0.076	J	0.11	J	0.10	J	0.14	J	0.19	J	0.19	J	0.11	J	0.015	U	0.021	J
Benz(a)anthracene	> Sat	> Sat	9.1	0.078	J	0.081	J	0.026	J	0.012	U	0.23	JD	0.012	U	0.052	J	0.012	U	0.038	J	0.053	J	0.063	J	0.012	U	0.012	U	0.012	U
Chrysene	> Sat	> Sat	> Sat	0.084	J	0.094	J	0.017	J	0.13	J	0.50	JD	0.047	J	0.046	J	0.014	U	0.052	J	0.056	J	0.075	j	0.014	U	0.014	U	0.014	U
Benzo(b)fluoranthene	> Sat	> Sat	> Sat	0.056	J	0.070	·J	0.020	U	0.02	U	0.20	U	0.020	U	0.021	U	0.020	U	0.020	U	0.072	J.	0.020	U	0.020	U	0.020	U	0.020	υl
Benzo(k)fluoranthene	> Sat	> Sat	> Sat	0.020	U	0.037	J	0.020	U	0.02	U	0.20	U	0.020	U	0.021	U	0.020	U	_0.020	U	0.020 · U	U	0.020	U	0.020	U	0.020	U	0.020	U
Benzo(a)pyrene	> Sat	> Sat	0.53	0.071	J	0.090	J	0.016	U	0.016	U	0.16	U	0.016	U	0.018	U	0.016	U	0.044	J	0.072	J	0.098	J	0.016	U	0.016	U	0.016	U
Indeno(1,2,3-cd)pyrene	> Sat	> Sat	> Sat	0.024	U	0.052	J	0.024	U	0.024	U	0.24	U	0.024	U	0.026	U	0.024	U	0.024	U	0.053	J	0.082	J	0.024	U	0.024	U	0.024	Ū
Dibenz(a,h)anthracene	> Sat	> Sat	0.21	0.031	U	0.031	U	0.031	U	0.031	U	0.31	U	0.031	U	0.033	U	0.031	U	0.031	U	0.031 U	U	0.031	U	0.031	U	0.031	U	0.031	U
Benzo(g,h,i)perylene	n/a	n/a	n/a	0.047	J	0.061	J	0.017	U	0.017	U	0.17	U	0.017	U	0.047	J	0.017	Ú	0.017	U	0.072	J	0.110	J	0.021	J	0.017	U	0.017	υl
Total HPAHs				0.55		0.74		0.12		1.17		2.00		0.16		0.31		0.10		0.37		0.69		0.76		0.26				0.021	j
Miscellaneous Semivolatiles														*			SV	OCs O								-				•	
3- and 4-Methylphenol	n/a	n/a	n/a	0.051	U	0.053	U	0.051	U-	0.051	U	0.510	U	1.9		0.41	J	0.07	·J	28	D	31 I	D	1.5		0.4	J	0.051	U	0.051	U
Dibenzofuran	n/a	n/a	n/a	0.014	U	0.014	U	0.014	U	0.014	U	0.81	JD	0.20	U	0.015	U	0.014	U	0.018	J	0.021	J	0.021	J	0.014	U	0.014	U	0.014	U
Butyl Benzyl Phthalate	n/a	n/a	n/a	0.045	J	0.040	J	0.026	U	0.026	.U	0.26	U	0.20	U	0.028	U	0.026	U	0.026	U		U		U	0.026	Ū	0.026	Ū	0.026	Ū
Di-n-octyl Phthalate	n/a	n/a	n/a	0.032	Ū	0.033	Ū		U	0.032	U	0.32	U.	0.20	Ŭ	0.035	U	0.032	Ū		Ū		U		U	0.032	U		U	0.032	U
Notes:									•				•		•				-												$\overline{}$
U = Not detected at or above the indicated	d quantitation	limit ·								•						•					`										
μg/L = micrograms per liter or parts per b	illion.																														
J = Estimated concentration; D = Reporte	d result from a	a sample dilution																											٠		
> Sat = Screening level greater than produ	uct saturation	value																													
n/a = No screening level available for this	compound		:			•																									
Stormwater compared to construction/exc	avation worke	er only																													

5 of 6

TABLE 6
PAHs and SVOCs (μg/L)
Groundwater and Stormwater
McCall Oil and Chemical

Low Molecular Weight PAHs	Outdoor Air	Vapor Intrusion, Indoor Air	Construction/ Excavation Worker	S-1 Water		S-1		S-2													1
Low Molecular Weight PAHs			Coo Exc Wo	12/20/00		Water 03/06/02		Water 12/20/00		S-2 Water 03/06/02		S-3 Water 12/20/00		S-3 Water 03/06/02	••	S-4 Water 12/20/00		S-4 Duplicat Water 12/20/00	e-	S-4 Water 04/09/02	
													LPA	Hs							
Naphthalene >	Sat	> Sat	680	0.03	J	0.03	J	0.07	J	0.025	J	0.07	J	0.025	J	0.04	J	0.04	J	0.012	U
Acenaphthylene n	n/a	n/a	n/a	0.006	. J	0.011	U	0.02	J	0.011	U	0.095	U	0.011	U	0.095	U	0.096	U	0.011	U
Acenaphthene >	Sat	> Sat	> Sat	0.02	J	0.0088	U	0.02	J	0.0092	U	0.095	U	0.0089	U	0.14		0.12		0.085	J
Fluorene >	Sat	> Sat	> Sat	0.02	J	0.012	U	0.04	J	0.013	U	0.02	J	0.013	U	0.36		0.34		0.17	J
Phenanthrene n	n/a	n/a	n/a	0.07	J	0.032	J	0.25		0.043	J	0.20		0.054	J	0.46		0.35		0.073	J
Anthracene >	Sat	> Sat	> Sat	0.006	U	0.015	U	0.02	J	0.016	U	0.095	U	0.015	U	0.02	J	0.01	J	0.015	U
2-Methylnaphthalene n	n/a	n/a	n/a	0.03	J	0.016	J	0.05	J	0.014	J	0.096		0.012	U	0.09	J.	0.10		0.012	U
Total LPAH			į	0.176		0.078		0.470		0.082		0.386		0.079		1.110		0.960		0.328	
High Molecular Weight PAHs]	HPA	Hs		··· · · · · · · · · · · · · · · · · ·					
Fluoranthene >	Sat	> Sat	> Sat	0.02	J	0.013	U	0.099		0.022	J	0.06	J	0.023	J	0.06	J	0.05	J	0.01	U
Pyrene >	Sat	> Sat	> Sat	0.02	J	0.015	U	0.12		0.025	٠J	0.03	J	0.022	J	0.19		0.16		0.10	J
Benz(a)anthracene .	Sat	> Sat	9.1	0.005	U	0.012	U	0.03	J	0.013	Ù	0.007	J.	0.012	U	0.03	J	0.02	J	0.012	U
Chrysene >	Sat	> Sat	> Sat	0.008	J	0.014	U	0.06	J	0.015	U	0.03	J	0.015	U	0.12		0.09	J	0.014	U
Benzo(b)fluoranthene >	Sat	> Sat	> Sat	0.006	J	0.020	U	0.04	J	0.021	U	0.01	J	0.020	U	0.03	J	0.03	J	0.020	U
Benzo(k)fluoranthene >	Sat	> Sat	> Sat	0.004	J	0.020	U	0.03	J	0.021	U	0.008	J	0.020	U	0.02	J	0.01	. J	0.020	U
Benzo(a)pyrene >	Sat	> Sat	0.53	0.006	U	0.016	U	0.03	J	0.017	U	0.095	U	0.017	U	0.03	J	0.02	J	0.016	U
11 1 1 1	Sat	> Sat	> Sat	0.006	J	0.024	U	0.04	J	0.026	U ·	0.01	J	0.025	U	0.02	J	0.02	J [·]	0.024	U
Dibenz(a,h)anthracene >	Sat	> Sat	0.21	0.004	U	0.031	U	0.009	J	0.032	U	0.19	U	0.031	U	0.009	J	0.008	J	0.031	U
1	n/a	n/a	n/a.	0.007	J	0.017	U	0.06	J	0.018	U	0.01	J	0.017	U	0.04	J	0.03	J	0.017	U
Total HPAHs				0.071				0.52		0.047		0.17		0.045		0.55		0.44		0.10	
Miscellaneous Semivolatiles	•									-		-	svo	Cs	-					 	
3- and 4-Methylphenol n	n/a	n/a	n/a	0.3	J	0.23	j	0.49		0.089	J	0.48	U	0.220	J	0.2	J	0.2	J	0.051	U
11	n/a	n/a	n/a	0.01	J	0.014	U	0.02	J	0.014	U	0.01	U	0.019	J	0.13		0.11		0.11	J
Butyl Benzyl Phthalate n	n/a	n/a	n/a	0.1	J	0.19	J.	0.1	J	0.05	J	0.08	J	0.092	J	0.05	J	0.04	J	0.14	J
11	n/a	n/a	n/a	0.003	U	0.032	U	0.003	U	0.032	U	0.95	U	0.033	U	0.95	U	0.96	U	0.032	U

 $\mu g/L = \text{micrograms per liter or parts per billion.}$

Stormwater compared to construction/excavation worker only

U = Not detected at or above the indicated quantitation limit

J = Estimated concentration; D = Reported result from a sample dilution

> Sat = Screening level greater than product saturation value

n/a = No screening level available for this compound

TABLE 7
VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (μg/L)
McCall Oil and Chemical

																					<u> </u>	
		Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans- 1, 2-dichloroethene	1,1-Dichloroethane	cis-1, 2-dichloroethene	Chloroform	1,1,1-Trichloroethane	Benzenc	Trichloroethene	Toluene	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzenc	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene
Detection F	Frequency	. 17%	1%	7%	1%	6%	17%	23%	9%	16%	2%	24%	7%	25%	1%	2%	3%	2%	2%	2%	2%	2%
Volatilization ((Outdoor Air)	6,200		2,200,000	<u> </u>	2,000,000		1,600,000	<u> </u>	> Sat	13,000	650	> Sat	8,600		> Sat	> Sat	> Sat	> Sat	> Sat	> Sat	
Vapor Intrusion	n (Indoor Air)	840		330,000		390,000		410,000		> Sat	2,700	110	> Sat	1,300	·-	> Sat	> Sat	> Sat	> Sat	> Sat	51,000	
Sample ID	Date			· · · · · · · · · · · · · · · · · · ·										-								
EX-1	05/02/97	0.5 U	0.5 U	1.8	0.5 U	0.5 U	4.4	9.9	5.9	240	. 0.5 U	410	0.5 U	3300	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	05/02/97	0.5 U	0.5 U	1.7	0.5 U	0.5 U	3.9	8.3	5.2	270	0.5.U	470	0.5 U	3600	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	02/04/99	50 U	· 50 U	50 U	50 U	50 U	50 U	. 50 U	50 U	120	50 U	220	50 U	2600	50 U	50 U	50 U	50 U	200 U	200 U	200 U	200 U
EX-1	02/04/99	50 U	50 U	50 U	50 U_	`50 U	50 U	50_U	50 U	130	50 U	250	50 U	3000	50 U	50 U	50 U	50 U	200 U	200 U	200 U	200 U
EX-1	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	9.1	0.5 U	20	0.5 U	400 D	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-1	03/07/02	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	3.2 D	2.5 U	2.5 U	13 D	2.5 U	32 D	2.5 U	480 D	2.5 U	2.5 U	2.5 U	2.5_U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	10/03/02	2.5 U	2.5 U	2.5 U	2.5 U_	2.5 U	0.5 U	2.5 U	2.5 U	11	2.5 U	25	2.5 U	340 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1	02/11/04	2.5 U	2.5 U	2.5 U	2.5 U	2.5 _· U	0.5 U	2.5 U	2.5 U	22 D	2.5 U	82 D	. 2.5 U	1700 D	2.5 U	2.5 U	2.5 U	2.5_U	10.0 U	10.0 U	10.0 U	10.0 U
EX-1 Dupe	02/11/04	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.5 U	2.5 U	2.5 U	24 D	2.5 U	89 D	2.5 U	1700 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U
EX-2	05/01/97	0.5 U	0.5 U	0.5 U	0.5·U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-2	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U ·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0:5-U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-3	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ·U	0.5 U	0.5 U	0.5 Ù	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5_U	0.5 U	0.5 U	· 2.0 U	2.0 U	2.0 U	2.0 U
EX-3	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	02/03/99	0.8	0.5 U	0.5 U	0.5 U	0.5 U	.0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5·U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0:5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.65	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U -		0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.8	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-4/MW-2	02/13/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		2.0 U	2.0 U	2.0 U
	1 1																					
EX-5	05/01/97	0.5 U.	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U 2.0 U	2.0 U 2.0 Ü
EX-5	02/04/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0:5 U	2.0 U	2.0 U		
EX-5	12/20/00	0.5 U	0:5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· 0.5 U	0.5 U	2.0 U	·2.U U	2.0 U	2.0 U

TABLE 7
VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (μg/L)
McCall Oil and Chemical

		Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans- 1, 2-dichloroethene	1,1-Dichloroethane	cis-1, 2-dichloroethene	Chloroform	1,1,1-Trichloroethane	Benzene	Trichloroethene	Toluene	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene
Detection F	Frequency	17%	1%	7%	1%	6%	17%	23%	9%	16%	2%	24%	7.%	25%	1%	2%	3%	2%	2%	2%	2%	2%
Volatilization ((Outdoor Air)	6,200		2,200,000		2,000,000		1,600,000		> Sat	13,000	650	> Sat	8,600		> Sat	> Sat	> Sat	> Sat	> Sat	> Sat	_
Vapor Intrusion	n (Indoor Air)	840	-	330,000		390,000		410,000		> <u>Sat</u>	2,700	110	> Sat	1,300		> Sat	> Sat	> Sat	> Sat	> Sat	51,000	
EX-5	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-5	10/04/02	0.5 Ų	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
	1				0.5.11	0.5.11				0.5.11	0.5.11	<u> </u>										
EX-6	05/02/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0	2.9	0.5 U	0.5 U	0.5 U	2.6	0.5 U	0.7	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-6	02/04/99	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.8	3.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	05/02/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ú	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 .U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
EX-7	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	05/01/97	0.5 U	0.5 U	0.9	0.5 U	0.5 U	7.4	0.7	12.0	8.0	0.5 U	28.0	0.5 U	110	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	02/03/99	0.5 U	0.5 U ·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.8	0.5 U	0.5 U	0.5 U	0.5 U	1.7	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	0.56	0.5 U	3.5	0.5 U	0.5 U .	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	9.7	0.5 U	0.5 U	0.5 U	0.5 U	3.2	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	3.6_	0.5 U	0.5 U	0.5 U	0.9	1.4	. 0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-1	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.58	2.2	0.5 U	0.5 U	0.5 U	5.2	0.5 U	2.3	0.5 U	0.5 U	0.5 U	0.5 U	- 2.0 U	2.0 U	2.0 U	2.0 U
MW-3	05/01/97	5.9	0.5	0.5 U	0.5 U	0.5 U	0.6	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U -	0.5 U	0.5 U	0.5 U	0.7 Tota	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	02/04/99	2.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	12/20/00	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	03/07/02	2.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	- 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3 Dupe	03/07/02	2.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-3	10/03/02	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	- 2.0 U	2.0 U	·2.0 U
MW-3	02/11/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.5	4.9	0.5· U	0.5 U	0.5 U	8.1	0.5 U	11.0	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4		0.5 U	0.5 U.	0.5 U	0.5 U		0.8	4.4	0.5 U	0.5 U	0.5 U	2.0	0.5 U	2.5	1.9	0.5 U						
	02/03/99					0.5 U	0.5 U		0.5 U								0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	12/20/00	1.4	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	03/07/02	2.6	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-4	10/03/02	0.69	0.3 U	0.5 U	0.5 U_	0.5 U	0.3 U	0.59.	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	05/01/97	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	02/03/99	0.5 U	0.5 U	0.5 U	0.5 U	0:5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	12/20/00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U

TABLE 7 VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (μg/L) McCall Oil and Chemical

													γ									
		Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans-1, 2-dichloroethene	1,1-Dichloroethane	cis-1, 2-dichloroethene	Chloroform	1,1,1-Trichloroethane	Вепzепс	Trichloroethene	Toluenc	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylcne	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene
Detection F	requency	17%	1%	7%	1%	6%	17%	23%	9%·	16%	2%	24%	7%	25%	1%	2%	3%	2%	2%	2%	2%	2%
Volatilization (Outdoor Air)	6,200		2,200,000		2,000,000		1,600,000	· _	> Sat	13,000	650	> Sat	8,600	<u> </u>	> Sat	> Sat	> Sat	> Sat	> Sat	> Sat	
Vapor Intrusion	(Indoor Air)	840		330,000		390,000		410,000	<u> </u>	> Sat	2,700	110	> Sat	1,300		> Sat	> Sat	> Sat	> Sat	> Sat	51,000	
MW-5	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5. U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5 Dupe	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-5	02/11/04	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
	1	,									· :											
MW-6	10/25/01	5 U	2.5 U	2.5 U	50 U	2.8	6.4	422	2.5 U	7.45	5 U	20.5	5 U	23	2.5 U	5 U	10 U	5 U	10.0 U	5.0 U	2.5 U	25 U
MW-6 Dupe	10/25/01	5 U	2.5 U	2.5 U	50 U	2.6	6.9	411	2.5 U	7.65	5 U	20.6	5 U	21.2	2.5 U	5 U	10 U	5 U	10.0 U	5.0 U	2.5 U	25 U
MW-6	03/08/02	5.6 D	2.5 U	3.8 D	2.5 U	4.0 D	11.0 D	700 D	2.5 U	22 D	2.5 U	200 D	2.5 U	360 D	2.5 U	2.5 U	2.5 U	2.5 U	10.0 U	10.0 U	10.0 U	10.0 U
MW-6	10/03/02	11.0 D	1.3 U	2.9 D	1.3 U_	3.8 D	7.5 D	770 D	1.3 U	7.7 D	1.3 U	33 D	1.3 U	40 D	1.3 U	1.3 U	1.3 U	1.3 Ü	5.0 U	5.0 U	5.0 U	5.0 U
MW-6 Dupe	10/03/02	12.0 D	1.3 U	3.0 D	1.3 U	3.9 D	7.8 D	740 D	1.3 U	8.0 D	1.3 U	36 D	1.3 U	43 D	1.3 U	1.3 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U
MW-6	02/12/04	11.0 D	1.3.U	2.5 D	1.3 U	3.6 D	4.5 D	630 D	1.3 U	7.6 D	1.3 U	71 D	1.3 U	70 D	1.3 U	1.3 U	1.3 U	1.3 U	5.0 U	5.0 U	5.0 U.	5.0 U
MW-7	10/25/01	1.0 U	0.5 U	0.5 U	10.0 Ù	0.5 U	0.5 U	2.9	0.5 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	0.5 U	1.0. U	2.0 U	1.0 U	2.0 U	1.0 U	0.5 U	5.0 U
MW-7	03/08/02	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U	2.1	0.5 U	0.5 U	0.5 U	0.5 U	3.4	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.5	0.5 Ü	0.5 U	0.5 U	0.5 U	2.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-7	02/12/04	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0`U	2.0 U	2.0 U	2.0 U
MW-7 Dupe	02/12/04	1.4	0.5 U	0.5·U	0.5 U	0.5 U	0.5 U	5.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
	1																					
MW-8	10/25/01	1.0 U	0.5 U	0.5 U	10.0 U	0.5 U	0.5 U	1.21	0.5 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	0.5 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	0.5 U	5.0 U
MW-8	03/07/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	. 2.0 U	2.0 U
MW-8	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 ℧
MW-8	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 Ù	2.0 U	2.0 U
MW-9	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5. U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9 Dupe	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-9 Dupe	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	· · 0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
141 44 -2	10/03/02				0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	. 0.5 0	0.5 0	. 0.5 0		0.5 0	2.0 0	2.0 0	2.0 0	2.00
MW-10	01/22/02	0.5 U	0.5 · U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	03/06/02	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	10/03/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.69	0.5 U	0.5 U	0.5 U	1.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-10	02/13/04	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5_U	0.5 U	0.5 U	0.5 U	0.66	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
	<u> </u>							•										-		•		
MW-11	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0	0.5 U	1.6	0.5 U	0.5 U	4.7	3.1	8.2	4.2	6.1	4.5	2.4
MW-11	03/08/02	0.5 U	0.5 U	0.5 U	0.5 U_	0.5 U	0.5 U	. 0.5 U	0.5_U	0.5 U	1.2	0.5 U	1.1	0.5 U	0.5 U	2.9	2.3	5.2	3.6	5.2	3.3	2.3

TABLE 7 VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (μg/L) McCall Oil and Chemical

		Vinyl Chloride	Chloroethane	1,1-Dichloroethene	Carbon Disulfide	trans- 1, 2-dichloroethene	1,1-Dichloroethane	cis-1, 2-dichloroethene	Chloroform	1,1,1-Trichloroethane	Benzene	Trichloroethene	Toluene	Tetrachloroethene	Dibromochloromethane	Ethylbenzene	m,p-Xylenes	o-Xylene	Isopropylbenzene	n-Propylbenzene	1,2,4-Trimethylbenzene	n-Butylbenzene
Detection F	requency	17%	1%	7%	1%	6%	17%	23%	9%	16%	2%	24%	7%	25%	1%	2%	3%	2%	2%	2%	2%	2%
Volatilization (Outdoor Air)	6,200	-	2,200,000	_	2,000,000		1,600,000	 ·	> Sat	13,000	650	> Sat	8,600		> Sat	> Sat	> Sat	> Sat	> Sat	> Sat	
Vapor Intrusion	(Indoor Air)	840	_	330,000	-	390,000		410,000		> Sat	2,700	110	> Sat	1,300		> Sat	> Sat	> Sat	> Sat	> Sat	51,000	_
MW-12	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	.0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-12	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.52	0.5 U	0.5 U	0.5 U	0.5 U	0.5 · U	2.0 U	2.0 U	2.0 U	2.0 U
MW-12	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	-0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-13	01/22/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-13	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-13 Dupe	03/06/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U
MW-13	10/04/02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U .	2.0 U	2.0 U
MW-14	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	· 2.0 U
MW-15	02/12/04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

U = Not detected at indicated detection limit; J = Estimated concentration

Naphthalene reported and evaluated with other PAHs in semivolatile fraction

Bold value = Detected concentration; Only those VOCs detected in one or more samples are presented

Shaded cell indicates chemical concentration exceeds one or more screening levels

Screening levels from DEQ Risk-Based Guidance for Petroleum-Contaminated Sites

> Sat = screening level exceeds free product saturation level; impossibly large (i.e., not significantly toxic)

Table 8 Metals Groundwater McCall Oil and Chemical

Location Matrix Sampled Arsenic Chromium Copp Monitoring Wells - Groundwater μg/L (ppb) EX-1 Total Water 02/11/04 2.6 EX-1 Duplicate Dissolved Water 02/11/04 1.6 EX-1 Duplicate Dissolved Water 02/11/04 1.4 EX-2 Dissolved Water 02/11/04 57.1 EX-2 Dissolved Water 02/11/04 65.8 EX-3 Dissolved Water 02/12/04 86.1 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/13/04 55.2 EX-7 Dissolved Water 02/12/04 0.5 U MW-1 Dissolved Water 12/20/00 2.50 U 9.5 514 MW-1	рег
Monitoring Wells - Groundwater μg/L (ppb)	DET
EX-1 Duplicate EX-1 Duplicate EX-1 Dissolved Water 02/11/04 2.6 Dissolved Water 02/11/04 1.6 Dissolved Water 02/11/04 1.4 EX-2 Total Water 02/11/04 65.8 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 03/07/02 14.9 0.4 2.5 EX-4/MW-2 Dissolved Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-1 Duplicate Total Dissolved Water 02/11/04 1.6 EX-1 Duplicate Dissolved Water 02/11/04 1.4 EX-2 Total Water 02/11/04 57.1 EX-2 Dissolved Water 02/11/04 65.8 EX-3 Total Water 02/12/04 87.2 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 03/03/02 14.9 0.4 2.5 EX-4/MW-2 Dissolved Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7 DISSOlved Water 02/12/04 0.5 EX-7	
EX-1 Dissolved Dissolved Water 02/11/04 1.6 EX-1 Duplicate Dissolved Water 02/11/04 1.4 EX-2 Total Water 02/11/04 57.1 EX-2 Dissolved Water 02/11/04 65.8 EX-3 Total Water 02/12/04 87.2 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Dissolved Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-1 Duplicate Dissolved Water 02/11/04 1.4 EX-2 Total Water 02/11/04 57.1 EX-2 Dissolved Water 02/11/04 65.8 EX-3 Total Water 02/12/04 87.2 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Dissolved Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/13/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 Water 02/12/04 0.5 U	
EX-2 Dissolved Water 02/11/04 57.1 EX-2 Dissolved Water 02/11/04 65.8 EX-3 Total Water 02/12/04 87.2 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-2 Dissolved Water 02/11/04 65.8 EX-3 Total Water 02/12/04 87.2 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-2 Dissolved Water 02/11/04 65.8 EX-3 Total Water 02/12/04 87.2 EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-3	
EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/13/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-3 Dissolved Water 02/12/04 86.1 EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/13/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Dissolved Water 12/20/00 8.8 8.1 2.0 EX-4/MW-2 Total Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-4/MW-2 Dissolved Water 02/13/04 0.5 EX-4/MW-2 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Dissolved Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Dissolved Water 03/07/02 56.8 5.8 7.7 EX-4/MW-2 Dissolved Water 03/07/02 47.5 2.4 0.6 EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Dissolved Water 10/03/02 14.9 0.4 2.5 EX-4/MW-2 Dissolved Water 02/13/04 53.1 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Total Water 02/13/04 53.1 EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-4/MW-2 Dissolved Water 02/13/04 55.2 EX-7 Total Water 02/12/04 0.5 EX-7 Dissolved Water 02/12/04 0.5 U	
EX-7 Dissolved Water 02/12/04 0.5 U	
EX-7 Dissolved Water 02/12/04 0.5 U	
MW-1 Dissolved Water 12/20/00 2.50 U 9.5 514	
MW-1 Dissolved Water 12/20/00 2.50 U 9.5 514	
MW-1 Total Water 03/07/02 0.80 1.9 139	
MW-1 Dissolved Water 03/07/02 1.00 U 2.0 130	
MW-1 Dissolved Water 10/03/02 0.8 0.3 196	
MW-1 Total Water 02/11/04 0.6 1.2 82.8	
MW-1 Dissolved Water 02/11/04 0.6 0.7 70.8	
MW-3 Dissolved Water 12/20/00 39.7 0.4 U 0.5	
MW-3 Total Water 03/07/02 42.8 6.4 11.0	
MW-3 Duplicate Total Water 03/07/02 41.6 6.7 7.8	
MW-3 Dissolved Water 03/07/02 43.4 5.7 1.3	
MW-3 Duplicate Dissolved Water 03/07/02 43.4 2.5 0.7	
MW-3 Dissolved Water 10/03/02 49 0.7 0.9	
MW-3 Total Water 02/11/04 46.9 2.5 1.8	
MW-3 Dissolved Water 02/11/04 46.1 2.4 0.4	
MW-4 Dissolved Water 12/20/00 12.7 1.00 U 1.00	U
MW-4 Total Water 03/07/02 9.2 8.70 29.90	
MW-4 Dissolved Water 03/07/02 10.0 3.30 1.20	
MW-4 Dissolved Water 10/03/02 16.5 0.20 U 0.70	
10/03/02 10.5 0.20 0 0.70	
MW-5 Total Water 02/11/04 15.7	
MW-5 Dissolved Water 02/11/04 15.4	

Table 8
Metals
Groundwater
McCall Oil and Chemical

			Date			
Location		Matrix	Sampled	Arsenic	Chromium	Copper
MW-6	Total	Water	10/25/01	29.8	67.8	98.8
MW-6 Duplicate		Water	10/25/01		35.0	48.6
	Dissolved	Water	10/25/01	18.2	1.00 U	2.00 U
MW-6 Duplicate		Water	10/25/01	19.0	1.00 U	2.00 U
MW-6	Total	Water	03/08/02	6.8	9.6	18.3
MW-6	Dissolved	Water	03/08/02	20.4	0.80	2.5
MW-6	Dissolved	Water	10/03/02		0.20	0.6
MW-6 Duplicate	Dissolved	Water	10/03/02	23.3	0.30	0.9
MW-6	Total	Water	02/12/04			
MW-6	Dissolved	Water	02/12/04	22.6		
MW-7	Total	Water	10/25/01	18.1	127	164
MW-7	Dissolved	Water	10/25/01	3.04	1.00 U	2.00 U
MW-7	Total	Water	03/08/02	4.4	9.1	19.1
MW-7	Dissolved	Water	03/08/02	3.5	2.3	1.3
MW-7	Dissolved	Water	10/04/02	9.1	2.1	0.7
MW-7	Total	Water	02/12/04	5	0.7	0.5
MW-7 Duplicate	Total	Water	02/12/04	5	0.8	0.4
MW-7	Dissolved	Water	02/12/04	5.1	2.0	0.3
MW-7 Duplicate	Dissolved	Water	02/12/04	5.1	0.7	0.3
MW-8	Total	Water	10/25/01	43.9	225	394
MW-8	Dissolved	Water	10/25/01	2.33	1.00 U	2.00 U
MW-8	Total	Water	03/07/02	4.3	14.7	36.1
MW-8	Dissolved	Water	03/07/02	8.6	2.9	1.3
MW-8	Dissolved	Water	10/04/02	9.6	1.4	0.3
MW-8	Total	Water	02/12/04	5.4	1.7	2.0
MW-8	Dissolved	Water	02/12/04	5.6	0.8	0.2
MW-9	Total	Water	02/13/04	18.3		
MW-9	Dissolved	Water	02/13/04	19.0		
MW-10	Total	Water	02/13/04	30.9		
MW-10	Dissolved	Water	02/13/04	28.9		
MW-12	Total	Water	02/13/04			
MW-12	Dissolved	Water	02/13/04	23.7		
MW-14	Total	Water	02/12/04	1.5	1.3	1.7
MW-14	Dissolved	Water	02/12/04	1.5	2.6	1.3
MW-15	Total	Water	02/12/04	3.5		
MW-15	Dissolved	Water	02/12/04	3.4		
Note: U = not detect	ed at method repor	ting limit, μg/L =	micrograms j	per liter, ppb	= parts per bil	lion.

Table 9 TPH in Upland Soil McCall/GWCC

			ТРН	- FIQ			
Risk-Based Concent 2003)		Gasoline		Diesel		Heavy Fuel Oi	,
Direct Contact, C	ccupational	22,000		70,000		N/A	
Direct Contact, C		13,000		23,000		N/A	i
Direct Contact,		> Maximum		> Maximum		N/A	
Volatilization, C	utdoor Air	80,000		> Maximum		N/A	
Vapor Intrusion,	Indoor Air	> Maximum		> Maximum		N/A	
Location	Date			Analytical Result in	mg/k		
GP-4 10-12	12/11/00	39	Н	220	F	200	F
GP-7 2-4	12/14/00	10	U	5,500	DH	4,100	DL
GP-9 10-12	12/12/00	290	Н	12,000	H	10,000	F
GP-14 0-2	12/13/00	, 10	U	14	F	55	F
GP-14 2-4	12/13/00	10	U	10	Ū	25	U
GP-14 20-22	12/13/00	10	U	30	Y	110	Y
GP-15 0-2	12/13/00	10	U	10	U	30	Z
GP-15 2-4	12/13/00	10	U	10	U	31	Z
GP-15 20-22	12/13/00	10	ប	78	F	160	Z
GP-16 0-2	12/13/00	10	U	10	U	49	F
GP-16 2-4	12/13/00	10	U	10	U	25	U
GP-16 16-18	12/13/00	10	U	33	H	85	Y
GP-17 0-2	12/13/00	10	U	13	H	84	F
GP-17 2-4	12/13/00	10	U	10	U	2.5	U
GP-17 12-14	12/13/00	10	U	16	H	160	0
GP-18 0-2	12/13/00	10	U	21	H	210	F
GP-18 2-4	12/13/00	10	U	10	ប	25	U
GP-18 16-18	12/13/00	10	U	10	U	38	F
GP-19 0-2	12/13/00	10	U	10	U	25	U
GP-19 2-4	12/13/00	10	U	68	Н	160	L
GP-19 16-18	12/13/00	10	U	10	U	25	U
GP-20 2-4	12/13/00	10	U	10	U	25	U
GP-20 16-18	12/13/00	10	U	10	U	25	บ
GP-22 10-12	02/09/01	17	H	310	F	160	Y
GP-23 16-18	02/09/01	10	U	80	Н	220	Y
GP-24 12-14	02/09/01	10	U	74	Н	130	Y
GP-24 16-18	02/09/01	10	U	65	Н	180	Y
GP-25 10-12	02/09/01	10	U	72	Н	250	Y
GP-25 14-16	02/09/01	. 10	U	65	Н	160	Y
GP-26 14-16	02/09/01	10	U	68	H	170	Y
GP-26 18-20	02/09/01	10	U	10	U	25	U
GP-27 10-12	02/12/01	10	U	10	U	48	Y
GP-28 12-14	02/12/01	10	U	10	U	25	U
GP-29 4-6	02/12/01	710	Н	18,000	H	36,000	F
GP-30 4-6	02/12/01	500	U	4,200	H	1,700	F
GP-31 14-16	02/13/01	6,300	DH	35,000	DH	38,000	DF
GP-32 10-12	02/13/01	10	U	10	U	29	F
GP-33 16-18	02/13/01	10	U	130	H	280	Y
GP-34 12-14	02/13/01	10	U	48	H	160	Y
GP-35 10-12	02/13/01	10	U	25	H	55	Y
GP-36 12-14	02/13/01	18	H	240	H	430	Y
GP-38 10-12	02/14/01	47	H	930	Y	440	Y
GP-48 10-12	11/14/01	20	U	1,420		1,300	
GP-49 10-12	11/14/01	20	U	128		171	
GP-50 10-12	11/14/01	20	U	265		543	
Catch Basins - Sedim						, – 	
S-1	12/15/00	26	Y	400	H	1,900	0
S-2	12/15/00	21	Y	300	H	2,200	DO
S-3	12/15/00	580	Y	2,400	H	7,600	DO
S3-01C	12/15/00	10	U	10	U	30	_Y

Notes:

Bold values indicate detected at or above method reporting limit.

- U = Not detected at method reporting limit.
- F = Fingerprint of the sample matches elution pattern of calibration standard
- L = Elution pattern indicates the presence of lighter weight constituents.
- H = Elution pattern indicates the presence of heavier weight constituents.
- O = The fingerprint resembles oil, but does not match the calibration standard.
- Y = Fingerprint resembles a petroleum product, but elution pattern does not match the calibration standard.
- Z = Fingerprint does not resemble a petroleum product.
- D = The reported result is from a dilution.
- Shaded concentration indicates exceedance of Risk Based Concentration.

TABLE 10
PAHs and SVOCs (μg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

		DEQ	Screening 1	Levels				-				- 4										•					
	Occupational Worker	Construction Worker	Excavation Worker	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	GP-4 10-12 Soil 12/11/00	! 	GP-7 2-4 Soil 12/14/00		GP-9 10-12 Soil 12/12/00		GP-14 0-2 Soil 12/13/00		GP-14 2-4 Soil 12/13/00	G	FP-14 20-2 Soil 12/13/00		GP-15 0-2 Soil 12/13/00		GP-15 2-4 Soil 12/13/00	C	GP-15 20-22 Soil 12/13/00	2	GP-16 0-2 Soil 12/13/00	;	GP-16 2- Soil 12/13/00	
Low Molecular Weight PAHs			•																								1
Naphthalene	770,000	710,000	2.0E+07	> Sat	> Sat	110	U	40	Т	70	JD.	7.5	U	7.4	U	25		1	J	7.9	U	150		1	J	7.9	U
Acenaphthylene	n/a	n/a	n/a	n/a	n/a	110	Ų	83	U	160	U	0.7	J	0.5	J	6	J	0.5	J	7.9	U	40		7.6	U	7.9	U
Acenaphthene	4.1E+07	1.6E+07	> Max	> Sat	> Sat	110	U	.70	Ъ	80	ID.	7.5	U	7.4	U .	9.4	U	7.6	.U	7.9	U	84		7.6	U	7.9	U
Fluorene	3.5E+07	1.2E+07	> Max	> Sat	> Sat	110	U	89	D	280	D	7.5	U.	0.6	J.	- 3	J	0.8	J	7.9	U	240		7.6	U .	7.9	U
Phenanthrene	n/a	n/a	n/a -	n/a	n/a	140	D	520	D	1800	D	7.5	U	7.4	U	55		13		7.9	U	1300	D	3	J	7.9	U
Anthracene	> Max	9.0E+07	> Max	> Sat	> Sat	10	Ъ	140	D	210	D	0.9	J	0.7	J	8	J	2	J	7.9	U	65		7.6	U	7.9	U
2-Methylnaphthalene	n/a	n/a	n/a	n/a	n/a	110	U	380	D	420	D	0.6	J.	0.5	J	9.9		1	J	7.9.	U	64		1	J	0.8	J
Total LPAH						150		1239		2860		2.2		2.3		106.9		18.3			-	1943		5		0.8	
High Molecular Weight PAHs									-		-																
Fluoranthene	2.9E+07	8.9E+06	> Max	> Sat	> Sat	70	Ъ	83	U.	310	D	6	J	2	J	94		34		7.9	U	330		. 8	J.	1	J
Pyrene	2.1E+07	6.7E+06	> Max	> Sat	> Sat	160	D	83	U	1200	. D	7	J	2	J	130		29		0.7	J	390		7	J	1	J
Benz(a)anthracene	2,700	21,000	590,000	> Sat	> Sat .	80	JD	240	D	330	D	4	J	1	J	40		17		7.9	U	110		5	· J	0.9	J
Chrysene	270,000	2.1E+06	5.9E+07	> Sat	> Sat	100	Ъ	740	D	1300	D	7	J	1	J	63		28		0.7	J :	130		7 .	J	1	J
Benzo(b)fluoranthene	2,700	21,000	590,000	> Sat	> Sat	50	ЛD	83	U	160	U	5 .	J	1	J	56		25		0.7	J	96		6	J	1	J
Benzo(k)fluoranthene	27,000	210,000	5.9E+06.	> Sat	> Sat	40	ΊD	83	U	160	. U	5	J	1	J	46		22		0.9	J	97		6	J	2	J
Benzo(a)pyrene	270	2,100	59,000	> Sat	> Sat	80	JD	70	\mathfrak{D}	210	D	6	J	0.8	J	76		24		0.7	J	160		5	J	1	J
Indeno(1,2,3-cd)pyrene	2,700	21,000	590,000	> Sat	> Sat	60	JD	30	\mathfrak{D}	60	Ъ	6	j	1	J	89		24		1 .	J	130		7	J	2 -	J
Dibenz(a,h)anthracene	270	2,100	59,000	> Sat	> Sat	20	JD	20	Ъ	20	JD	1	J	. 15	U	10	J	5	J	0.7	J	20	J	1	. ј	16	U
Benzo(g,h,i)perylene	n/a .	n/a	n/a	n/a	n/a	70	ЛD	60	\mathfrak{D}	100	JD	8	J	2	J	100		23	:	1	J	140		8	J	2	J
Total HPAHs						730		1160		3530		55		42		704		231		6		1603		60		12	
Miscellaneous Semivolatile Or	ganics (1)													 							····						
3- and 4-Methylphenol	3.1E+06					2200	U	1700	U	3300	U	150	U	150	U	190	U	150	U	160	U	60	J	150	U	160	U
Dibenzofuran	3.1E+06			•		110	U	20	JD	80	JD	0.6	J	0.7	J	2.0	J	0.8	J	7.9	U	47		7.6	U	7.9	U
Butyl Benzyl Phthalate	1.0E+08					220	U	170	U	930	D	-15	U	15	U ·	19	U	4	J	16	U	26	U	0.7	J	16	U
Di-n-octyl Phthalate	2.5E+07					2200	U	1700	U	3300	U	150	U	150	U	190	U	150	U	160	U.	260	U	150	U	160	U
Notes:		•		-		·														· ;	<u>-</u>						

Screening levels based on DEQ, 2003, Guidance for Remediation of Petroleum-Contaminated Sites, except as noted.

⁽¹⁾ Screening levels for miscellaneous SVOCs from EPA Region 9 Industrial Preliminary Remediation Goals (PRGs)

⁽²⁾ Catch basin sediments compared to excavation worker only.

> Sat = Screening level greater than product saturation value; > Max = Screening level greater than maximum possible concentration

n/a = No screening level available for this compound and pathway

Shaded cells indicate exceedance of one or more screening levels

U = not detected at or above the indicated method reporting limit.

J = estimated concentration. D = reported result is from a dilution.

TABLE 10
PAHs and SVOCs (μg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

		DEQ	Screening 1	Levels								•						-									
	Occupational Worker	Construction Worker	Excavation Worker	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	GP-16 16-1 Soil 12/13/00	8	GP-17 0-2 Soil 12/13/00		GP-17 2-4 Soil 12/13/00		GP-17 12- Soil 12/13/00		GP-18 0-2 Soil 12/14/00	<u>.</u>	GP-18 2-4 Soil 12/14/00	C	SP-18 16-18 Soil 12/14/00	8	GP-19 0-2 Soil 12/14/00		GP-19 2-4 Soil 12/14/00		P-19 16-1 Soil 12/14/00	8	GP-20 2-4 Soil 12/14/00	
Low Molecular Weight PAHs													,														
Naphthalene	770,000	710,000	2.0E+07	> Sat	> Sat	27		7.4	U	7.5	U	26		7.6	U	7.6	Ū	7.3	U	7.3	U	6	J	2	J	2	J
Acenaphthylene	n/a	n/a	n/a	n/a	n/a	5	J	7.4	U	0.6	J	7.0	. Л	7.6	U	7.6	U	0.5	J	7.3	U	0.8	J	0.8	J	0.4	J
Acenaphthene	4.1E+07	1.6E+07	> Max	> Sat	> Sat	7	J	7.4	U	7.5	U	8.7	U	7.6	U	7.6	U	7.3	U	7.3	U	7.4	U	7.1	. U	7.5	U
Flüorene	3.5E+07	1.2E+07	> Max	> Sat	> Sat	4	J	7.4	U	7.5	U	4	· J	7.6	U	7.6	U	0.6	J	7.3	U	0.9	J	0.7	J	7.5	U
Phenanthrene	n/a	n/a	n/a	n/a	n/a	36		7.4	U	7.5	U	37		7.6	U	7.6	U	4	J	7.3	U	4	J	7.1	U	4	J.
Anthracene	> Max	9.0E+07	> Max	> Sat	> Sat	8	J.	7.4	U	0.6	J	6	J	7.6	U	7.6	U	1	J	7.3	U	1	J	0.7	J	1	J
2-Methylnaphthalene	n/a	n/a	n/a	n/a	.n/a	8	J	7.4	U	2	J	6	J	0.5	J	7.6	U	0.6	J	7.3	U	1	J	0.7	J	0.8	J
Total LPAH						95				3.2		86 .	`	0.5				6.7				13.7		4.9		8.2	
High Molecular Weight PAHs	<i>i</i> .												·														
Fluoranthene	2.9E+07	8.9E+06	> Max	> Sat	> Sat	30		. 5	J ·	7	J	63		6	J	2	J	9.4		. 2	J	4	J	0.9	J,	- 6	J
Pyrene	2.1E+07	6.7E+06	> Max	> Sat	> Sat	89		4	J	8.8		68		6	J	2	J	11		2	J	5	J	. 2	· J	7	J
Benz(a)anthracene	2,700	21,000	590,000	> Sat	> Sat	38		3	J	4	J	29		3	J	1	J.	6	J	2	J .	. 3	J	0.5	J	3	J
Chrysene	270,000	2.1E+06	5.9E+07	> Sat	> Sat	48		5	J	7 .	J	36		- 6	J	2	J	11		2	J	4	J	0.6	J	5	J
Benzo(b)fluoranthene	2,700	21,000	590,000	> Sat	> Sat	30		4	J	4	J	28		5	J	. 1	J	8.4		2	J	4	J	7.1	Ų	3	J
Benzo(k)fluoranthene	27,000	210,000	5.9E+06	. > Sat	> Sat	33		3	J	5	J	31	-	. 4	J	2 :	J	5	J	2	J	4	J	0.7	J	4	J
Benzo(a)pyrene	270	2,100	59,000	> Sat	> Sat	44		.4	J	5	J	37		4	J.	1	J	6	J	2	J	5	J	0.6	J	4	J
Indeno(1,2,3-cd)pyrene	2,700	21,000	590,000	> Sat	> Sat	28		5	J	5	J.	28		5 .	J	1	J	6	J	2	J	7	J	0.8	J	3	J.
Dibenz(a,h)anthracene	270	2,100	59,000	> Sat	> Sat	4	J	1	J	0.8	J ·	5	J	1	J	15	Ú	. 2	J.	. 1	J	1	J	0.7	J	0.9	J
Benzo(g,h,i)perylene	n/a	n/a	n/a	n/a	n/a	33		. 6	J	6	J	27		5	J	1	J.	7	J	2	J	7	J	0.9	J	4	J
Total HPAHs	Ι.					377		40	**	53		352		45		13		71.8		19		44		7.7		40	
Miscellaneous Semivolatile Or	ganics (1)													,									· · · · · · · · · · · · · · · · · · ·				
3- and 4-Methylphenol	3.1E+06					180	U	150	U	150	U.	170	U	150	U	150	U	150	U	150	U	150	U	140	U	150 .	U
Dibenzofuran	3.1E+06		•			2	J	7.4	U	7.5	Ú	2	J	7.6	Ų	7.6	.U	0.5	J	7.3	U	1	J	0.9	J	0.5	J
Butyl Benzyl Phthalate	1.0E+08					18	U	1	J	15	U	17	U	1	J	15	U	3	J	1	J	15	U	14	\cdot U	15	U
Di-n-octyl Phthalate	2.5E+07			•		180	U	150	U	150	, U	2	J	150	U	150	U	5	J	0.8	J	150	U	140	U	150	U
Di-n-octyl Phthalate	2.5E+07					180	U	150	U	130	. U		J	150	U	150	<u> </u>	. 5	J	0.8		150	U	140		150	_

Screening levels based on DEQ, 2003, Guidance for Remediation of Petroleum-Contaminated Site

⁽¹⁾ Screening levels for miscellaneous SVOCs from EPA Region 9 Industrial Preliminary Remedia

⁽²⁾ Catch basin sediments compared to excavation worker only.

Sat = Screening level greater than product saturation value; > Max = Screening level greater than

n/a = No screening level available for this compound and pathway

Shaded cells indicate exceedance of one or more screening levels

U = not detected at or above the indicated method reporting limit.

J = estimated concentration. D = reported result is from a dilution.

TABLE 10
PAHs and SVOCs (μg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

		DEQ	Screening l	Levels			•			-																
	Occupational Worker	Construction Worker	Excavation Worker	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	GP-20 16-1 Soil 12/14/00		GP-22 10-12 Soil 02/09/01	2 0	SP-23 16-18 Soil 02/09/01	8 (GP-24 12-1 Soil 02/09/01	4 C	GP-24 16-18 Soil 02/09/01	. (GP-25 10-12 Soil 02/09/01	9	5 14-16 Soil 09/01	GP-26 14-16 Soil 02/09/01	6 (GP-26 18-20 Soil 02/09/01		P-27 10-12 Soil 02/12/01		P-28 12- Soil 02/12/01	ļ
Low Molecular Weight PAHs	0 2		ЩР		<u> </u>	12/14/00		02/09/01		02/09/01		02/09/01		02/09/01		02/09/01	02/	09/01	02/09/01		02/09/01		02/12/01		02/12/01	
Naphthalene	770,000	710,000	2.0E+07	> Sat	> Sat	7.1	IJ	47		32		36		18		. 67		100	61		15		Q.		7.2	11
Acenaphthylene	770,000 n/a	710,000 n/a	2.0E+07 n/a	n/a	n/a	7.1	U	5	T	10		50 5	Ţ	3	Ŧ	17		15		- ј	15	T	0.9	Ţ	7.2	II
Acenaphthene	4.1E+07	1.6E+07	> Max	> Sat	> Sat	7.1	Ü	27	J	9	T	Q	J T	22	J	15		15 25	0 17	J	8.4	U .	7.6	U	7.2	11
Fluorene	3.5E+07	1.0E+07	> Max	> Sat	> Sat	7.1	U	82		8	Ţ	Q Q	Ţ	6	Ţ	18		23 21	14		2.	i i	1.0	ī	7.2	U
Phenanthrene	n/a	n/a	n/a	n/a	n/a	7.1	U	180		66		47	J	37	J	110		150	83		11	J	7	J	7.2	U
Anthracene	> Max	9.0E+07	> Max	> Sat	> Sat	7.1	·U	- 11		16		10		7	T	28		30	19		- 2	T	2	T	7.2	U
2-Methylnaphthalene	n/a	n/a	n/a	n/a	n/a	. 7.1	IJ	160		13		19		4	Ţ	30		38	24		5	ī	2	Ī	7.2	TJ
Total LPAH		11.4			15 4	, , ,	O	512		154		133		97	•	285		379	226		36	•	21		7.2	
High Molecular Weight PAHs			·											<u> </u>				<u>_</u>							<u> </u>	
Fluoranthene	2.9E+07	8.9E+06	> Max	> Sat	> Sat	2	J	49		120		54		34		160		160	86		12		6	J .	7.2	U
Pyrene	2.1E+07	6.7E+06	> Max	> Sat	> Sat	4	J	63		150		70		54		190		190	120		15		10		7.2	U
Benz(a)anthracene	2,700	21,000	590,000	> Sat	> Sat	2	J	18		30		15		13		58	-	57	44		5	J	4	J	7.2	U
Chrysene	270,000	2.1E+06	5.9E+07	> Sat	> Sat	3	J.	24		39		19		18		71		69	52		7	J	4	J	7.2	U
Benzo(b)fluoranthene	2,700	21,000	590,000	> Sat	> Sat	1	J	19		28		13		9.5		50		40 °	33	•	5	J	4	J	7.2	U
Benzo(k)fluoranthene	27,000	210,000	5.9E+06	> Sat	> Sat	1	. J	15		27		12		11		40		38	31		. 4	J	4	J	7.2	U
Benzo(a)pyrene	270	2,100	59,000	> Sat	> Sat	2	J	21		38		17		15		66		59	. 46		6	J	5	J	7.2	U
Indeno(1,2,3-cd)pyrene	2,700	21,000	590,000	> Sat	> Sat	1.	J	25		27		12		11		72		56	45		7	J	6	J	1	J
Dibenz(a,h)anthracene	270	2,100	59,000	> Sat	> Sat	14	U	4	J	5	J	3	J	2	J	9	J	9	J 8	J	1	J.	1	J.	7.2	U
Benzo(g,h,i)perylene	n/a	n/a	n/a	n/a	n/a	3	J	23		32		14		12		61		48	36		6	J	5	J	7.2	U
Total HPAHs				•		19		261		496		229		180		777	· ·	726	501		68		49		1	
Miscellaneous Semivolatile Or	ganics (1)														~								· .			
3- and 4-Methylphenol	3.1E+06					140	U	96	U	60	J -	110		90	U	50	J :	160	180		84	U	76	U	72	· U
Dibenzofuran	3.1E+06					7.1	U	32	•	6	J	4	J	2	J	11	,	11	9	J.	2	J	0.8	J	7.2	U
Butyl Benzyl Phthalate	1.0E+08	•				14	U	9.6	U	10.0	U	9.9	U	9.0	Ü	9.9	U	9.8	U 9.9	U.	8.4	U	2	J	7.2	U
Di-n-octyl Phthalate	2.5E+07					140	U	9.6	U	10.0	U	9.9	U	9.0	Ü	9.9	U	9.8	U 9.9	U	8.4	U	7.6	U	7.2	U
37.4																										

Screening levels based on DEQ, 2003, Guidance for Remediation of Petroleum-Contaminated Site

Shaded cells indicate exceedance of one or more screening levels.

⁽¹⁾ Screening levels for miscellaneous SVOCs from EPA Region 9 Industrial Preliminary Remedia

⁽²⁾ Catch basin sediments compared to excavation worker only.

> Sat = Screening level greater than product saturation value; > Max = Screening level greater than

n/a = No screening level available for this compound and pathway

U = not detected at or above the indicated method reporting limit.

J =estimated concentration. D =reported result is from a dilution.

TABLE 10
PAHs and SVOCs (µg/kg)
Upland Soil and Catch Basin Sediment
McCall/GWCC

		DEQ	Screening l	_evels			=====				-												
	Occupational Worker	Construction Worker	Excavation Worker	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	GP-29 4-6 Soil 02/12/01		GP-30 4-6 Soil 02/12/01	(GP-31 14-16 Soil 02/13/01	6 (GP-32 10-12 Soil 02/13/01	. (GP-33 16-1 Soil 02/13/01		GP-34 12-14 Soil 02/13/01		P-35 10-12 Soil 02/13/01	2 (GP-36 12-14 Soil 02/13/01		SP-38 10- Soil 02/14/01	
Low Molecular Weight PAHs			•			ļ								,							•		
Naphthalene	770,000	710,000	2.0E+07	> Sat	> Sat	870	D	150	U	4300	D	7.1	U	12		56		4	J	54		800	D
Acenaphthylene	n/a	n/a	n/a	n/a	n/a	380	U	150	U	1500	U	7.1	U	3	J	9.8		4	J	9	J	83	
Acenaphthene	4.1E+07	1.6E+07	> Max	> Sat	> Sat	1000	D	150	U	5500	D	. 7.1	U	8	U	10		7.7	U	9.4	,	200	ŀ
Fluorene	3.5E+07	1.2E+07	> Max	> Sat	> Sat	1500	D	10	ЛD	12000	D	0.5	J	4	J	13		3	J	10		130	
Phenanthrene	n/a	n/a	n/a	n/a	n/a	3900	D	40	· JD	37000	D	6	J	22	•	79		20		67		590	D
Anthracene	> Max	9.0E+07	> Max	> Sat	> Sat	1100	D	20	JD	6300	D	7.1	\cdot U	5	J	17	-	4	J	13		110	ł
2-Methylnaphthalene	n/a	n/a	n/a	n/a	n/a	13000	D	20	ЛD	190000	D	2	J	.5	J	21		3	J	19		200	ı
Total LPAH						21370	•	90		255100		9		51		206		38		181		2113	
High Molecular Weight PAHs				···				· · · · · · · · · · · · · · · · · · ·															
Fluoranthene	2.9E+07	8.9E+06	> Max	> Sat	> Sat	1100	D	20	ЛD	2400	Ď	4	J	24		93		30		70		540	D
Pyrene	2.1E+07	6.7E+06	> Max	> Sat	> Sat	6800	D	80	ЛD	16000	D	5	J	34		120		38		95		650	. D
Benz(a)anthracene	2,700	21,000	590,000	> Sat	> Sat	1100	D	150	U.	4200	D	2	J	8.5		29		10	,	29		120	
Chrysene	270,000	2.1E+06	5.9E+07	> Sat	> Sat	2600	D	100	JD	14000	D	6	J	13		41		13		37		150	
Benzo(b)fluoranthene	2,700	21,000	590,000	> Sat	> Sat	400	. D	40	JD	1000	Ъ	3	J	9		31		12		25		94	
Benzo(k)fluoranthene	27,000	210,000	5.9E+06	> Sat	> Sat	200	ЛD	10	JD	600	Љ	2	J	8.4		. 24		12		25		87	
Benzo(a)pyrene	270	2,100	59,000	> Sat	> Sat	730	D	70	JD.	2600	D	. 2	J	11		34		. 19		34		130	
Indeno(1,2,3-cd)pyrene	2,700	21,000	590,000	> Sat	> Sat	200	JD	40	JD	500	JD	2	J	7	J	· 23	•	14		25		78	
Dibenz(a,h)anthracene	270	2,100	59,000	> Sat	> Sat	100	JD	30	JD:	400	JD	0.7	J	2	J	4	J	2	J	4	J	12	
Benzo(g,h,i)perylene	n/a	n/a	n/a	n/a	n/a	400	JD	60	JD	1000	JD	2	J	7.	J	26		15		25		73	
Total HPAHs						13630		450		42700		29		124		425		165		369		1934	
Miscellaneous Semivolatile Oi	ganics (1)																				·		
3- and 4-Methylphenol	3.1E+06					3800	U	1500	U	15000	U	71	U	80	U	95	U	77	U	80	J	1000	D
Dibenzofuran	3.1E+06					380	Ū	6	JD	3000	D	7.1	U	2	J	8	J	0.8	J	6	J	45	
Butyl Benzyl Phthalate	1.0E+08					380	Ū	150	U	1500	U	7.1	U	8.0	U	9.5	U	0.7	J	9.4	U	8.4	U
Di-n-octyl Phthalate	2.5E+07					380	Ü	150	U	1500	U	7.1	U	8.0	Ü	9.5	U	7.7	Ū	9.4	Ū	8.4	Ü
Notas:	L																						

Screening levels based on DEQ, 2003, Guidance for Remediation of Petroleum-Contaminated Site

⁽¹⁾ Screening levels for miscellaneous SVOCs from EPA Region 9 Industrial Preliminary Remedia

⁽²⁾ Catch basin sediments compared to excavation worker only.

> Sat = Screening level greater than product saturation value; > Max = Screening level greater than

n/a = No screening level available for this compound and pathway

Shaded cells indicate exceedance of one or more screening levels

U = not detected at or above the indicated method reporting limit.

J = estimated concentration. D = reported result is from a dilution.

TABLE 10 PAHs and SVOCs (μg/kg) **Upland Soil and Catch Basin Sediment** McCall/GWCC

·		DEQ	Screening l	Levels							=		
	ational r	uction r	ıtion	Volatilization, Outdoor Air	Vapor Intrusion, Indoor Air	S-1		S-2		S-3		S3-01C	,
	Occupational Worker	Construction Worker	Excavation Worker	Volatilizatio Outdoor Air	Vapor Intri Indoor Air	Sediment 12/15/00		Sediment 12/15/00	· ·	Sediment 12/15/00		Sedimer 12/15/00	nt
Low Molecular Weight PAHs												-	
Naphthalene	770,000	710,000	2.0E+07	> Sat	> Sat	200	JD	50	JD	400	JD -	12	U
Acenaphthylene	n/a	n/a	n/a	n/a	n/a	40	JD	20	JD	60	ЛD	12	U
Acenaphthene	4.1E+07	1.6E+07	> Max	> Sat	> Sat	200	JD	30	ЛĎ	720	U	12	U
Fluorene	3.5E+07	1.2E+07	> Max	> Sat	> Sat	. 100	JD	20	ЛD	3600	D	12	U
Phenanthrene	n/a	n/a	n/a	n/a	n/a	1500	D	320	D	3600	D	12	U
Anthracene	> Max	9.0E+07	> Max	> Sat	> Sat	400	ЛD	50	ЛD	2600	D	12	U
2-Methylnaphthalene	n/a	n/a	n/a	n/a	n/a	. 100	ЛD	50	JD	400	JD	0.6	J
Total LPAH						2540		540		10660	**	0.6	
High Molecular Weight PAHs						,			•			•	
Fluoranthene	2.9E+07	8.9E+06	> Max	> Sat	> Sat	2600	D	690	D	5800	D	3	J
Pyrene	2.1E+07	6.7E+06	> Max	> Sat	> Sat	2600	D	770	D	5500	D	3	J
Benz(a)anthracene	2,700	21,000	. 590,000	> Sat	> Sat	1300	D	440	D	2500	D	2	J
Chrysene	270,000	2.1E+06	5.9E+07	> Sat	> Sat	2000	D	740	D	5300	D	3	J
Benzo(b)fluoranthene	2,700	21,000	590,000	> Sat	> Sat	2000	D	780	D	4100	D	3	J
Benzo(k)fluoranthene	27,000	210,000	5.9E+06	> Sat	> Sat	1500	D	540	D	3400	D	2	. J
Benzo(a)pyrene	270	2,100	59,000	> Sat	> Sat	1900	D	670	D	3700	D	2	J
Indeno(1,2,3-cd)pyrene	2,700	21,000	590,000	> Sat	> Sat	1500	D	490	D	3200	D	2	J
Dibenz(a,h)anthracene	270	2,100	59,000	> Sat	> Sat	300	JD	100	JD	800	ЛD	24	U
Benzo(g,h,i)perylene	n/a	n/a	n/a	n/a	n/a	1600	\mathbf{D}	500	D	3600	D	3	J
Total HPAHs						17300		5720		37900		23	
Miscellaneous Semivolatile Or	ganics (1)				•	·						·	
3- and 4-Methylphenol	3.1E+06 -					13000	U	1900	U	4000	Ъ	240	U
Dibenzofuran	3.1E+06					100	ЛD	20	\mathfrak{M}	200	JD	12	U
Butyl Benzyl Phthalate	1.0E+08	."				1500	D	2500	D	5000	D	1	J
Di-n-octyl Phthalate	2.5E+07		·	·		13000	· U	1900	U	14000	U.	2	J

Screening levels based on DEQ, 2003, Guidance for Remediation of Petroleum-Contaminated Site

- (1) Screening levels for miscellaneous SVOCs from EPA Region 9 Industrial Preliminary Remedia
- (2) Catch basin sediments compared to excavation worker only.
- > Sat = Screening level greater than product saturation value; > Max = Screening level greater than
- n/a = No screening level available for this compound and pathway
- Shaded cells indicate exceedance of one or more screening levels J = not detected at or above the indicated method reporting limit.
- = estimated concentration. D = reported result is from a dilution.

TABLE 11 VOLATILE ORGANIC COMPOUNDS (μg/kg) UPLAND SOIL McCall/GWCC

		9116	2-Butunone	-1, 2-elethoroethene	Tetrachloroethene	Chlorobenzene	egg	sopropythenzens	a-Propylbenzene	1,3,5-Trimethylbenzene	A-Trimethylbenzene	nec-Butylbanzene	-Isopropyitoluese	n-Butylbenzens
DEQ (Screenin		Acetone	78	75	T E	_ <u>2</u>	o-Xylene	ge	<u></u> 4	2,5	7	į.	1	n-Bu
Occupation	al Worker	6,000,000	27,000,000	> Sut	5,100	530,000	> Sat	> Sat	> Sat	> Sat	> Sat	220,000	_=_	240,000
Construction	n Worker			> Sax	40,000		> Set	> \$at	> Sat	> Sat	> Sat			
Excavation	Worker			> Sat	> Sat		> Max	> Max	> Max	> Sat	_ > Sat			
Vapor Intrusion	(Indoor Air)	 =		110,000	1,500		> Sat	> Set	> Set	140,000	840,000			
Volatilization (Outdoor Air)			> Sat	62,000		> Sat	> Sat	> Sat	> Sat	790,000		_=_	
Sample ID	Date													
GP-4 10-12	12/11/00	64 U	26 U	6 <u>.</u> 4 U	6.4 U	6.4 U	6.4 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U
GP-72-4	12/14/00	87	22 U	5.6 U	5.6 U	9.5	5.6 U	22 U	22 U	22 U	22 U	22 U	22 U	22 U
GP-9 10-12	12/12/00	410	100	5.7	5.5 U	5.5 U	5.5 U	22 U	22 U	22 U	22 U	22 U	<u>22 U</u>	22 U
GP-15 20-22	12/14/00	100	28 U	6.9 U	6.9 บ	6.9 U	6.9 U	28 U_	28 U	28 U	28 U	28 U	28 U	28 U
GP-17 12-14	12/13/00	57 U	23 U	5.7 U	5.7 U	8.6	5.7 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U
GP-22 10-12	02/09/01	93	29 U	7.2 U	7.2 U	7.2 ป	7.2 U	80	29 U	29 U	29 U	170	29 U	35
GP-23 16-18	02/09/01	75 U	30 U	7,5 U	7.5 U	7.5 U	7.5 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U
GP-24 12-14	02/09/01	73 U	29 U	7.3 U	7.3 U	7.3 U	7.3 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U
GP-24 16-18	02/09/01	67 U	27 U	6.7 U	6.7 U	6.7 U	6.7 U	27 U	27 U	27 U	27 U	27 U	27 U	27 U
GP-25 10-12	02/09/01	74 U	30 U	7.4 U	7.4 U	7.4 U	7,4 U	30 U	30 U	30 U	30 U	30 U	30 U	30 U
GP-25 14-16	02/09/01	92	29 U	7.4 U	7.4 U	7.4 U	7.4 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U
GP-26 14-16	02/09/01	73 U	29 U	7.3 U	7.3 U	7.3 U	7.3 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U
GP-26 18-20	02/09/01	_63 U	25 U	6.3 U	6.3 U	6.3 U	6.3 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
GP-27 10-12	02/12/01	56 U	23 U	5.6 U	5.6 U	5.6 U	5.6 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U
GP-28 12-14	02/12/01	54 U	21 U	5.4 U	5.4 U	5.4 U	5.4 U	21 U	21 U	21 U	21 ປ	21 U	21 U	21 U
GP-29 4-6	02/12/01	11 U	11 U	0.28 U	0.28 U	0.28 U	0.28 U	1.1 U	1.1 U	2.4	5.1	1.1 U	1.4	1.1 U
GP-30 4-6	02/12/01	57 U	23 U	5.7 U	19	5.7 U	5.7 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U
GP-31 14-16	02/13/01	11 U	J1 U	0.29 U	0.29 U	0.29 U	0.85	1.1 U	2.0	1.1_U	1.4	1.4	J.1 U	3_
GP-32 10-12	02/13/01	53 U	21 U	5.3 U	5.3 U	5.3 U	5.3 U	2l U	21 U	21 U	21 U	21 U	21 U	21 U
GP-33 16-18	02/13/01	60 U	24 U	6.0 U	6.0 U	6.0 U	6.0 U	24 U	24 U	24 U	24 U	24 U	24 U	24 U
GP-34 12-14	02/13/01	71 U	28 U	7.I U	7.1 U	7.1 U	7.1 U	28 U	28 U	28 U	28 U	28 U	28 U	28 U
GP-35 10-12	02/13/01	58 U	23 U	5.8 U	5.8 U	5.8 U	5.8 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U
GP-36 12-14	02/13/01	75	_28 U	7.0 U	7.0 U	7.0 U	7.0 U	28 U	28 U	28 U	28 U	28 U	28 U	28 U
GP-38 10-12	12/13/00	110	25 U	6.2 U	6.2 U	6.2 U	6.2 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U

Notes:

U = Not detected at indicated detection limit; J = Estimated concentration

Naphthalene reported and evaluated with other PAHs in semivolatile fraction

Bold value = Detected concentration; Only those VOCs with detected concentrations are presented

Screening levels from DEQ Risk-Based Guidance for Petroleum-Contaminated Sites and EPA Region 9 Preliminary Remediation Goals (PRGs)

> Sat = screening level exceeds soil saturation with free product; > Max = screening level is impossibly large (e.g., no toxicity possible)

Table 12
Metals
Upland Soil and Catch Basin Sediment
McCall/GWCC
Portland, Oregon

			70-44					Ī	
Location		Matrix	Date Sampled	Arsenic	Cadmium	Chromium	Copper	Lead	Zinc
Location	Regional	Background	Sample	7	1	42	36	17	86
		evel (Ind. PRG)		1.6	450	450	41,000	750	100,000
Geoprobe Boriz	gs - Soil mg/kg			1	30	1 1	T1,000	7.50	100,000
GP-4 10-12	Total	Soil	12/11/00	3,3		11.6	15.7		
GP-7 2-4	Total	Soil	12/14/00	2.9	ļ	13.3	16.8	ļ	l
GP-9 10-12	Total	Soil	12/12/00	2.4		14.2	19.3	İ	
GP-14 0-2	Total	Soil	12/14/00	2.2	ļ	13.1	17.4	ļ)
GP-14 2-4	Total	Soil	12/14/00			12.3	13.4		
GP-14 20-22	Total	Soil	12/14/00	4.6	ļ	14.5	19.0]	}
GP-15 0-2	Total	Soil	12/14/00	1.7		11.1	18.1		
GP-15 2-4	Total	Soil	12/14/00	1.8		12.7	14.7]
GP-15 20-22	Total	Soil	12/14/00	3.1		22.8	27.1		
GP-16 0-2	Total	Soil	12/14/00	1.6		10.9	15.4		
GP-16 2-4	Total	Soil	12/14/00	1.8		14.0	15.4	[1
GP-16 16-18	Total	Soil	12/14/00	3.2		12.9	20.7	i	1
GP-17 0-2	Total	Soil	12/14/00	1.5		9.96	13.4	ĺ	Í
GP-17 2-4	Total	Soil	12/14/00	1.8		11.9	14.6		
GP-17 12-14	Total	Soil	12/13/00	2.2		16.6	18.7	[
GP-18 0-2	Total	Soil	12/14/00	1.3		8.88	13.7	1	
GP-18 2-4	Total	Soil	12/14/00	1.6		11.1	13.5	ĺ	
GP-18 16-18	Total	Soil	12/14/00	2.5		12.6	16.9		
GP-19 0-2	Total	Soil	12/14/00	1.6		10.1	12.3	1	ł
GP-19 2-4	Total	Soil	12/14/00	1.9		12.9	15.0]
GP-19 16-18	Total	Soil	12/14/00	1.6		10.6	13.2	ł	
GP-20 2-4	Total	Soil	12/14/00	1.6		11.1	14.2		
GP-20 16-18	Total	Soil	12/13/00	1.6		9.11	11.6		ļ
	Sediment mg/kg	(ppm)							
S-1	Total	Sediment	12/15/00	5.2	2.00	48.9	137	145	638
S-2	Total	Sediment	12/15/00	7.5	1.42	63.7	316	211	584
S-3	Total	Sediment	12/15/00	37.9	2.86	144	1050	454	985
S3-01C	Total	Sediment	12/15/00	4.4	0.12	11.9	27.4	8.58	82.7
Notes:							<u></u>		
lackground arsenic	value from Ecology,	1994; Industrial dir	ect contact v	alues from EF	A, 2002 (Reg	ion 9 PRGs).			

TABLE 13 Shoreline Groundwater Comparison with Surface Water Screening Criteria ($\mu g/L$) McCall Oil and Chemical

	DEQ	Scree	ning Lev	els												<u></u>															·		
	DEQ (2001) Level II SLV	Reference	Updated Level II SLV	Reference	EX-2 12/20/00		EX-2 03/07/02		K-2 04/02	EX 02/1		EX 12/20		EX-3 03/07/0	2	EX-3 10/04/02	!	EX-3 02/12/04		EX-5 2/20/00		ζ-5 17/02	EX 10/04		MW 12/20		MW-03/07		MW-5		MW-5 Du 10/03/02	•	MW-5 02/11/04
Low Molecular Weight PAHs	· -																								•								
Naphthalene	620	a,c	194	e	0.01	J	0.013	U 0.)22	J 0.0	23	0.0	2 J	0.013	·U	0.038	J	0.012	U	0.009 J	J 0.)28	0.0	22 J	0.0	08 T	J 0.03	4 J	0.012	U	0.023		0.025
Acenaphthylene			307	e	0.006	U	0.011	U 0.)11	U 0.0	11 U	J 0.00	06 U	0.011	U	0.011	U	0.011	U	J 600.0	J .0.)11 U	J 0.0	1 U	J 0.0	06 T	J 0.01	1 U	0.011	U	0.011	U	0.011
Acenaphthene	520	a,c	56	. е	0.02	J	0.041	J 0.	110	J 0.0	25 3	0.0	1 J	0.0093	U	0.023	J	0.0088	U	0.009 J	J 0.)24 J	0.0	5 J	0.0	07 U	J 0.009	94 U	J 0.0088	U	0.0088	U	0.0088
Fluorene	3.9	a,d	39	e	0.006	U	0.013	U 0.)12	U 0.0	12 U	J 0.00	06 U	0.013	U	0.012	U	0.012	U	0.006 L	J 0.)13 U	J 0.0	2 L	0.0	06 T	J 0.01	3 · U	J 0,012	U	0.012	U	0.012
Phenanthrene	6.3	a,d	19	e	0.04	J	0.047	J 0.)57	J 0.0	39]	0.0	4 J	0.06	J	0.06	J	0.028	J	0.02	J 0.) 34 J	0.0	19 J	0.0	07 U	J 0.01	1 U	J 0.021	J	0.021	J	0.011
Anthracene			21	e	0.006	U	0.016	U 0.0)15	U 0.0	15 U	J. 0.00	06 U	0.019	J	0.016	J ·	0.015	U	0.006 L	J 0.)16 E	J 0.0	7. J	0.0	06 I	J 0.01	6 U	J 0.025	J	0.022	J	0.015
2-Methylnaphthalene			72	e	0.008	J	0.012	J 0.)17	J 0.0	13	0.00	08 U	0.012	U	0.015	J	0.012	U	J 800.0	J 0.)12 U	J 0.0	2 L	0.0	08 U	J 0.01	3 U	J 0.012	U	0.012	U	0.012
High Molecular Weight PAHs																																	
Fluoranthene	6.2	a,d	7.1	е	0.009	J	0.017	J 0.0)13	U 0.0	13 U	J 0.0	1 J	0.038	J	0.034	J	0.013	U	0.009 J	J 0.)13 U	J 0.0	3 L	0.0	07 T	J 0.01	4 U	J 0.031	J	0.026	J	0.013
Pyrene			10	е,	0.03	J	0.039	J 0.	74	J 0.0	36 J	0.0	3 J	0.064	J	0.061	J	0.028	J	0.040 J	J 0.)46 J	0.0	5 7 J	0.0	07 t	J 0.02	4 J	0.037	J.	0.034	J	0.015
Benz(a)anthracene	0.14	b,d	2.2	e	0.007	J	0.013	U 0.0)12	U 0.0	12 L	J · 0.00	08 J	0.013	U	0.012	U	0.012	U	0.006	J 0.)13 U	J 0.0	2 L	J 0.0	05 T	U 0.01	3 L	J 0.030	J	0.012	U	0.012
Chrysene			2.0	e	0.007	J	0.015	U 0.0)14	U 0.0	14 U	J 0.0	1 J	0.015	U	0.014	U	0.014	U	0.008 J	J 0.)15 U	J 0.0	4 L	J 0.0	06 T	J 0.01	5 U	J 0.022	J	0.014	U	0.014
Benzo(b)fluoranthene	-		0.68	e	0.006	J	0.021	U 0.0)20	U 0.0	20 l	J 0.00	06 J	0.021	U	0.020	U	0.020	U .	0.005 L	J 0.)21 U	J 0.0	20 U	0.0	05 T	J 0.02	1 T	J 0.020	U	0.020	U	0.020
Benzo(k)fluoranthene			0.64	e	0.006	J	0.021	U 0.0)20	U 0.0	20 L	J 0.00	06 J	0.021	· U	0.020	U	0.020	U	0.003	J 0.)21 U	J 0.0	20 L	J 0.0	03 · I	U - 0.02	.1 C	J 0:020	U	0.020	U	0.020
Benzo(a)pyrene	0.07	b,d	0.96	e	0.007	J	0.017	U 0.0)16	U 0.0	16 U	J. 0.0 6	07 J	0.017	U	0.016	U	0.016	U	0.006 U	J 0.)17 ξ	J 0.0	6 L	J 0.0	06 T	U 0.01	8 U	J 0.016	U	0.016	U	0.016
Indeno(1,2,3-cd)pyrene			0.28	e	0.009	J	0.026	U 0.0)24	U 0.0	24 L	J 0.00)9 J	0.026	U	0.024	U	0.024	U	0.007 J	J 0.)26 L	J 0.0	24 L	J 0.0	04 1	U 0.02	6 · U	J 0.024	U	0.024	U	0.024
Dibenz(a,h)anthracene			0.28	e	0.005	J	0.033	U 0.0)31	U 0.0	31 U	J 0.00	04. U	0.033	U	0.031	U	0.031	U	0.004 · U	J 0.)33 (J 0.0	31 L	J 0.0	04 T	U 0.03	3 - U	J · 0.031	U	0.031	U	0.031
Benzo(g,h,i)perylene			0.44	е	0.01	J	0.018	U 0.0)17	U 0.0	17 L	J 0.0	2 J	0.034	J	0.025	J	0.017	U	0.03 J	J 0.)54]	0.0	31 J	0.0	05 U	U 0.01	8 U	J 0.017	U	0.017	U	0.017
Miscellaneous Semivolatiles												-			•		-		-														
3- and 4-Methylphenol					0.02	J.	0.055	U 0.0)51	U 0.0	51 U	J 0.0	5 J	0.087	J	0.090	J	0.051	U	0.007 J	J 0.)55 U	J 0.0	51 L	J 0.0	03 T	U 0.05	5 T	J 0.051	U	0.051	U	0.051
Dibenzofuran	19	b,d			0.007	U	0.014	U 0.0)14	U 0.0	14 U	J 0.00	07 U	0.014	U	0.014	U	0.014	U	0.007 L	J 0.)14 (J 0.0	14 L	J 0.0	07 1	U 0.01	5 U	J 0.200	U	0.014	· U	0.014
Butyl Benzyl Phthalate	95	b,d			0.02	U	0.028	U 0.0)26	U 0.0	26 l	J 0.0	2 U	0.028	U	0.026	U	0.026	U ·	0.02 U	J 0.)28 T	J 0.0	26 L	J 0.0)2 I	U 0.02	8 U	J 0.048	J	0.026	U	0.026
Di-n-octyl Phthalate	3,500	b,d			0.003	U	0.035	U 0.0)32	U 0.0	32 L	J 0.00	03 U	0.035	U	0.032	U	0.032	U	0.003 U	J 0.)35 U	J 0.0	32 L	J 0.0	03 1	U 0.03	5 U	J 0.014	U	0.014	Ū	0.032
Metals												·																				_	
Arsenic - Total									-	5	7							87							-	-							16
Arsenic - Dissolved	750	b,f								6								86				-			-	-							15
Chromium - Total	٠.	•								-	-	·										-	-		-								
Chromium - Dissolved	55	b,f							-	_				·											-		·						
Copper - Total		•							-	-	-											-	٠ ـ.		-		,						
Copper - Dissolved	9	a,f							-	-	-					·						- ·	٠		-	-							
Volatile Organic Compounds																																	
1,2-Dichloroethylene(cis)	590	a,d			0.5	U	0.5	U 0	.5	U		0.5	5 U	0.5	U	0.5	U ·			0.5 . U	J (.5 U	J 0.	5 I	J 0.	5 1	U 0.5	; ī	J 0.5	IJ	0.5	Ü	0.5
Trichloroethylene		a,c	47	a,d	ı		0.5		.5	U -	-	0.:		•	Ü	0.5	U			0.5 U		.5 U	J 0.	5 I	J 0.		U 0.5	, c		Ū		Ū	0.5
Tetrachloroethylene	840	a,c	98	a,d	0.5		0.5			U -	-	0.:			U	0.5	U					.5 t	J 0.		J 0.					Ū		U	
Vinyl Chloride		b,d		,.,						U -		0.:			U		U			0.5 T			J · 0.				U 0.5		•	Ū		Ū	

Shaded cell = concentration exceeds screening level value

(a) DEQ (2001) SLV @ Q = 1

(b) DEQ (2001) SLV @ Q = 5

(c) Interim guidance value from OAR 340-41

U = Not detected at indicated quantitation limit

J = Estimated concentration

Bold value = detected concentration

⁽d) Tier II Chronic Value (Suter & Tsao, 1996)

⁽e) Final Chronic Value (EPA, 2003)

⁽f) National Recommended WQC (EPA, 2002)

TABLE 13
Shoreline Groundwater Comparison with Surface Water Screening Criteria (μg/L)
McCall Oil and Chemical

	DEC) Scree	ning Lev	els e				<u> </u>												•				
	DEQ (2001) Level II SLV	Reference	Updated Level II SLV	Reference	MW-7	l	MW-7 03/08/02		MW-7 10/04/02		MW-7 02/12/04	,	MW-7 Du 02/12/04	~ .	MW-8 10/25/01	•	MW-8 03/07/02		MW-8 10/04/02		MW-8 02/12/04		MW-14 02/11/04	
Low Molecular Weight PAHs																								
Naphthalene	620	a,c	194	е	5.00	U	0.086	J	0.020	J	0.012	U	0.012	U	5.00	U	0.16	J	0.38		0.031	J	0.023	J
Acenaphthylene	•		307	е	5.00	U	0.025	J	0.011	Ū	0.011	U	0.011	U	5.00	U	0.011	U	0.210		0.011	U	0.011	U
Acenaphthene	520	a,c	56	e	5.00	U	0.0092	U	0.0088	U	0.0088	U	0.045	J	5.00	U	0.58		0.78		0.34	_	0.0310	J
Fluorene	3.9	a,d	39	е	5.00	U	0.013	U	0.012	U	0.012	U	0.012	U	5.00	U	0.56		0.91		0.36		0.012	Ū
Phenanthrene	6.3	a,d	19	е	5.00	U	0.077	J	0.034	J	0.024	J	0.036	J	5.00	U	1.2		1.7		0.22		0.011	Ū
Anthracene			21	е	5.00	U	0.039	J	0.031	J	0.019	J	0.029	J	5.00	U	0.097	J	0.380		0.028	J	0.015	U
2-Methylnaphthalene			72	e	5.00	U	0.034	J	0.012	U	0.012	U	0.012	U	5.00	U	0.081	J	0.160	J	0.012	U	0.012	U
High Molecular Weight PAHs	-										<u> </u>				<u>_</u>									\dashv
Fluoranthene	6.2	a,d	7.1	e	5.00	U	0.061	J	0.013	U	0.013	U	0.013	U	5.00	U	0.22		0.73		0.035	Ŧ	0.013	U
Pyrene		,	10	e	5.00	U	0.089	J	0.025	. J	0.015	Ū	0.015	Ū	5.00	U	0.34		1.10		0.066	1	0.015	U
Benz(a)anthracene	0.14	b,d	2.2	e	5.00	U	0.044	J	0.012	U	0.012	Ū	0.012	Ū	5.00	Ū	0.071	J	0.390		0.012	U	0.012	IJ
Chrysene		·	2.0	е	5.00	U	0.045	J	0.014	U	0.014	U	0.014	Ū	5.00	Ū	0.16	J	0.56		0.014	Ü	0.014	U
Benzo(b)fluoranthene			0.68	е	5.00	U	0.021	U	0.020	U	0.020	U	0.020	U	5.00	Ū	0.064	J	0.350		0.020	U	0.020	IJ
Benzo(k)fluoranthene			0.64	e	5.00	U	0.021	U	0.020	U	. 0.020	U	0.020	U	5.00	Ū	0.02	U	0.13	J	0.02	Ū	0.020	IJ
Benzo(a)pyrene	0.07	b,d	0.96	е	5.00	U	0.017	U	0.016	U	0.016	U	0.016	U	5.00	U	0.089	J	0.360		0.016	Ū	0.016	U
Indeno(1,2,3-cd)pyrene	1		0.28	е	5.00	U	0.026	U	0.024	U	0.024	U	0.024	U	5.00	U	0.04	J	0.25		0.02	U	0.024	U
Dibenz(a,h)anthracene	İ		0.28	e	5.00	U	0.032	U	0.031	U	0.031	U	0.031	U	5.00	U	0.031	U	0.031	U	0.031	U	0.031	U
Benzo(g,h,i)perylene			0.44	е	5.00	U	0.099	J	0.017	U	0.017	U	0.017	U	5.00	U	0.057	J	0.310		0.017	U	0.017	U
Miscellaneous Semivolatiles																								
3- and 4-Methylphenol	ĺ				5.00	U	1.1		0.05	U	0.051	U	0.051	U	5.00	U	0.22	J	1.60		0.051	U	0.051	U
Dibenzofuran	19	b,d			5.00	U.	0.014	U	0.014	U	0.014	U	0.014	Ū	5.00	Ū	0.18	J	0.014	U	0.092	J	0.014	U
Butyl Benzyl Phthalate	95	b,d			5.00	U	0.027	U	0.026	U	0.026	Ú	0.026	U	5.00	Ū	0.13	J	0.026	Ū	0.026	Ü	0.026	U
Di-n-octyl Phthalate	3,500	b,d			5.00	U	0.034	U	0.032	U	0.032	U	0.032	U	5.00	U	0.032	Ū	0.032	Ū	0.032	Ū	0.032	Ū
Metals																								
Arsenic - Total					18		4.4				5.0		5.0		44		4.3				5.4		1.5	
Arsenic - Dissolved	750	b,f			3.0		3.5		9.1		5.1		5.1		2.3		8.6		9.6		5.6		1.5	
Chromium - Total		- ,-			127		9.1				0.7		0.8		225		15				1.7		1.3	1
Chromium - Dissolved	55	b,f			1.0	U	2.3		2.1		2.0		0.7		1.0	U	2.9		1.4		0.8		2.6	
Copper - Total		Í			164		19.1				0.5		0.4		394	Ü	36	•			2.0		1.7	[
Copper - Dissolved	9	a,f			2.0	U	1.3		0.7		0.7		0.3		2.0	U	1.3		0.3		0.2		1.3	.
Volatile Organic Compounds						-										,	-							
1,2-Dichloroethylene(cis)	590	a,d			2.9		2.1		2.5		5.2		5.3		1.2		0.5	U	1.1		0.5	U	0.5	U
Trichloroethylene	21,900	a,c	47	a,d	0.5	U	0.5	U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	Ü	0.5	U
Tetrachloroethylene	840	a,c	98	a,d	0.5	U	0.5	U	0.5	Ü		U	0.5	Ū	0.5	U	0.5	U	0.5	U	0.5	U.	0.5	U
Vinyl Chloride	6,500	b,d	, ,	-,-	1.0	Ū	0.5	U	0.5	U	1.4	J	1.4	J	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U
		٠,٠		ل									1.7		1.0		<u> </u>	U	0.5	0	0.5		<u> </u>	~쒸

Notes:

U = Not detected at indicated quantitation limit

Bold value = detected concentration

Shaded cell = concentration exceeds screening level value

(b) DEQ (2001) SLV @ Q = 5

J = Estimated concentration

⁽a) DEQ (2001) SLV @ Q = 1

⁽c) Interim guidance value from OAR 340-41

⁽d) Tier II Chronic Value (Suter & Tsao, 1996)

⁽e) Final Chronic Value (EPA, 2003)

⁽f) National Recommended WQC (EPA, 2002)

TABLE 14 Comparison of Stormwater Data to Surface Water Criteria (µg/L) McCall Oil and Chemical

	Screening Levels			1															-		_
	Acute	Acute WQC x 5	Reference	S-1 12/20/00		S-1 03/06/02		S-2 12/20/00		S-2 03/06/02		S-3 12/20/00		S-3 03/06/02		S-4 12/20/00		S-4 Dupe 12/20/00		S-4 04/09/02	
Low Molecular Weight PAHs																					_
Naphthalene	807	4,035	a	0.03	J	0.03	J	0.07	J	0.025	J		J	0.025	J	0.04	J	0.04	J	0.012	U
Acenaphthylene	1,277	6,386	8	0.006	3	0.011	U	0.02	J	0.011	U	0.095	U	0.011	U	0.095	U	0.096	U	0.011	U
Acenaphthene	233	1,165	8	0.02	J	0.0088	U	0.02	J	0.0092	U	0.095	U	0.0089	U	0.14		0.12		0.085	J
Fluorene	162	811	2	0.02	J	0.012	U	0.04	J	0.013	U	0.02	J	0.013	U	0.36		0.34		0.17	J
Phonanthrene	79	395	8	0.07	J	0.032	J	0.25		0.043	J	0.20		0.054	J	0.46		0.35		0.073	Ţ
Anthracene	87	437	a	0.006	U	0.015	U	0.02	J	0.016	U	0.095	U	0.015	U	0.02	J	0.01	J	0.015	U
2-Methylnaphthalene	300	1,498	а	0.03	J	0.016	J	0.05	J	0.014	J	0.096		0.012	U	0.09	J	0.10		0.012	ť
High Molecular Weight PAHs															_						
Fluoranthene	30	148	a	0.02	J	0.013	U	0.099		0.022	J	0.06	J	0.023	J	0.06	J	0.05	J	0.01	U
Pyrene	42	208	a	0.02	J	0.015	U	0.12		0.025	J	0.03	J	0.022	j	0.19		0.16		0.10	J
Benz(a)anthracene	9.2	46	а	0.005	U	0.012	υ	0.03	J	0.013	U	0.007	J	0.012	U	0.03	J	0.02	J	0.012	Ü
Chrysene	8.3	42	a	0.008	J	0.014	U	0.06	J	0.015	U	0.03	J	0.015	U	0.12		0.09	J	0.014	U
Benzo(b)fluoranthene	2.8	14	a	0.006	j	0.020	U	0.04	J	0.021	U	0.01	J	0.020	U	0.03	J	0.03	j	0.020	U
Benze(k)fluoranthene	2.7	13	Ð	0.004	J	0.020	U	0.03	J	0.021	U	0.008	J	0.020	U	0.02	J	0.01	J	0.020	U
Benzo(a)pyrene	4.0	20	8	0.006	U	0.016	U	0.03	J	0.017	U	0.095	U	0.017	U	0.03	J	0.02	j	0.016	τ
Indeno(1,2,3-cd)pyrene	1.2	6	8	0.006	J	0.024	U	0.04	J	0.026	U	0.01	Ĵ	0.025	U	0.02	J	0.02	j	0.024	U
Dibenz(a,h)anthracene	1.2	6	a	0.004	U	0.031	U	0.009	J	0.032	U	0.19	U	0.031	U	0.009	J	0.008	J	0.031	U
Benzo(g,h,i)perylene	1.8	9	а	0.007	J	0.017	U	0.06	J	0.018	U	0.01	J	0.017	U	0.04	J	0.03	J	0.017	U
Miscellaneous Semivolatiles									_												_
3- and 4-Methylphenol	-			0.3	J	0.23	J	0.49		0.089	J	0.48	U	0,220	J	0.2	J	0.2	3	0.051	τ
Dibenzofuran	66	330	b	0.01	J	0.014	U	0.02	J	0.014	U	0.01	U	0.019	J	0.13		0.11		0.11	1
Butyl Benzyl Phthalate	19	95	b,c	0.1	J	0.19	J	0.1	J	0.05	J	0.08	J	0.092	J	0.05	J	0.04	J	0.14	7
Di-n-octyl Phthalate	708	3,540	b,c	0.003	U	0.032	U	0.003	U	0.032	U	0.95	U	0.033		0.95	U	0.96	Ū	0.032	U
Metals*					_														_		_
Arsenic - Total	n/a	n/a		0.5	U	0.5	U	1	U	0.5	U			0.5	U					0.6	
Arsenic - Dissolved	340	1,700	d	l								1	U			0.5	U	0.5	U		
Chromium - Total	n/a	n/a		0.4		0.4		2.0		0.6				1.2						0.9	
Chromium - Dissolved	16	80	d,e	ľ								2.9				8.0		0.6			
Copper - Total	n/a	n/a		3.8		3.7		9.9		6.0				13						9.0	
Copper - Dissolved	13	65	d	1				-				30				4.9		4.7			

U = Not detected at indicated quantitation limit; J = Estimated concentration

* Metals criteria are dissolved basis; if no dissolved data available, metals are compared to total concentrations

(a) EPA, 2003; Final Chronic Value x Acute/Chronic Ratio (4.16) (b) Suter and Tsao, 1996; Tier II Acute Value

(c) No Acute Value available; value shown is Tier II Chronic Value

(d) EPA, 2002; National Recommended Water Quality Criteria

(e) Value shown is for the more toxic Chromium-VI species

Table 15 Sampling Plan McCall Oil and Chemical

Well	Chlorinated VOCs	PAHs	Total Petroleum Hydrocarbons	As (Total and Dissolved)	Cr, Cu (Total and Dissolved)					
EX-1	х		х	х						
EX-2		х	х	х						
EX-3		х	х	Х						
EX-4 (MW-2)	х		X	Х						
EX-7			х	Х						
MW-1	х		х	Х	х					
MW-3	х		х	х	x					
MW-5	Х.	Х	х	Х						
MW-6	x		Х	Х						
MW-7	х	X	х	Х	х					
MW-8	Х	х	Х	Х	_ x					
MW-9			<u>x</u>	Х						
MW-10	х		x	Х						
MW-12			х	х						
MW-14	х	х	х	х	х					
MW-15	х	x	<u>x</u> _	х						
Note: Samples will be collected semiannually										

ANCHOR

Figure 1A Vicinity Map McCall Oil and Chemical

* Land use based on 1993 assessment records

Figure 1B Land Use Map McCall Oil Portland, Oregon

Figure 3
McCall Oil & Chemical Conceptual Site Model

